Part | contents

Defining distributed system
Examples of distributed systems
Why distribution?

Distributed Systems

Spring 2007 * Where is the borderline between a computer and a distributed system?
* Examples of modern distributed architectures
+ Goals and challenges of distributed systems

Lea Kutvonen
+ Shortlist of concepts to remember and some tricks for study

Sources
— Tanenbaum, van Steen: Ch1 & new edition
— CoDoKi: Cht1, Ch2

Jan 15,2007 1 Jan 15,2007 2

Definition of a Distributed System Examples of Distributed Systems, 1
A distributed system is The Internet: net of nets (CoDoKi, Fig. 1.1)
— global access to “everybody”
a collection of independent computers (data, service, other actor; open ended)
that appears to its users — enormous size (open ended)
as a single coherent system. = no single authority

— communication types
* interrogation, announcement, stream

.. or... « data, audio, video

as a single system.

Jan 15,2007

Jan 15,2007 4

Figure 1.1 A typical portion of the Internet Examples of Distributed Systems, 2
o ?‘. ? Intranets (CoDoki, Fig. 1.2)
P WE?J — — a single authority
= \ — protected access
@l LD *\ « a firewall
288 \ « total isolation
= ? Van \::) & - may be worldwide
/< \ } — typical services:
satellte link (@?‘%ﬁ « infrastructure services: file service, name service

% @ . oot .
desktop computer: B, application services
server:

network link:==

CoDoKi, Fig. 1.1

Jan 15,2007

Jan 15,2007 6

Figure 1.2 A typical intranet

(@ @ (@ email server Desktop
: - computers
print and other servers \ J -1 T_l 1)
/ ’ —.1
™~ Llocaaea)
Web server network —
— \(7
1 | [N\ =
email server = s) 'l
File server print
——— other servers
the rest of —
the Internet \\\@
! (=] =
router/firewall = _q.
CoDoKi, Fig. 1.2 __l

Jan 15,2007

Figure 1.3 Portable and handheld devices in a

distributed system

|
i WAP
: Hostiniranet Wireless LAN) gateway
| |
| 2 O Mobile |
I RN
Printer Lapt
| plop | "
Camera Host site
S S 4
CoDoKi, Fig. 1.3

Jan 15,2007

\

Home intranet

Resource Sharing and the Web

* Hardware resources (reduce costs)
* Data resources (shared usage of information)

* Service resources
— search engines

— computer-supported cooperative working

.

(palvelu, palvelin,

Jan 15,2007

Service vs. server (node or process)

Examples of Distributed Systems, 3

Mobile and ubiquitous computing (CoDoki Fig 1.3)

Portable devices
— laptops

— handheld devices
— wearable devices

— devices embedded in appliances

Mobile computing

Location-aware computing
Ubiquitous computing, pervasive computing

Jan 15,2007 8

Mobile Ad Hoc -Networks

X

Problems, e.g.:

- reliable multicast
- group management

Mobile nodes come and go
No infrastructure
- wireless data communication
- multihop networking
- long, nondeterministic dc delays

Jan 15,2007 10

Figure 1.4 Web servers and web browsers

www.google.com O

~

Web servers

www.cdk3.net O"

www.w3c.org O/

File system of
www.w3c.org

< Actiyity.htm!

CoDoKi, Fig. 1.4

e
_-'?ocols .

http://www.google.com/search?q=kindberg

Browsers

Internet
http://www.cdk3.net/

i)

http://www.w3c.org/Protocols/Activity.html

Mastering openness
* HTML

* URL

* HTTP

Jan 15,2007 12

Distributed information systems >
networked enterprise computing

. . Seminaareja
* transaction engines lukukau

* EAI Autonomisten
it bl P Sovellusintegraatio ja
* interoperabili R sihkoisen
P Yy yheistyd liik standardit
o J Ohjelmistoarkkitehtuurit
Z|ls g'ﬁ Transaktioiden kiisittel
<3 ransaktioiden kasittely
52||5]|88
5 R
I
E 5| |E||as
Pakolliset aineopinnot
tietoliikenne, kayttojirjestelmat -- ohjelmistotuotanto
olio-ohjelmointi kiytannossi

Jan 15, 2007 13

Why Distribution?

