
Jan 15, 2007 1

Distributed Systems

Spring 2007

Lea Kutvonen

Jan 15, 2007 2

Part I contents

� Defining distributed system

� Examples of distributed systems

� Why distribution?

� Where is the borderline between a computer and a distributed system?

� Examples of modern distributed architectures

� Goals and challenges of distributed systems

� Shortlist of concepts to remember and some tricks for study

� Sources
� Tanenbaum, van Steen: Ch1 & new edition
� CoDoKi: Ch1, Ch2

Jan 15, 2007 3

Definition of a Distributed System

 A distributed system is

 a collection of independent computers

 that appears to its users

as a single coherent system.

... or ...

as a single system.

Jan 15, 2007 4

Examples of Distributed Systems, 1

The Internet: net of nets (CoDoKi, Fig. 1.1)

� global access to �everybody�

(data, service, other actor; open ended)

� enormous size (open ended)

� no single authority

� communication types

� interrogation, announcement, stream

� data, audio, video

Jan 15, 2007 5

intranet

ISP

desktop computer:

backbone

satellite link

server:

network link:

Figure 1.1 A typical portion of the Internet

CoDoKi, Fig. 1.1

Jan 15, 2007 6

Examples of Distributed Systems, 2

Intranets (CoDoKi, Fig. 1.2)

� a single authority

� protected access
� a firewall

� total isolation

� may be worldwide

� typical services:
� infrastructure services: file service, name service

� application services

Jan 15, 2007 7

Figure 1.2 A typical intranet

the rest of

email server

Web server

Desktop
computers

File server

router/firewall

print and other servers

other servers

print

Local area

network

email server

the Internet

CoDoKi, Fig. 1.2

Jan 15, 2007 8

Examples of Distributed Systems, 3

Mobile and ubiquitous computing (CoDoKi Fig 1.3)

� Portable devices

� laptops

� handheld devices

� wearable devices

� devices embedded in appliances

� Mobile computing

� Location-aware computing

� Ubiquitous computing, pervasive computing

Jan 15, 2007 9

Figure 1.3 Portable and handheld devices in a

distributed system

Laptop

Mobile

Printer

Camera

Internet

Host intranet Home intranet
WAP

Wireless LAN

phone

gateway

Host site

CoDoKi, Fig. 1.3

Jan 15, 2007 10

Mobile Ad Hoc -Networks

Mobile nodes come and go

No infrastructure

 - wireless data communication

 - multihop networking

 - long, nondeterministic dc delays

Problems, e.g.:

 - reliable multicast

 - group management

Jan 15, 2007 11

Resource Sharing and the Web

� Hardware resources (reduce costs)

� Data resources (shared usage of information)

� Service resources

� search engines

� computer-supported cooperative working

� Service vs. server (node or process)

(palvelu, palvelin, palvelija)

Jan 15, 2007 12

Figure 1.4 Web servers and web browsers

File system of
www.w3c.org

Internet

Browsers
Web servers

www.google.com

www.cdk3.net

www.w3c.org

Protocols

Activity.html

http://www.w3c.org/Protocols/Activity.html

http://www.google.com/search?q=kindberg

http://www.cdk3.net/

CoDoKi, Fig. 1.4

Mastering openness
� HTML

� URL

� HTTP

Jan 15, 2007 14

Examples of Distributed Systems, 4

� one single �system�
� one or several autonomous subsystems
� a collection of processors => parallel processing
 => increased performance, reliability, fault
tolerance
� partitioned or replicated data
 => increased performance, reliability, fault tolerance

Dependable systems, grid systems, enterprise systems

Distributed application

Jan 15, 2007 15

Why Distribution?

Sharing of information and services

Possibility to add components improves

availability

reliability, fault tolerance

performance
scalability

Facts of life: history, geography, organization

Jan 15, 2007 16

Goals of distributed systems

� Making resources accessible

� Hiding of complexity: transparencies

� Openness: interoperability, portability, market

share

� Scaling up to the business challenge

Jan 15, 2007 17

Where is the borderline between a

computer and distributed system?

