DS2006; Ch 3

Interprocess Communication

Remote invocations
Message passing
Streams

Multicast

Tanenbaum, van Steen: Ch2 (Ch3)
CoDoKi: Ch2, Ch3, Ch5
Andrews: Ch 7-8 (—9)

16-Jan-07

Middleware Protocols

Application protocol
Application }"””””PP’””"P 7777777777777 J
Middleware protocol
Middleware =™ &
General purpose services
Transport -~ -Naming, “browsing” - 4
-Security
- -Atomicity -
Network -Higher-level communication s
- -RPC, RMI -
Data link -Message passing 2
-Reliable multicast
Physical ﬁ’ B !

An adapted reference model for networked communication.

Network

16-Jan-07

Remote Procedure Calls

* Form: see Andrews, p. 363
» Example: Andrews, Fig. 8.2
* Notice:

— “passive” routines

— available for remote clients

— executed by a local worker process, which is
invoked by the local infrastructure

Implementation: see TvSt, Ch. 2.2

16-Jan-07 3

RPC goals

to achieve access transparent procedure call
cannot fully imitate
— naming, failures, performance
— global variables, context dependent variables, pointers
— Call-by-reference vs. call-by-value
Call semantics
— Maybe, at-least-once, at-most-once
— Exception delivery
Can be enhanced with other properties
— Asyncronous RPC
— Multicast, broadcast
— Location transparency, migration transparency, ...
— Concurrent processing

16-Jan-07

RPC: a Schematic View

System A System B

X, Y, Z

Thread P FNCT(a,b)
c:={comp}
return c.

Y=ENCT(X, )& |

RPC | RPC
package | | package |

16-Jan-07 5

Implementation of RPC (1)

* RPC components (Bacon, Fig. 15.7) :

— RPC Service (two stubs)
« interpretation of the service interface
« packing of parameters for transportation

— Transportation service: node to node
« responsible for message passing
« part of the operating system

* Name service: look up, binding
— name of procedure, interface definition

16-Jan-07

Timo Alanko, 2006




DS2006; Ch 3

16-Jan-07

Passing Value Parameters

Client machine Server machine

Client process 1 Client callt Server process
foocsocl 6. Stub makes

Server stub
= | Gentsts Y- =
T A Tadd"
proc: "add
2. Stub builds int:_val() ° f:::s:nza%
e it val() 9
proc: “add” 4. Server OS
int.__val() Server 05 hands message
[t val() ] 7)| to server stub

3. Message is sent
across the network

Steps involved in doing remote computation through RPC

16-Jan-07 7

local call to "add"

Writing a Client and a Server

(Oudgen)

Interface
definition file

(1DL compiler]

-~ =
Client code Client stub J Header L‘ Server stub Server code
—dinciud | | #ncluge .
. v
[ C compiler (G complier ) [ C compiler | C compiter |

v
Ciiert Clent stub Server stub Server
object fle object file object file object fle
v T l
0 Runtime Runtime g Y
(_Linker < Tiprary library '_" Cinked

PR S
Clent Server
binary. binary

The steps in writing a client and a server in DCE RPC.

16-Jan-07 8

Binding a Client to a Server

Directory machine

Directory
server
~l ) ’
3 Look up server .2 Register service

~ - _Server machine

Client machine -
.

5. Do RPC

| 1. Register endpoint

“~. Endpoint
table

Client-to-server binding in DCE.

16-Jan-07 9

Implementation of RPC (2)

Server: who will execute the procedure?
¢ One server process

— infinite loop, waiting in “receive”

— call arrives : the process starts to execute

— one call at atime, no mutual exclusion problems
« A process is created to execute the procedure

— parallelism possible

— overhead

— mutual exclusion problems to be solved
« One process, a set of thread skeletons:

— one thread allocated for each call

16-Jan-07 10

Distributed Objects

« Remote Method Invocation ~ RPC; see Fig. 2-16.
« Adistributed interface
— binding: download the interface to the client => proxy
— “server stub” ~ skeleton
« The object
— resides on a single machine (possible distribution: hidden)
— if needed: “object look” through an adapter (see: Fig. 3-8)
— an object may be persistent or transient
« Object references:
— typically: system-wide
— binding: implicit or explicit resolving of an object reference
« Binding and invocation: see Fig. 2-17
+ Examples: CORBA, DCOM (Ch. 9.1, 9.2)

16-Jan-07 1

Distributed Objects

Client machine Server machine
Object
Client Server &
[« State
Same = ‘
Client interface OO0« Method
invokes _ as object
a method ¢ K//’ S - i—/‘\\\
P P T T | |
at object A
Client 05 ‘ Server 0S
[ T
>
Network \
Marshalled invocation
is passed across network
Fig. 2-16. Common organization of a remote object with client-side proxy.
16-Jan-07 12

Timo Alanko, 2006



DS2006; Ch 3

16-Jan-07

Object Adapter

Server with three objects
Server machine

Object's stub
skeleton {
\A E

\

wﬂ*ﬂ
T

Fig. 3-8.