119 ¥

Sharing of information and services

Possibility to add components improves =
availability
P (=)
reliability, fault tolerance =)
performance
scalability
Facts of life: history, geography, organization
Jan 15,2007 15

Where is the borderline between a
computer and distributed system?

Jan 15,2007 17

Examples of Distributed Systems, 4

R8T

Distributed application

=

* one single “system”
* one or several autonomous subsystems
* a collection of processors => parallel processing
=> increased performance, reliability, fault
tolerance
* partitioned or replicated data
=> increased performance, reliability, fault tolerance

Dependable systems, grid systems, enterprise systems

E

Jan 15,2007 14

Goals of distributed systems

* Making resources accessible

* Hiding of complexity: transparencies

* Openness: interoperability, portability, market
share

* Scaling up to the business challenge

Jan 15,2007 16

Hardware Concepts

Characteristics which affect the behavior of software
systems
* The platform
— the individual nodes ("computer”, "processor”)
— communication between two nodes
— organization of the system (network of nodes)
... and its characteristics
— capacity of nodes
— capacity (throughput, delay) of communication links
— reliability of communication (and of the nodes)
=> which ways to distribute an application are feasible

Jan 15,2007 18

Basic Organizations of a Node

Shared mermory Private memory

EEW | EEEE
[e] [°] [*] [#
(el [e] [F] [¥]
7

Multiprocessors (1)

poseq-sng

‘ CPU ‘ ‘ CPU ‘ ‘ CPU ‘ ‘ Memory

[[

Bus

1.7 Abus-based multiprocessor.

poseq-pINS

LT RERT
Thom| ¥

Essential characteristics for software design

« fast and reliable communication (shared memory)
=> cooperation at "instruction level” possible

* bottleneck: memory (especially the "hot spots”)

1.6 Different basic organizations and memories in distributed computer

systems Jan 15, 2007 19 Jan 15,2007 20

Multiprocessors (2) Homogeneous Multicomputer

Memories SySte m S
E E E CPUs Memories

=

Ple o o o *Df

CPUs

= =

L

Crosspoint switch 22 switch

@ ® @ ®)

1.8 a) A crossbar switch
network

b) An omega switching

A possible bottleneck: the switch

Jan 15,2007 21

General Multicomputer Systems

1-9

a) Grid

b) Hypercube

A new design aspect: locality at the network level

Jan 15,2007

Software Concepts

System | Description Main Goal

* Hardware: see Ch1 (internet etc.)
. Tightly-coupled operating system for Hide and manage

Loosely connected SyStemS DOS multiprocessors and homogeneous hardware

— nodes: autonomous multicomputers resources

- commumc_atlon: slow.and vulnerable Loosely-coupled operating system for Offer local

=> cooperation at "service level” NOS heterogeneous multicomputers (LAN services to remote
+ Application architectures and WAN) dlients

— multiprocessor systems: parallel computation Middle- | Additional layer atop of NOS (Fi,ir:tl\{:glejtion

— multicomputer systems: distributed systems ware implementing general-purpose services | - coarency

(how are parallel, concurrent, and distributed systems different?)

Jan 15,2007 2

DOS: Distributed OS; NOS: Network OS

Jan 15,2007

History of distributed systems

* RPC by Birel &Nelson -84
network odperating systems, distributed operating systems,
distributed computing environments in mid-1990; middleware
referred to relational databases
Distributed operating systems — "single computer”
— Distributed process management
* process lifecycle
* inter-process communication,
* RPC, messaging
— Distri mar
* resource reservation and locking
* deadlock detection
— Distributed services
+ distributed file systems, distributed memory
* hierarchical global naming

Jan 15,2007 25

Misconceptions tackled

* The network is reliable

* The network is secure

The network is homogeneous

The topology does not change
Latency is zero

Bandwith is infinite

Transport cost is zero

There is one administrator

There is inherent, shared knowledge

Jan 15,2007 27

Multicomputer Operating Systems

(@)

Possible

synchronization
Sender $ point Receiver
Sender I Receiver
buffer buffer

Network
1.15 Alternatives for blocking and buffering in message passing.