Jan 15, 2007 18

Hardware Concepts

Characteristics which affect the behavior of software

systems

� The platform
� the individual nodes (�computer�, �processor�)

� communication between two nodes

� organization of the system (network of nodes)

� ... and its characteristics
� capacity of nodes

� capacity (throughput, delay) of communication links

� reliability of communication (and of the nodes)

=> which ways to distribute an application are feasible

Jan 15, 2007 19

Basic Organizations of a Node

1.6 Different basic organizations and memories in distributed computer

systems
Jan 15, 2007 20

Multiprocessors (1)

A bus-based multiprocessor.1.7

Essential characteristics for software design

� fast and reliable communication (shared memory)

 => cooperation at �instruction level� possible

� bottleneck: memory (especially the �hot spots�)

Jan 15, 2007 21

Multiprocessors (2)

a) A crossbar switch b) An omega switching

network

1.8

A possible bottleneck: the switch

Jan 15, 2007 22

Homogeneous Multicomputer

Systems

a) Grid b) Hypercube1-9

A new design aspect: locality at the network level

Jan 15, 2007 23

General Multicomputer Systems

� Hardware: see Ch1 (internet etc.)

� Loosely connected systems

� nodes: autonomous

� communication: slow and vulnerable

=> cooperation at �service level�

� Application architectures

� multiprocessor systems: parallel computation

� multicomputer systems: distributed systems
(how are parallel, concurrent, and distributed systems different?)

Jan 15, 2007 24

Software Concepts

Provide
distribution
transparency

Additional layer atop of NOS
implementing general-purpose services

Middle-
ware

Offer local
services to remote
clients

Loosely-coupled operating system for
heterogeneous multicomputers (LAN
and WAN)

NOS

Hide and manage
hardware
resources

Tightly-coupled operating system for
multiprocessors and homogeneous
multicomputers

DOS

Main GoalDescriptionSystem

DOS: Distributed OS; NOS: Network OS

Jan 15, 2007 25

History of distributed systems

� RPC by Birel &Nelson -84
� network operating systems, distributed operating systems,

distributed computing environments in mid-1990; middleware
referred to relational databases

� Distributed operating systems � �single computer�
� Distributed process management

� process lifecycle
� inter-process communication,
� RPC, messaging

� Distributed resource management
� resource reservation and locking
� deadlock detection

� Distributed services
� distributed file systems, distributed memory
� hierarchical global naming

Jan 15, 2007 26

History of distributed systems

� late 1990�s distribution middleware well-known

� generic, with distributed services

� supports standard transport protocols and provides standard API

� available for multiple hardware, protocol stacks, operating

systems

� e.g., DCE, COM, CORBA

� present middlewares for

� multimedia, realtime computing, telecom

� ecommerce, adaptive / ubiquitous systems

Jan 15, 2007 27

Misconceptions tackled

� The network is reliable

� The network is secure

� The network is homogeneous

� The topology does not change

� Latency is zero

� Bandwith is infinite

� Transport cost is zero

� There is one administrator

� There is inherent, shared knowledge

Jan 15, 2007 28

Multicomputer Operating Systems

(1)

General structure of a multicomputer operating system1.14

Jan 15, 2007 29

Multicomputer Operating Systems

(2)

1.15 Alternatives for blocking and buffering in message passing.

Jan 15, 2007 30

Distributed Shared Memory Systems

(1)

a) Pages of address

space distributed

among four

machines

c) Situation after

CPU 1 references

page 10

e) Situation if page

10 is read only and

replication is used

Jan 15, 2007 31

Distributed Shared Memory Systems

(2)

1.18 False sharing of a page between two independent processes.

Jan 15, 2007 32

Network Operating System (1)

General structure of a network operating system.1-19

Jan 15, 2007 33

Network Operating System (2)

Two clients and a server in a network operating system.1-20

Jan 15, 2007 34

Network Operating System (3)

1.21 Different clients may mount the servers in different places.

Jan 15, 2007 35

Software Layers

� Platform: computer & operating system & ..

� Middleware:
� mask heterogeneity of lower levels

 (at least: provide a homogeneous �platform�)

� mask separation of platform components

� implement communication

� implement sharing of resources

� Applications: e-mail, www-browsers, �

Jan 15, 2007 36

Positioning Middleware

General structure of a distributed system as middleware.1-22

Jan 15, 2007 37

� Operations offered by middleware

RMI, group communication, notification, replication, �
(Sun RPC, CORBA, Java RMI, Microsoft DCOM, ...)