Binding a Client to an Object

Distr_object* obj_ref;
obj_ref = _;
obj_ref-> do_something();

Distr_object objPref;
Local_object* obj_ptr;
obj_ref = _;

obj_ptr = bind(obj_ref);

obj_ptr -> do_something();

(a)

//Declare a systemwide object reference
// Initialize the reference to a distributed object
/1 Implicitly bind and invoke a method

//Declare a systemwide object reference
//Declare a pointer to local objects

//nitialize the reference to a distributed object
//Explicitly bind and obtain a pointer to

/1 ... the local proxy

//Invoke a method on the local proxy

Organization of an object

ecl adapter Object adap(er

|

server supporting different
activation policies.

Request

Local 0S

16-Jan-07 13

(b)
Fig. 2-17.
. (a) Example with implicit binding using only global references
. (b) Example with explicit binding using global and local references

16-Jan-07

Parameter Passing

Machine A Machine B
Local object
Local o1 [ Remote objectJ
K Remote
reference L1 |34 reference R1 v
. A X
T e Y
Client code with \ |
RMI to server at C N ;
(proxy) AN New local /
™~ reference Copy of O1 /
v A
Remote \\ Al AN
invocation with . g
L1andR1as EV ST
parameters ™ server code

Machine C (method implementation)

Fig. 2-18.The situation when passing an object by reference or by value.

Copying must not be hidden!  Why?

16-Jan-07 15

Design Issues

» Language independent interface definition
» Exception handling

» Delivery guarantees
RPC / RMI semantics

— maybe

— at-least-once
— at-most-once

» Transparency (algorithmic vs behavioral)

16-Jan-07

RPC: Types of failures

« client unable to locate server
* request message lost
—  retransmit a fixed number of times before throwing an exception
« server crashes after receiving a request or
« reply message lost (cannot be told apart!)
— client resubmits request
— server choises

« re-execute procedure: service should be idempotent
« filter duplicates: server should hold on to results until acknowledged

« client crashes after sending a request
— orphan detection: reincarnations, expirations

« Reporting failures breaks transparency

16-Jan-07 17

Fault tolerance measures

Retransmit |Duplicate |Re-execute/ |invocation
request filtering  |retransmit semantics
no not appl |not appl maybe
yes no re-execute at-least-
once

yes yes retransmit at-most-
reply once

16-Jan-07 18

Timo Alanko, 2006




DS2006; Ch 3 16-Jan-07

Interface
Repository

DL
Compier

Implementation
Repository

inargs
operation()

Object
(Servant)

Client

Y cod®
|
- e =

]

| ot “ogg |
INTERFACE Object Adapter i !

| XML-RPC H

—
Sourees Y Ster
+CORBA shields applications from heterogeneous platform dependencies oo "
«e.g., languages, operating systems, networking protocols, hardware 163007

Communication: Message Passing

Process A Process B

X=f(..); receive X from A
send X to B Y=£(X);

NobleNet RPC

TIBCO TiB/Rendezvous

1BM MQSeries
BEA MessageQ

Scalability

X:10
%m oS Data Communication oS
’ kernel Network kernel
Recoverabiliy > 2 16507 2
Binding (1) Binding (2)
 Structure of communication network ) o
— one-to-one (two partners, one shared channel) Time of binding
— many-to-one (client-server)
— one-to-many, many-to-many — static naming (at programming time)
(client-service; group communication)
« Types of message passing — dynamic naming (at execution time)

« explicit binding of channels

— send, multicast, broadcast S )
« implicit binding through name service

— on any channel structure

16-Jan-07 23 16-Jan-07 24

Timo Alanko, 2006 4



DS2006; Ch 3

16-Jan-07

Persistence and Synchronicity in
Communication (1)

Messaging interface

Sending host Communication server Communication server  Receiving host

Buffer independent
- Routing of communicating Routin:
Application / program hosts prograﬁ Application
/
y A Z
[ ——1 | 7o otrer remote) [ —
—| H H communication =] —| ’E‘
= == sever . = \;‘ =%
os [ os BN los T s
\ [ \ \ J
I ] iy ‘\\ \
Local buffer SRS L Internetwork 4/) N Local buffer