Jan 15,2007 29

History of distributed systems

* late 1990’s distribution middleware well-known
— generic, with distributed services
— supports standard transport protocols and provides standard AP|

— available for multiple hardware, protocol stacks, operating
systems

- e.g., DCE, COM, CORBA

* present middlewares for
— multimedia, realtime computing, telecom
— ecommerce, adaptive / ubiquitous systems

Jan 15,2007 2

Multicomputer Operating Systems

Machine A Machine B Machine C
[1
‘ Distributed applications ‘

‘ Distributed operating system services ‘

‘ Kernel ‘ ‘ Kernel ‘ ‘ Kernel ‘

Network
1.14 General structure of a multicomputer operating system

Jan 15,2007 2

Distributed Shared Memory Systems

‘Stared glosal address space

a) Pages of address
space distributed
among four
machines

< tterory

[1]

=
=

c) Situation after
CPU 1 references
page 10

FEE) FEE] =]

e) Situation if page =
10 is read only and
replication is used @

Jan 15,2007 30

Distributed Shared Memory Systems
2)

Machine A Page transfer when Machine B

B needs to be accessed
A]
/ v
/ B
/ D Page transfer when
Page p A needs to be accessed

Two independent
data items

Code using A

1.18 False sharing of a page between two independent processes.

Jan 15,2007 31

Network Operating System (2)

File server
Client 1 Client 2 & | Disks on which
shared file system
Request Reply = | isstored
Network

1-20 Two clients and a server in a network operating system.

Jan 15,2007 3

Software Layers

* Platform: computer & operating system & ..

* Middleware:
— mask heterogeneity of lower levels
(at least: provide a homogeneous “platform”)
— mask separation of platform components
* implement communication
 implement sharing of resources

* Applications: e-mail, www-browsers, ...

Jan 15,2007 35

Network Operating System (1)

Machine A Machine B Machine C

‘ Distributed applications ‘

Network OS Network OS Network OS
services services services
‘ Kernel ‘ Kernel ‘ Kernel ‘
Network

1-19 General structure of a network operating system.

Jan 15,2007 32

Network Operating System (3)

Client 1 Cient2 Server 1 Server2
/ / games work
private pacman mail
pacwoman teaching
pacchid research
@
Client 1 Glient2
'
[agames e privatelgames
7 "workce 1 7] Worke=
/ \
‘ \ {
¥ 2 < y
pacman mail pacman mail
pacwoman teaching pacwoman teaching
pacchid research pacohid research
() ()

1.21 Different clients may mount the servers in different places.

Jan 15,2007 34

Positioning Middleware

Machine A Machine B Machine C
1T M|

‘ Distributed applications ‘

‘ Middleware services ‘

Network OS Network OS Network OS
services services services
‘ Kernel ‘ Kernel ‘ Kernel ‘
Network

1-22 General structure of a distributed system as middleware.

Jan 15,2007 36

Middleware Middleware

Host 1 Host 2

* Operations offered by middleware Distributed Distributed

RMI, group communication, notification, replication, ... application application

(Sun RPC, CORBA, Java RMI, Microsoft DCOM, ...) | |

* Services offered by middleware [MiddiewareAPl | [Middewarerr |

naming, security, transactions, persistent storage, ... “ “
* Limitations

— ignorance of special application-level requirements OperatingiSystemiART Gl &7 En !