� Services offered by middleware
naming, security, transactions, persistent storage, �

� Limitations

� ignorance of special application-level requirements

end-to-end argument:

needed for reliability is communication of

application-level peers at both ends

Middleware

Jan 15, 2007 38

Middleware

Distributed
application

Middleware API

Middle-
ware

Operating System API

 Operating system

commu-
nication

processing storage

Distributed
application

Middleware API

Middle-
ware

Operating System API

 Operating system

commu-
nication

processing storage

network

Host 1 Host 2

Jan 15, 2007 39

�sovellusalueen palveluja: lennon
navigointialgoritmeja,
potilastietokantamalleja

�yleispalveluja: ilmoitukset,
turvallisuus, transaktiot,
kuormantasaus, tietovirrat,
vikasietoisuus

�objektien ja komponenttien välinen
kommunikointi (RMI, CORBA)

�yhtenäinen näkemys
käyttöjärjestemä- ja
kommunikointipalveluihin

CACM 45, 6 pp 45
Jan 15, 2007 40

� Middleware is a class of software

technologies designed to help manage the

complexity and heterogeneity inherent in

distributed systems. It is defined as a layer of

software above the operating system but

below the application program that provides a

common programming abstraction across a

distributed system.
� Bakken 2001in encyclopedia

Jan 15, 2007 41

Middleware and Openness

 In an open middleware-based distributed system, the

protocols used by each middleware layer should be the

same, as well as the interfaces they offer to applications.

1.23

Jan 15, 2007 42

Comparison between Systems

OpenOpenClosedClosedOpenness

VariesYesModeratelyNoScalability

Per nodePer node
Global,
distributed

Global,
central

Resource management

Model specificFilesMessages
Shared
memory

Basis for communication

NNN1Number of copies of OS

NoNoYesYesSame OS on all nodes

HighLowHighVery HighDegree of transparency

Multicomp.Multiproc.

Middleware-
based OS

Network
OS

Distributed OS
Item

Jan 15, 2007 43

More examples on distributed

software architectures

Jan 15, 2007 44

Provide a high-level view of the

distribution of functionality

 between the components and

the relationships between them

� components (among the physical nodes)

� communication

Criteria: performance, reliability, scalability, ..

Architectural Models

Jan 15, 2007 45

Client Server

� Client-server model: CoDoKi, Fig. 2.2

� Service provided by multiple servers: Fig. 2.3

� Needed:

� name service

� trading/broker service

� browsing service

� Proxy servers and caches, Fig. 2.4

Jan 15, 2007 46

Figure 2.2

Clients invoke individual servers

Server

Client

Client

invocation

result

Server
invocation

result

Process:
Key:

Computer:

CoDoKi, Fig. 2.2

Jan 15, 2007 47

Figure 2.3 A service provided by multiple servers

Server

Server

Server

Service

Client

Client

CoDoKi, Fig. 2.3

Jan 15, 2007 48

Figure 2.4

Web proxy server

Client

Proxy

Web

server

Web

server

server
Client

CoDoKi, Fig. 2.4

Jan 15, 2007 49

An Example Client and Server (1)

The header.h file used by the client and server.
Jan 15, 2007 50

An Example Client and Server (2)

A sample server.

Jan 15, 2007 51

An Example Client and Server (3)

1-27 b

A client using the server to copy a file.
Jan 15, 2007 52

Processing Level

 The general organization of an Internet search engine into
three different layers

1-28

Jan 15, 2007 53

Multitiered Architectures (1)

Alternative client-server organizations.1-29

Jan 15, 2007 54

Multitiered Architectures (2)

Client - server: generalizations

node 1 node 2

request

reply

node 3

node 4

A client: node 1
 server: node 2

A B

B client: node 2
 server: node 3

the concept is related
to communication
not to nodes

Jan 15, 2007 55

Multitiered Architectures (3)

An example of a server acting as a client.1-30

Jan 15, 2007 56

Variations on the Client-Server

model

� Mobile code

the service is provided using a procedure

� executed by a process in the server node

� downloaded to the client and executed locally Fig. 2.6

� push service: the initiator is the server

� Mobile agents

� �a running program� (code & data) travels

� needed: an agent platform

Jan 15, 2007 57

Figure 2.6 Web applets

a) client request results in the downloading of applet code

Web

server

Client
Web

serverApplet

Applet code

Client

b) client interacts with the applet

CoDoKi, Fig. 2.6

Jan 15, 2007 58

Variations on the Client-Server

model (cont.)

