
DS 2006; Ch 3 16-Jan-07

Timo Alanko, 2006 1

16-Jan-07 1

Interprocess Communication

Remote invocations
Message passing

Streams
Multicast

Tanenbaum, van Steen: Ch2 (Ch3)
CoDoKi: Ch2, Ch3, Ch5
Andrews: Ch 7-8 (-9)

16-Jan-07 2

Middleware Protocols

An adapted reference model for networked communication.

General purpose services
-Naming, “browsing”
-Security
-Atomicity
-Higher-level communication

-RPC, RMI
-Message passing
-Reliable multicast

16-Jan-07 3

Remote Procedure Calls

• Form: see Andrews, p. 363
• Example: Andrews, Fig. 8.2

• Notice:
– “passive” routines
– available for remote clients
– executed by a local worker process, which is

invoked by the local infrastructure

• Implementation: see TvSt, Ch. 2.2

16-Jan-07 4

RPC goals

• to achieve access transparent procedure call
• cannot fully imitate

– naming, failures, performance
– global variables, context dependent variables, pointers
– Call-by-reference vs. call-by-value

• Call semantics
– Maybe, at-least-once, at-most-once
– Exception delivery

• Can be enhanced with other properties
– Asyncronous RPC
– Multicast, broadcast
– Location transparency, migration transparency, …
– Concurrent processing

16-Jan-07 5

RPC: a Schematic View

FNCT(a,b)
c:={comp}

return c.

Thread P

…

Y=FNCT(X,Y)

…

X, Y, Z

System A System B

RPC
package

RPC
package

a:=X; b:=Y;

Y

Y=FNCT(X,Y)

16-Jan-07 6

• RPC components (Bacon, Fig. 15.7) :
– RPC Service (two stubs)

• interpretation of the service interface
• packing of parameters for transportation

– Transportation service: node to node
• responsible for message passing
• part of the operating system

• Name service: look up, binding
– name of procedure, interface definition

Implementation of RPC (1)

DS 2006; Ch 3 16-Jan-07

Timo Alanko, 2006 2

16-Jan-07 7

Passing Value Parameters

Steps involved in doing remote computation through RPC

16-Jan-07 8

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

16-Jan-07 9

Binding a Client to a Server

Client-to-server binding in DCE.

16-Jan-07 10

Implementation of RPC (2)

Server: who will execute the procedure?
• One server process

– infinite loop, waiting in “receive”
– call arrives : the process starts to execute
– one call at a time, no mutual exclusion problems

• A process is created to execute the procedure
– parallelism possible
– overhead
– mutual exclusion problems to be solved

• One process, a set of thread skeletons:
– one thread allocated for each call

16-Jan-07 11

Distributed Objects

• Remote Method Invocation ~ RPC; see Fig. 2-16.

• A distributed interface
– binding: download the interface to the client => proxy
– “server stub” ~ skeleton

• The object

– resides on a single machine (possible distribution: hidden)
– if needed: “object look” through an adapter (see: Fig. 3-8)

– an object may be persistent or transient
• Object references:

– typically: system-wide
– binding: implicit or explicit resolving of an object reference

• Binding and invocation: see Fig. 2-17
• Examples: CORBA, DCOM (Ch. 9.1, 9.2)

16-Jan-07 12

Distributed Objects

Fig. 2-16. Common organization of a remote object with client-side proxy.

DS 2006; Ch 3 16-Jan-07

Timo Alanko, 2006 3

16-Jan-07 13

Fig. 3-8.
Organization of an object
server supporting different
activation policies.

Object Adapter

16-Jan-07 14

Binding a Client to an Object

Fig. 2-17.
• (a) Example with implicit binding using only global references
• (b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object referenceobj_ref = …; // Initialize the reference to a distributed objectobj_ref-> do_something(); // Implicitly bind and invoke a method(a)Distr_object objPref; //Declare a systemwide object referenceLocal_object* obj_ptr; //Declare a pointer to local objectsobj_ref = …; //Initialize the reference to a distributed objectobj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to …// … the local proxyobj_ptr -> do_something(); //Invoke a method on the local proxy(b)
16-Jan-07 15

Parameter Passing

Fig. 2-18.The situation when passing an object by reference or by value.

Copying must not be hidden! Copying must not be hidden! Why?Why?