end-to-end argument: ﬁh ﬁh
needed for reliability is communication of — [processing |[storage | [processing |[storage |

peers at both ends Operating system Operating system

Jan 15,2007 37 <=> Jan 15,2007 38

esovellusalueen palveluja: lennon
navigointialgoritmeja,

[APPLICZATIONS L‘\

DOMAIN- 2 . . .
[SPECIFIC j potllastletokantamalleJa * Middleware is a class of software
V] . .
sngﬁgi luja: iimoitukset, technologies designed to help manage the
E/HDDLEWARE o } tk:fgf;:g;’:aiatgzngztgatﬂat complexity and heterogeneity inherent in
W " . . N
DRION vikasietoisuus distributed systems. It is defined as a layer of
MIDDLEW ARE eobjektien ja komponenttien vélinen software above. thlli operating system bu.'[
kommunikointi (RMI, CORBA) below the application program that provides a
e reie e eyhteninen nakemys common programming abstraction across a
kayttojarjestema- ja distributed system.

kommunikointipalveluihin - Bakken 2001in encyclopedia

([HARDWARE DEVICES | s ssion o “
L et ——— CACM 45, 6 pp 45

Middleware and Openness Comparison between Systems
Distributed 0S Network Middleware-
- - Ttem - - s based 0S
Application Same Application Multiproc. | Multicomp.
prc_)g ramming Degree of transparency | Very High High Low High
interface
y: Same OS on all nodes Yes Yes No No
e H e H
. . Number of copies of OS | 1 N N N
Middleware c Middleware pr——
ommon Basis for communication are Messages Files Model specific
Network OS protocol Network OS memory 9 pe
Resource management Global, Global, Per node Per node
9 central distributed
123 Inan open middleware-based distributed system, the Scalability No Moderately | Yes Varies
protocols used by each middleware layer should be the Openness Closed Closed Open Open

same, as well as the interfaces they offer to applications.

Jan 15,2007 a1 Jan 15,2007 42

More examples on distributed
software architectures

Jan 15,2007 43

Client Server

* Client-server model: CoDoKi, Fig. 2.2

* Service provided by multiple servers: Fig. 2.3
* Needed:

— name service

— trading/broker service

— browsing service
* Proxy servers and caches, Fig. 2.4

Jan 15,2007

Figure 2.3 A service provided by multiple servers

CoDoKi, Fig. 2.3

Jan 15,2007 a7

Architectural Models

Provide a high-level view of the
distribution of functionality
between the components and
the relationships between them
¢ components (among the physical nodes)
* communication

Criteria: performance, reliability, scalability, ..

Jan 15,2007 4

Figure 2.2
Clients invoke individual servers

CoDoKi, Fig. 2.2

Jan 15,2007 46

Figure 2.4
Web proxy server

Proxy
server

/ Web
server

CoDoKi, Fig. 2.4

Jan 15,2007

An Example Client and Server (1)

I* Definitions needed by clients and servers. K

#define TRUE 1

#define MAX_PATH 255 /" maximum length of file name i
#define BUI

IZE 1024 /* how much data to transfer at once */
#define FILE_SERVER 243 /*file server's network address ~

I* Definitions of the allowed operations */
#define CREATE 1 [create anew file i

#define READ 2 [read data from afile and retumit 7/
#define WRITE 3 I witedatatoafile A
#define DELETE 4 I delete an existing file +
1" Extor codes. /

#define OK 0 I operation performed correctly]

#define E_BAD_OPCODE -1 /" unknown operation requested */
#define E_BAD_PARAM -2 /" error in a parameter */
#define E_IO -3/ disk error or other VO error %

I Definition of the message format. */
struct message (

long source; /" sender's identity o
fong dest; I receiver's identity =
long opcode; A
long count; /* number of bytes to transfer 4
long offset; /* position in file to start VO %
long result; " result of the operation s
char name[MAX_PATH]; I~ name of fle being operatedon */
char data[BUF _SIZE]; /" data to be read.or written !