� Network computers
� �diskless workstations�

� needed code and data downloaded for execution

� Thin clients
� �PC�: user interface

� server: execution of computations (Fig. 2.7)

� example: Unix X-11 window system

Jan 15, 2007 59

Figure 2.7

Thin clients and compute servers

Thin
Client

Application
Process

Network computer or PC
Compute server

network

CoDoKi, Fig. 2.7

Jan 15, 2007 60

Variations on the Client-Server

model (cont.)

� Mobile devices and spontaneous networks,
ad hoc networks (Fig. 2.8)

� Needed
� easy connection to a local network
� easy integration with local services

� Problems
� limited connectivity

� security and privacy

� Discovery service
two interfaces: registration, lookup

Jan 15, 2007 61

Figure 2.8 Spontaneous networking in a hotel

Internet

gateway

PDA

service

Music
service

 service
Discovery

Alarm

Camera

Guests
devices

Laptop
TV/PC

Hotel wireless

network

CoDoKi, Fig. 2.8

Jan 15, 2007 62

Modern Architectures

An example of horizontal distribution of a Web service.1-31

Jan 15, 2007 63

� Andrews paradigms:
filter: a generalization of producers and

 consumers

heartbeat

 probe echo

� Peer to peer (Fig. 2.5)

Other Architectures

Jan 15, 2007 64

Figure 2.5

A distributed application based on peer processes

Coordination

Application

code

Coordination

Application

code

Coordination

Application

code

CoDoKi, Fig. 2.5

Jan 15, 2007 65

Goals and challenges for

distributed systems

Jan 15, 2007 66

Goals

� Making resources accessible

� Distribution transparency

� Openness

� Scalability

� Security

� System design requirements

Jan 15, 2007 67

Challenges for

Making resources accessible

� Naming

� Access control

� Security

� Availability

� Performance

� Mutual exclusion of users, fairness

� Consistency in some cases

Jan 15, 2007 68

Challenges for Transparency

� The fundamental idea: a collection of

independent, autonomous actors

� Transparency

� concealment of distribution =>

user�s viewpoint: a single unified system

Jan 15, 2007 69

Transparencies

Hide whether a (software) resource is in memory or on diskPersistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several competitive
users

Concurrency

Hide that a resource is replicated Replication

Hide that a resource may be moved to another location (*)

while in use (the others don�t notice)
Relocation

Hide that a resource may move to another location (*)

(the resource does not notice)
Migration

Hide where a resource is located (*)Location

Hide differences in data representation and how a resource
is accessed

Access

DescriptionTransparency

(*) Notice the various meanings of �location� : network address (several layers) ; geographical address

Jan 15, 2007 70

Challenges for Transparencies

� replications and migration cause need for

ensuring consistency and distributed

decision-making

� failure modes

� concurrency

� heterogeneity

Jan 15, 2007 71

Figure 2.10

Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omissionProcess A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Jan 15, 2007 72

Figure 2.11

Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Jan 15, 2007 73

Failure Handling

� More components => increased fault rate

� Increased possibilities
� more redundancy => more possibilities for fault tolerance

� no centralized control => no fatal failure

� Issues
� Detecting failures

� Masking failures

� Recovery from failures

� Tolerating failures

� Redundancy

� New: partial failures

Jan 15, 2007 74

Concurrency

Concurrency:
� Several simultaneous users => integrity of data

� mutual exclusion

� synchronization

� ext: transaction processing in data bases

� Replicated data: consistency of information?

� Partitioned data: how to determine the state of the
system?

� Order of messages?

There is no global clock!

Jan 15, 2007 75

Consistency Maintenance

� Update ...