16-Jan-07 16

Design Issues

• Language independent interface definition
• Exception handling

• Delivery guarantees
RPC / RMI semantics
– maybe
– at-least-once
– at-most-once

• Transparency (algorithmic vs behavioral)

16-Jan-07 17

RPC: Types of failures

• client unable to locate server
• request message lost

– retransmit a fixed number of times before throwing an exception

• server crashes after receiving a request or

• reply message lost (cannot be told apart!)
– client resubmits request
– server choises

• re-execute procedure: service should be idempotent
• filter duplicates: server should hold on to results until acknowledged

• client crashes after sending a request
– orphan detection: reincarnations, expirations

• Reporting failures breaks transparency

16-Jan-07 18

Fault tolerance measuresat-most-onceretransmit replyyesyes at-least-oncere-executeno yes maybenot appl not applno invocation semanticsRe-execute/ retransmitDuplicatefilteringRetransmitrequest

DS 2006; Ch 3 16-Jan-07

Timo Alanko, 2006 4

16-Jan-07 19

Interface
Repository

IDL
Compiler

Implementation
Repository���������������������������

���������������������������
���������������������������
���������������������������

��
Client

OBJ
REF

Object
(Servant)

in args
operation()
out args +

return

DII
IDL

STUBS
ORB

INTERFACE

IDL
SKEL

DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

•CORBA shields applications from heterogeneous platform dependencies
•e.g., languages, operating systems, networking protocols, hardware 16-Jan-07 20

16-Jan-07 21 16-Jan-07 22

Communication: Message Passing

…
X=f(..);
send X to B
...

…
receive X from A
Y=f(X);
...

X: 10 X: 5

Process A Process B

OS procedure send buffer
kernel procedure receive A<=>B

Node

xxxxx
xxxxx

xxxxx
xxxxx 10

Net

OS Data Communication OS
kernel Network kernel

16-Jan-07 23

Binding (1)

• Structure of communication network
– one-to-one (two partners, one shared channel)
– many-to-one (client-server)
– one-to-many, many-to-many

(client-service; group communication)

• Types of message passing
– send, multicast, broadcast
– on any channel structure

16-Jan-07 24

Binding (2)

Time of binding

– static naming (at programming time)

– dynamic naming (at execution time)
• explicit binding of channels
• implicit binding through name service

DS 2006; Ch 3 16-Jan-07

Timo Alanko, 2006 5

16-Jan-07 25

Persistence and Synchronicity in
Communication (1)

General organization of a communication system in which hosts are connected
through a network

16-Jan-07 26

Persistence and Synchronicity in
Communication (2)

• Persistent communication
a submitted message is stored in the system until
delivered to the receiver
(the receiver may start later, the sender may stop earlier)

• Transient communication
a message is stored only as long as the sending and
receiving applications are executing
(the sender and the receiver must be executing in parallel)

16-Jan-07 27

Persistence and Synchronicity in
Communication (3)

Persistent communication of letters back in the days of the Pony Express.

16-Jan-07 28

Persistence and Synchronicity in
Communication (4)

• Asynchronous communication
the sender continues immediately after submission

• Synchronous communication
the sender is blocked until

• the message is stored at the receiving host (receiptreceipt --basedbased
synchrony)

• the message is delivered to the receiver (deliverydelivery basedbased)
• the response has arrived (responseresponse basedbased)

16-Jan-07 29

Persistence and Synchronicity in
Communication (5)

a) Persistent asynchronous communication
b) Persistent synchronous communication

16-Jan-07 30

Persistence and Synchronicity in
Communication (6)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

DS 2006; Ch 3 16-Jan-07

Timo Alanko, 2006 6

16-Jan-07 31

Persistence and Synchronicity in
Communication (7)

e) Delivery-based transient synchronous communication at message
delivery

f) Response-based transient synchronous communication

16-Jan-07 32

The Message-Passing Interface (MPI)

• Traditional communication: sockets
• Platform of concern:

high-performance multicomputers
• Issue: easy-to-use communication for applications
• Sockets? No: wrong level, non-suitable protocols⇒a new message passing standard: MPI� designed for parallel applications, transient communication� no communication servers� no failures (worth to be recovered from)

16-Jan-07 33

The Message-Passing Interface (MPI)

Some of the most intuitive message-passing primitives of MPI.