The header.h file used by the client and server.
Jan 15,2007

An Example Client and Server (3)

#include <header.h> @
int copy(ciar “src, char *dst){ * procedure to copy file using the server */
siruct message mi; .~ message buffer o

long position; 7 current file position b
fong clent = 110; " clients address
initaize(); I prepare for execution K
position = 0;

dof

/" operation is a read X
I* current position in the file

I* copy name of fle 1o be read to message
send(FILESERVER, &mi); I* send the message to the file server
receive(cient, &mi); I block waiting for the reply

I* Write the data just received to the destination file. !
mi.opcode = WRITE; I" operation is a write !
mioffset = position I* current position in the file

ml.count = ml.resul I how many bytes to write ki
strepy(&ml.name, dst); I* copy name of file to be written tobut ~ */
send(FILE_SERVER, ami); I send the message to the file server Y
receive(ciient, &mi); 1 block waiting for the reply o
position += mi.resul; 1" mi.result is number of bytes written

} while(mi.result >0); 1" iterate until done]
retum(m.result >= 0 ? OK : mi result); /* retum OK or error code i

A client using the server to copy a file.
Jan' 15,2007

Multitiered Architectures

—~~
—_
~

Client machine

User interface | [User interface:

User interface

User interface

‘ Database ‘ Database ‘ ‘ Database ‘ Database ‘ ‘

Database

Database ‘

Server machine
@ ®) © @ ()

1-29 Alternative client-server organizations.

Jan 15,2007

An Example Client and Server (2)

#include <header.h>
void main(void) {

struct message mi, m2; /* incoming and outgoing messages
intr; /* result code
while(TRUE) I* server runs forever

receive(FILE_SERVER, &ml); /* block waiting for 2 message
switch(ml.opcode) { I dispatch on type of request
case CREATE: r=do_create(&ml, &m2); break;

case READ: 3
case WRITE: ; break;
case DELETE: do_delete(&ml, &m2); break;
default: _BAD_OPCODE;

}

m2.result =r; /* retumn resuit to client

send(ml.source, &m2); /" send reply

}
}
A sample server.
Jan 15,2007 50

Processing Level

| Userimetace | } Useritertace
HTML_ page
Keyword expression containing list
y HTML
generator Processing
Ranked list level
of page titles
B Ranking
Database queries component
Web page ttles \
with meta-information .
Database Data level
with Web pages j

1-28 The general organization of an Internet search engine into
three different layers

Jan 15,2007 52

Multitiered Architectures (2)

Client - server: generalizations

reguest
node 1 A

reply

the concept is related
to communication
not to nodes

Jan 15,2007 54

A client: node 1
server: node 2

B client: node 2
server: node 3

74
*/

*/

*/

*/
*/

Multitiered Architectures (3)

User interface Wait for result
(presentation)
Request Return
operation result
- Wait for data
Application ______ N T T T L
server
Request data Return data
Database o/
server »
Time

1-30 An example of a server acting as a client.

Jan 15,2007

Figure 2.6 Web applets
a) client request results in the downloading of applet code

O ——
server.

Applet code

b) client interacts with the applet

e'=

Jan 15,2007

CoDoKi, Fig. 2.6

Figure 2.7
Thin clients and compute servers

Compute server

Applicatio
Process,

Network computer or PC

network

CoDoKi, Fig. 2.7

Jan 15,2007

Variations on the Client-Server
model

Mobile code
the service is provided using a procedure
— executed by a process in the server node

— downloaded to the client and executed locally Fig. 2.6

— push service: the initiator is the server
* Mobile agents

— “arunning program” (code & data) travels
— needed: an agent platform

Jan 15,2007

Variations on the Client-Server
model (cont.)

* Network computers
— “diskless workstations”
— needed code and data downloaded for execution

* Thin clients
— “PC”: user interface
— server: execution of computations (Fig. 2.7)
— example: Unix X-11 window system

Jan 15,2007

Variations on the Client-Server
model (cont.)

