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Interprocess Communication

Remote invocations
Message passing
Streams

Multicast

Tanenbaum, van Steen: Ch2 (Ch3)
CoDoKi: Ch2, Ch3, Ch5
Andrews: Ch 7-8 (—9)
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Middleware Protocols

Application protocol
Application }"””””PP’””"P 7777777777777 J
Middleware protocol
Middleware =™ &
General purpose services
Transport -~ -Naming, “browsing” - 4
-Security
- -Atomicity -
Network -Higher-level communication s
- -RPC, RMI -
Data link -Message passing 2
-Reliable multicast
Physical ﬁ’ B !

An adapted reference model for networked communication.

Network
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Remote Procedure Calls

* Form: see Andrews, p. 363
» Example: Andrews, Fig. 8.2
* Notice:

— “passive” routines

— available for remote clients

— executed by a local worker process, which is
invoked by the local infrastructure

Implementation: see TvSt, Ch. 2.2
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RPC goals

to achieve access transparent procedure call
cannot fully imitate
— naming, failures, performance
— global variables, context dependent variables, pointers
— Call-by-reference vs. call-by-value
Call semantics
— Maybe, at-least-once, at-most-once
— Exception delivery
Can be enhanced with other properties
— Asyncronous RPC
— Multicast, broadcast
— Location transparency, migration transparency, ...
— Concurrent processing
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RPC: a Schematic View

System A System B

X, Y, Z

Thread P FNCT(a,b)
c:={comp}
return c.

Y=ENCT(X, )& |

RPC | RPC
package | | package |
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Implementation of RPC (1)

* RPC components (Bacon, Fig. 15.7) :

— RPC Service (two stubs)
« interpretation of the service interface
« packing of parameters for transportation

— Transportation service: node to node
« responsible for message passing
« part of the operating system

* Name service: look up, binding
— name of procedure, interface definition
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Passing Value Parameters

Client machine Server machine

Client process 1 Client callt Server process
foocsocl 6. Stub makes

Server stub
= | Gentsts Y- =
T A Tadd"
proc: "add
2. Stub builds int:_val() ° f:::s:nza%
e it val() 9
proc: “add” 4. Server OS
int.__val() Server 05 hands message
[t val() ] 7)| to server stub

3. Message is sent
across the network

Steps involved in doing remote computation through RPC
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local call to "add"

Writing a Client and a Server

(Oudgen)

Interface
definition file

(1DL compiler]

-~ =
Client code Client stub J Header L‘ Server stub Server code
—dinciud | | #ncluge .
. v
[ C compiler (G complier ) [ C compiler | C compiter |

v
Ciiert Clent stub Server stub Server
object fle object file object file object fle
v T l
0 Runtime Runtime g Y
(_Linker < Tiprary library '_" Cinked

PR S
Clent Server
binary. binary

The steps in writing a client and a server in DCE RPC.
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Binding a Client to a Server

Directory machine

Directory
server
~l ) ’
3 Look up server .2 Register service

~ - _Server machine

Client machine -
.

5. Do RPC

| 1. Register endpoint

“~. Endpoint
table

Client-to-server binding in DCE.
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Implementation of RPC (2)

Server: who will execute the procedure?
¢ One server process

— infinite loop, waiting in “receive”

— call arrives : the process starts to execute

— one call at atime, no mutual exclusion problems
« A process is created to execute the procedure

— parallelism possible

— overhead

— mutual exclusion problems to be solved
« One process, a set of thread skeletons:

— one thread allocated for each call
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Distributed Objects

« Remote Method Invocation ~ RPC; see Fig. 2-16.
« Adistributed interface
— binding: download the interface to the client => proxy
— “server stub” ~ skeleton
« The object
— resides on a single machine (possible distribution: hidden)
— if needed: “object look” through an adapter (see: Fig. 3-8)
— an object may be persistent or transient
« Object references:
— typically: system-wide
— binding: implicit or explicit resolving of an object reference
« Binding and invocation: see Fig. 2-17
+ Examples: CORBA, DCOM (Ch. 9.1, 9.2)

16-Jan-07 1

Distributed Objects

Client machine Server machine
Object
Client Server &
[« State
Same = ‘
Client interface OO0« Method
invokes _ as object
a method ¢ K//’ S - i—/‘\\\
P P T T | |
at object A
Client 05 ‘ Server 0S
[ T
>
Network \
Marshalled invocation
is passed across network
Fig. 2-16. Common organization of a remote object with client-side proxy.
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Object Adapter

Server with three objects
Server machine

Object's stub
skeleton {
\A E

\

wﬂ*ﬂ
T

Fig. 3-8.