� Replication ...

� Cache consistency

� Failure ...

� Clock ...

� User interface

Jan 15, 2007 76

Heterogeneity

Heterogeneity of
� networks

� computer hardware

� operating systems

� programming languages

� implementations of different developers

� Portability, interoperability

� Mobile code, adaptability (applets, agents)

� Middleware (CORBA etc)

� Degree of transparency? Latency? Location-based services?

Jan 15, 2007 77

Challenges for Openness

� Openness facilitates

� interoperability, portability, extensibility, adaptivity

� Activities addresses

� extensions: new components

� re-implementations (by independent providers)

� Supported by

� public interfaces

� standardized communication protocols

Jan 15, 2007 78

Challenges for Scalability

Scalability

 The system will remain effective when there is a

 significant increase in

� number of resources

� number of users

4) The architecture and the implementation must allow it

5) The algorithms must be efficient under the circumstances

to be expected

Example: the Internet

Jan 15, 2007 79

Challenges: Scalability (cont.)

� Controlling the cost of physical resources

� Controlling performance loss

� Preventing software resources running out

� Avoiding performance bottlenecks

=>

§ Mechanisms to implement functions

§ Policies: how to use the mechanisms

Jan 15, 2007 80

Challenges for Security

� Security: confidentiality, integrity, availability

� Vulnerable components (Fig. 2.14)

� channels (links <�> end-to-end paths)

� processes (clients, servers, outsiders)

� Threats
� information leakage

� integrity violation

� denial of service

� illegitimate usage

 Current issues:

 denial-of-service attacks, security of mobile code, information flow;

open wireless ad-hoc environments

Jan 15, 2007 81

Figure 2.14

The enemy

Communication channel

Copy of m

Process p Process qm

The enemy
m�

CoDoKi, Fig. 2.14

Jan 15, 2007 82

Threats

� Threats to channels (Fig. 2.14)

� eavesdropping (data, traffic)

� tampering, replaying

� masquerading

� denial of service

� Threats to processes (Fig. 2.13)

� server: client�s identity; client: server�s identity

� unauthorized access (insecure access model)

� unauthorized information flow (insecure flow

model)

Jan 15, 2007 83

Figure 2.13

Objects and principals

Network

invocation

result

Client
Server

Principal (user) Principal (server)

ObjectAccess rights

CoDoKi, Fig. 2.13

Jan 15, 2007 84

Defeating Security Threats

� Techniques
� cryptography
� authentication
� access control techniques

� intranet: firewalls

� services, objects: access control lists, capabilities

� Policies
� access control models

� lattice models

� information flow models

=> secure channels, secure processes,
controlled access, controlled flows

Jan 15, 2007 85

Environment challenges

A distributed system:

� HW / SW components in different nodes

� components communicate (using messages)

� components coordinate actions (using messages)

Distances between nodes vary

� in time: from msecs to weeks

� in space: from mm�s to Mm�s

� in dependability

Autonomous independent actors (=> even
independent failures!)

No global clockNo global clock

Global state information not possibleGlobal state information not possible

Jan 15, 2007 86

Challenges: Design Requirements

� Performance issues
� responsiveness

� throughput

� load sharing, load balancing

� issue: algorithm vs. behavior

� Quality of service
� correctness (in nondeterministic environments)

� reliability, availability, fault tolerance
� security
� performance
� adaptability

Jan 15, 2007 87

Analysis shortlist:

Time and causality are separate!

� Time
� is there a shared clock?

� how clocks keep in syncrony, how closely?

� does it matter?

� latency, nondeterminism cause problems

� Causality
� triggering events and their consequences

� should keep that order

� often, it is preferrable that all viewers see the
same order? when does it really matter?

Jan 15, 2007 88

Some tricks

� when preserving order, you usually need a queue structure for
waiting the elements to be ordered to arrive

� in distributed decision-making, the participants need to know the
pecking order

� can you refactor the situation so that local decisions are
sufficient for most things, to save in overhead cost?

� use analogies from everyday life to check your algorithms; it is
easier to remember what is really known at a situation

� stamping tram tickets

� lending and reading library books

� sending and receiving letters

� picking number ticket at a bank for queueing