* Mobile devices and spontaneous networks,
ad hoc networks (Fig. 2.8)
* Needed
— easy connection to a local network
— easy integration with local services
* Problems
— limited connectivity
— security and privacy
* Discovery service
two interfaces: registration, lookup

Jan 15,2007

Figure 2.8 Spontaneous networking in a hotel

@ Alal
gateway /\/ service,

Internet ~I—

Hotel wireless

i
'
" network !
Discovet
service) T~ \l\r
// |
'

TvIPC | Guests
CoDoKi, Fig. 2.8 ! devices
Jan15,2007 6
Other Architectures
* Andrews paradigms:
filter: a generalization of producers and
consumers
O
heartbeat O\O/O
o e ©
; B .
s .'<'Q\O
! N
[e]) probe echo 'O*/O
\‘O

* Peer to peer (Fig. 2.5)

Jan 15,2007

Goals and challenges for
distributed systems

Jan 15,2007

Modern Architectures

Front end

handling

incoming Replicated Web servers each

requests containing the same Web pages
Requests
handled in
round-robin

| fashion
i P
- Internet pl
C /
— . o

1-31 An example of horizontal distribution of a Web service.

Jan 15,2007 62

Figure 2.5
A distributed application based on peer processes

Application Application

Coordination Coordination
code code

Application

Coordination
code
CoDoKi, Fig. 25

Jan 15,2007 64

Goals

* Making resources accessible
* Distribution transparency

* Openness

* Scalability

* Security

* System design requirements

Jan 15,2007 66

Challenges for

Making resources accessible Challenges for Transparency

* Naming * The fundamental idea: a collection of
* Access control independent, autonomous actors

* Security Transparency

* Availability — concealment of distribution =>

« Performance user’s viewpoint: a single unified system

* Mutual exclusion of users, fairness
Consistency in some cases

Jan 15,2007 67 Jan 15,2007 68

Transparencies Challenges for Transparencies

Transparency | Description
Access Hide differences in data representation and how a resource
is accessed . licati d i ti d f
replications and migration cause neea for
Location Pide where a resource s Jocated () ensuring consistency and distributed
Migration Hide that a resource may move to another location () .. .
9 (the resource does not notice) deCISIOn-maklng
Relocation Hiqe that a resource may be mov.ed to another location (*) . failure modes
while in use (the others don't notice)
Replication Hide that a resource is replicated ¢ concurrency
Concurrency :;ifsthat a resource may be shared by several competitive . heterogeneity
Failure Hide the failure and recovery of a resource
Persistence Hide whether a (software) resource is in memory or on disk

(#) Notice the various meanings of location” : network address (several layers) ; geographical address

Jan 15,2007 6 Jan 15,2007 70

Figure 2.10 Figure 2.11

Omission and arbitrary failures Timing failures

Class of failure _Affects _Description

Fail-stop Process Process halts and remains halted. Other processes may - —
detect this state. Class of Failure Affects Description

Crash Process Process halts and remains halted. Other processes may Clock Process Process’s local clock exceeds the bounds on its
not be able to detect this state. rate of drift from real time.

Omission Channel A message inserted in an outgoing message buffer never Performance Process Process exceeds the bounds on the interval
arrives at the other end’s incoming message buffer. between two steps.

Send-omission Process A process completessend,but the message is not put Performance Channel A message’s transmission takes longer than the
in its outgoing message buffer. stated bound.

Receive-omissioRrocess A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary Process orProcess/channel exhibits arbitrary behaviour: it may

(Byzantine) channel send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Jan 15,2007 7 Jan 15,2007 7

Failure Handling

More components => increased fault rate
Increased possibilities

— more redundancy => more possibilities for fault tolerance
— no centralized control => no fatal failure

Issues

— Detecting failures

— Masking failures

— Recovery from failures

— Tolerating failures

— Redundancy

New: partial failures

Jan 15,2007 7

Consistency Maintenance

* Update ...

* Replication ...

e Cache ...

* Failure ...

* Clock ...