—
————

Incoming message

General organization of a communication system in which hosts are connected
through a network

16-Jan-07 25

Persistence and Synchronicity in
Communication (2)

» Persistent communication

a submitted message is stored in the system until
delivered to the receiver
(the receiver may start later, the sender may stop earlier)

« Transient communication
a message is stored only as long as the sending and
receiving applications are executing
(the sender and the receiver must be executing in parallel)

16-Jan-07 26

Persistence and Synchronicity in
Communication (3)

Pony and rider

Post # Post
office

____________ » | office

Post |~
# office | - i
- /1 ‘

/ | Post | -
Mail stored and sorted, to office
be sent out depending on destination

and when pony and rider available

Persistent communication of letters back in the days of the Pony Express.

16-Jan-07 27

Persistence and Synchronicity in
Communication (4)

« Asynchronous communication

the sender continues immediately after submission
* Synchronous communication

the sender is blocked until

« the message is stored at the receiving host (receipt -based
synchrony)

« the message is delivered to the receiver (delivery based)
« the response has arrived (response based)

16-Jan-07 28

Persistence and Synchronicity in
Communication (5)

A sends message A sends message A stopped
and continues A stopped and waits until accepted runmsg
\y running
A T 5
| Message is stored /
ﬁi‘(i‘i at B's location for | / Accepted
\ Time later delivery o | | Time
) g s AV 0 4
B starts and Bis not B starts and
Bis not receives running receives
running message message
@ ()
a) Persistent asynchronous communication
b)  Persistent synchronous communication
16-Jan-07 29

Persistence and Synchronicity in
Communication (6)

A sends message

Send request and wait
and continues
-

until received

s .
—— e Af, ,,,,,,,,,
A \ Message can be A \ 2
\ sentonly ifBis /
— |
\( running Request \ /ACK
\‘ Time is recelved\ \ / Time
~
B L B — A%
Breceives Running butvdomg Proz:ess
message something else request
© (d)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication

16-Jan-07 30

Timo Alanko, 2006



DS2006; Ch 3

16-Jan-07

Persistence and Synchronicity in
Communication (7)

Send request and wait until Send request

accepted and wait for reply.
4 \A

A _T ,,,,,,,,,,,,,,, A

Request | Request

is received il N is received

- / Time ~ ¥
B }b - - l B - é\)jf,\ﬁ
Running, but doing Process Running, but doing Process
something else request something else request
© ®

e) Delivery-based transient synchronous communication at message
delivery
f) Response-based transient synchronous communication

16-Jan-07 31

The Message-Passing Interface (MPI)

¢ Traditional communication: sockets

¢ Platform of concern:
high-performance multicomputers
* Issue: easy-to-use communication for applications
« Sockets? No: wrong level, non-suitable protocols
= a new message passing standard: MPI
= designed for parallel applications, transient communication
= no communication servers
= no failures (worth to be recovered from)

16-Jan-07 32

The Message-Passing Interface (MPI)

Primitive Meaning

MPI bsend Append outgoing message to a local send buffer

MPI send Send a message and wait until copied to local or remote buffer
MPI ssend Send a message and wait until receipt starts

MPI sendrecy Send a message and wait for reply

MPI isend Pass reference to outgoing message, and continue

MPI issend Pass reference to outgoing message, and wait until receipt starts
MPI recv Receive a message; block if there are none

MPI irecv Check if there is an incoming message, but do not block

Some of the most intuitive message-passing primitives of MPI.

16-Jan-07 33

Message-Queuing Model (1)

Sender Sender Sender Sender
running running passive passive

[Jem~[]

Receiver Receiver Receiver Receiver
running passive running passive
@ ®) © @

Four combinations for loosely-coupled communications using queues.

16-Jan-07 34

Message-Queuing Model (2)

Primitive | Meaning

Put Append a message to a specified queue
Get Block until the specified queue is nonempty, and remave the first message
Poll Check a specified queue for messages, and remove the first. Never block.

Install a handler to be called when a message is put into the specified
queue.

Basic interface to a queue in a message-queuing system.

16-Jan-07 35

General Architecture of a Message-
Queuing System (1)

Look-up
Sender [ transport-level Receiver
address of queue

Queuing - Queue-level " Queuing
layer - layer

address i

Local OS ‘ ™ Address look-up Local 0S Tv\\\

Network

Transport-level
address

The relationship between queue-level addressing and
network-level addressing.