Check if there is an incoming message, but do not blockMPI_irecv Receive a message; block if there are noneMPI_recv Pass reference to outgoing message, and wait until receipt startsMPI_issend Pass reference to outgoing message, and continueMPI_isend Send a message and wait for replyMPI_sendrecv Send a message and wait until receipt startsMPI_ssend Send a message and wait until copied to local or remote bufferMPI_send Append outgoing message to a local send bufferMPI_bsend MeaningPrimitive
16-Jan-07 34

Message-Queuing Model (1)

Four combinations for loosely-coupled communications using queues.

2-26

16-Jan-07 35

Message-Queuing Model (2)

Basic interface to a queue in a message-queuing system.

Install a handler to be called when a message is put into the specified queue.Notify Check a specified queue for messages, and remove the first. Never block.Poll Block until the specified queue is nonempty, and remove the first messageGet Append a message to a specified queuePut MeaningPrimitive
16-Jan-07 36

General Architecture of a Message-
Queuing System (1)

The relationship between queue-level addressing and
network-level addressing.

DS 2006; Ch 3 16-Jan-07

Timo Alanko, 2006 7

16-Jan-07 37

2-29. The general organization of a message-queuing system with routers.

General Architecture of a Message-Queuing
System (2)

16-Jan-07 38

Message oriented middleware

• asyncronous messages
– reliable, fault-tolerant
– no loss, duplication, permutation,

cluttering

• persistent subscriptions
• models supported

– message queue
– request-response
– multicast
– publish-subscribe

appl. A appl. Bappl. Cmsgqueueserver msg transfersystemQ1msgqueueserver msg transfersystemQ2 SSL tms

16-Jan-07 39

MOM = message oriented middleware
• basic model: pipe between client and server

– asyncronous messaging natural, syncronous communication
cumbersome

– message queues support reliability of message transport
– violates access transparency, no support for data heterogenity

unless in programming language mapping, no support for
transactions

– suitable for event notifications, publish/subscribe-based
architectures

– persistent message queues support fault tolearance

• Topics for variation and development
– persistent/transient msgs
– FIFO/priority queues
– translations of msgs
– abstractions on msg ordering
– multithreading, automatic load balancing
– msg routing (source, cost, changes in topology etc)
– secure transfer of msgs (at least between msg servers)

16-Jan-07 40

Message Brokers

The general organization of a message broker in a message-queuing system.

16-Jan-07 41

CORBA Events & Notifications

• Event namespace (names and attributes)

• Typed events (header+body; fixed + other)

• Consumer event filtering, event batching, event priority, event
expiration, logging, internationalization, flow control mechanismQoS propertiesconsumer1consumerN supplier1supplierNevent channeltyped eventsfilter n constraints... ...

16-Jan-07 42

Publish-subscribe

• shared mailbox, everyone can send to it
• subscribers can select what filter to use
• guaranteed delivery of all relevant messages

to all subscribers
• models: header-based, topic-based
• problems

– scalability: comparing filters and messages
– ordering of messages

DS 2006; Ch 3 16-Jan-07

Timo Alanko, 2006 8

16-Jan-07 43

Stream communication

• Setting up a stream between two processes across a network.

16-Jan-07 44

Specifying QoS (1)

• A flow specification.

•Loss sensitivity (bytes)•Loss interval (µsec)•Burst loss sensitivity (data units)•Minimum delay noticed (µsec)•Maximum delay variation (µsec)•Quality of guarantee•maximum data unit size (bytes)•Token bucket rate (bytes/sec)•Toke bucket size (bytes)•Maximum transmission rate (bytes/sec) Service RequiredCharacteristics of the Input

16-Jan-07 45

Specifying QoS (2)

• The principle of a token bucket algorithm.

16-Jan-07 46

Setting Up a Stream

• The basic organization of RSVP for resource reservation in a
distributed system.

16-Jan-07 47

Synchronization Mechanisms (1)

• The principle of explicit synchronization on the level data units.

16-Jan-07 48

Synchronization Mechanisms (2)

• The principle of synchronization as supported by high-level interfaces.

2-41

DS 2006; Ch 3 16-Jan-07

Timo Alanko, 2006 9

16-Jan-07 49

Other forms of communication

• Multicast (application level)
– overlay network where relays not members of

group (tree, mesh)

• Gossip-based data dissemination
– infect other nodes with useful data by an epidemic

algorithm
– periodically exchange information with a random

node
– states: infected, suspectible, data removed