* User interface

... consistency

Jan 15,2007 7

Challenges for Openness

Openness facilitates

— interoperability, portability, extensibility, adaptivity
Activities addresses

— extensions: new components

— re-implementations (by independent providers)
Supported by

— public interfaces

— standardized communication protocols

Jan 15,2007 7

Concurrency

Concurrency:
— Several simultaneous users => integrity of data
* mutual exclusion
* synchronization
* ext: transaction processing in data bases
— Replicated data: consistency of information?
— Partitioned data: how to determine the state of the
system?
Order of messages?

There is no global clock!

Jan 15,2007 74

Heterogeneity

Heterogeneity of

— networks

— computer hardware

— operating systems

— programming languages

— implementations of different developers
Portability, interoperability

Mobile code, adaptability (applets, agents)

* Middleware (CORBA etc)

« Degree of transparency? Latency? Location-based services?

Jan 15,2007 76

Challenges for Scalability

Scalability
The system will remain effective when there is a
significant increase in
— number of resources
— number of users

4) The architecture and the implementation must allow it

5) The algorithms must be efficient under the circumstances
to be expected

Example: the Internet

Jan 15,2007 78

Challenges: Scalability (cont.) Challenges for Security

Security: confidentiality, integrity, availability

Vulnerable components (Fig. 2.14)
— channels (links <—> end-to-end paths)

* Controlling the cost of physical resources

. ControIIing performance loss — processes (clients, servers, outsiders)
+ Preventing software resources running out * Threats
Ly — information leakage
* Avoiding performance bottlenecks — integrity violation
=> — denial of service

. .) — illegitimate usage
= Mechanisms to implement functions
= Policies: how to use the mechanisms Current issues:

denial-of-service attacks, security of mobile code, information flow;
open wireless ad-hoc environments

Jan 15,2007 7 Jan 15,2007 80

Figure 2.14 Threats

The enemy

* Threats to channels (Fig. 2.14)
— eavesdropping (data, traffic)
— tampering, replaying
— masquerading
— denial of service
Processp =1 Processq * Threats to processes (Fig. 2.13)
Communication channel — server: client’s identity; client: server’s identity
— unauthorized access (insecure access model)
— unauthorized information flow (insecure flow
model)

CoDoKi, Fig. 2.14

Jan 15,2007 81 Jan 15,2007 82

Figure 2.13 i i
Objects and principals Defeating Security Threats

* Techniques
— cryptography
— authentication
fieasten — access control techniques
* intranet: firewalls
* services, objects: access control lists, capabilities

@
result * Policies

— access control models
| — lattice models
Principal (user) Network Principal (server) — information flow models

=> secure channels, secure processes,
controlled access, controlled flows

CoDoKi, Fig. 2.13

Jan 15,2007 8 Jan 15,2007 84

Environment challenges

A distributed system:
* HW/SW components in different nodes
« components communicate (using messages)
+ components coordinate actions (using messages)

Distances between nodes vary
* intime: from msecs to weeks
* in space: from mm’s to Mm’s
+ in dependability

Autonomous independent actors (=>even

independent failures!)

No global clock
Global state information not possible

Jan 15,2007

Analysis shortlist:
Time and causality are separate!

* Time

— is there a shared clock?

— how clocks keep in syncrony, how closely?
— does it matter?

— latency, nondeterminism cause problems

* Causality

— triggering events and their consequences
— should keep that order

— often, it is preferrable that all viewers see the
same order? when does it really matter?

Jan 15,2007

Challenges: Design Requirements

* Performance issues
— responsiveness
— throughput
— load sharing, load balancing
— issue: algorithm vs. behavior

* Quality of service
— correctness (in nondeterministic environments)
— reliability, availability, fault tolerance
— security
— performance
— adaptability

Jan 15,2007 86

Some tricks

when preserving order, you usually need a queue structure for
waiting the elements to be ordered to arrive

in distributed decision-making, the participants need to know the
pecking order
can you refactor the situation so that local decisions are
sufficient for most things, to save in overhead cost?
use analogies from everyday life to check your algorithms; it is
easier to remember what is really known at a situation

— stamping tram tickets

— lending and reading library books

— sending and receiving letters

— picking number ticket at a bank for queueing

Jan 15,2007 88