16-Jan-07 36

Timo Alanko, 2006



DS2006; Ch 3

16-Jan-07

General Architecture of a Message-Queuing

Sender A SEEUNE)
(( ey w2 0
\ £ [ Message =
e el /

Application

(¢
]
Application o
Router

2-29. The general organization of a message-queuing system with routers.
16-Jan-07 37

Receiver B

Message oriented middleware

appl. A appl. B
)
1

asyncronous messages

— reliable, fault-tolerant
— no loss, duplication, permutation, msg
cluttering
: - queue
persistent subscriptions server [— msg transfer
system
models supported T
— message queue l SSL tms
— request-response (Tusgue msg transfer
- i [~ | system
muIt‘|cast ‘ carvor y
— publish-subscribe I
T~
16-Jan-07 38

MOM = message oriented middleware

« basic model: pipe between client and server
— asyncronous messaging natural, syncronous communication
cumbersome
— message queues support reliability of message transport
— violates access transparency, no support for data heterogenity

unless in programming language mapping, no support for
transactions

— suitable for event notifications, publish/subscribe-based
architectures
— persistent message queues support fault tolearance
« Topics for variation and development
— persistent/transient msgs
— FIFO/priority queues
— translations of msgs
— abstractions on msg ordering
— multithreading, automatic load balancing
— msg routing (source, cost, changes in topology etc)
— secure transfer of msgs (at I%agotgetween msg servers)

Message Brokers

Database with
conversion rules  Destination client

/
12

Source client Message broker

A | < I

Broker
program

\
w Qﬂﬂ uq

[

111

0os

Network
The general organization of a message broker in a message-queuing system.

16-Jan-07 40

CORBA Events & Notifications

Event namespace (names and attributes)
Typed events (header+body; fixed + other)

Consumer event filtering, event batching, event priority, event
expiration, logging, internationalization, flow control mechanism

QoS properties

supplierl

event channel
consumer
umert | 7= —C _
| consumerN | | typed events | supplierN
| |

16-Jan-07 a

Publish-subscribe

» shared mailbox, everyone can send to it
» subscribers can select what filter to use

» guaranteed delivery of all relevant messages
to all subscribers

* models: header-based, topic-based
» problems

— scalability: comparing filters and messages
— ordering of messages

16-Jan-07 a2

Timo Alanko, 2006



DS2006; Ch 3

16-Jan-07

Stream communication

Sending process Receiving process

» |
@b‘ Program %—)[[]
A

Stream
os ¢ os

Network
@

« Setting up a stream between two processes across a network.

16-Jan-07

Specifying QoS (1)

Characteristics of the Input

Service Required

emaximum data unit size (bytes)
«Token bucket rate (hytes/sec)
«Toke bucket size (hytes)

«loss sensitivity (bytes)
«Loss interval (psec)
«Burst loss sensitivity (data units)

«Maximum transmission rate
(bytes/sec)

«Minimum delay noticed (psec)
«Maximum delay variation (psec)
«Quality of guarantee

« A flow specification.

16-Jan-07 4

Specifying QoS (2)

Application

— —
Irregular stream

of data units
- e e oo e

\

—~ Regular stream

« The principle of a token bucket algorithm.

16-Jan-07

One token is added
to the bucket every AT

Setting Up a Stream

Sender process RSVP-enabled host
EY

Application

Application le>
data str T
ata stream =

Poiicy | l4——|— RSVP process

control

RSVP
program

Local 0S8 ‘ Reservation requests

from other RSVP hosts

Data link layer ‘ Admission ‘
;

control

Data link layer \ [
data stream —— | \

Local network N —
Setup information to N
other RSVP hosts

« The basic organization of RSVP for resource reservation in a

distributed system.
16-Jan-07 46

Synchronization Mechanisms (1)

Receiver's machine

Application
Procedure that reads
two audio data units for
each video data unit

Incoming stream :AHII

\— |os

Network

* The principle of explicit synchronization on the level data units.

16-Jan-07

a7

Synchronization Mechanisms (2)

Application tells
middleware what
to do with incoming
streams

W[
Middleware layer ﬁui\‘;'j: %

Incoming stream

Receiver's machine

Multimedia control

is part of middleware Application

The principle of synchronization as supported by high-level interfaces.

16-Jan-07 48

Timo Alanko, 2006



DS2006; Ch 3 16-Jan-07

Other forms of communication

» Multicast (application level)
— overlay network where relays not members of
group (tree, mesh)
» Gossip-based data dissemination

— infect other nodes with useful data by an epidemic
algorithm

— periodically exchange information with a random
node

— states: infected, suspectible, data removed

16-Jan-07 49

Timo Alanko, 2006 9