Binding a Client to an Object

Distr_object* obj_ref;
obj_ref = _;
obj_ref-> do_something();

Distr_object objPref;
Local_object* obj_ptr;
obj_ref = _;

obj_ptr = bind(obj_ref);

obj_ptr -> do_something();

(a)

//Declare a systemwide object reference
// Initialize the reference to a distributed object
/1 Implicitly bind and invoke a method

//Declare a systemwide object reference
//Declare a pointer to local objects

//nitialize the reference to a distributed object
//Explicitly bind and obtain a pointer to

/1 ... the local proxy

//Invoke a method on the local proxy

Organization of an object

ecl adapter Object adap(er

|

server supporting different
activation policies.

Request

Local 0S
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(b)
Fig. 2-17.
. (a) Example with implicit binding using only global references
. (b) Example with explicit binding using global and local references
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Parameter Passing

Machine A Machine B
Local object
Local o1 [ Remote objectJ
K Remote
reference L1 |34 reference R1 v
. A X
T e Y
Client code with \ |
RMI to server at C N ;
(proxy) AN New local /
™~ reference Copy of O1 /
v A
Remote \\ Al AN
invocation with . g
L1andR1as EV ST
parameters ™ server code

Machine C (method implementation)

Fig. 2-18.The situation when passing an object by reference or by value.

Copying must not be hidden!  Why?
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Design Issues

» Language independent interface definition
» Exception handling

» Delivery guarantees
RPC / RMI semantics

— maybe

— at-least-once
— at-most-once

» Transparency (algorithmic vs behavioral)
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RPC: Types of failures

« client unable to locate server
* request message lost
—  retransmit a fixed number of times before throwing an exception
« server crashes after receiving a request or
« reply message lost (cannot be told apart!)
— client resubmits request
— server choises

« re-execute procedure: service should be idempotent
« filter duplicates: server should hold on to results until acknowledged

« client crashes after sending a request
— orphan detection: reincarnations, expirations

« Reporting failures breaks transparency
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Fault tolerance measures

Retransmit |Duplicate |Re-execute/ |invocation
request filtering  |retransmit semantics
no not appl |not appl maybe
yes no re-execute at-least-
once

yes yes retransmit at-most-
reply once
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Interface
Repository

DL
Compier

Implementation
Repository

inargs
operation()

Object
(Servant)

Client

Y cod®
|
- e =

]

| ot “ogg |
INTERFACE Object Adapter i !

| XML-RPC H

—
Sourees Y Ster
+CORBA shields applications from heterogeneous platform dependencies oo "
«e.g., languages, operating systems, networking protocols, hardware 163007

Communication: Message Passing

Process A Process B

X=f(..); receive X from A
send X to B Y=£(X);

NobleNet RPC

TIBCO TiB/Rendezvous

1BM MQSeries
BEA MessageQ

Scalability

X:10
%m oS Data Communication oS
’ kernel Network kernel
Recoverabiliy > 2 16507 2
Binding (1) Binding (2)
 Structure of communication network ) o
— one-to-one (two partners, one shared channel) Time of binding
— many-to-one (client-server)
— one-to-many, many-to-many — static naming (at programming time)
(client-service; group communication)
« Types of message passing — dynamic naming (at execution time)

« explicit binding of channels

— send, multicast, broadcast S )
« implicit binding through name service

— on any channel structure
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Persistence and Synchronicity in
Communication (1)

Messaging interface

Sending host Communication server Communication server  Receiving host

Buffer independent
- Routing of communicating Routin:
Application / program hosts prograﬁ Application
/
y A Z
[ ——1 | 7o otrer remote) [ —
—| H H communication =] —| ’E‘
= == sever . = \;‘ =%
os [ os BN los T s
\ [ \ \ J
I ] iy ‘\\ \
Local buffer SRS L Internetwork 4/) N Local buffer

—
————

Incoming message

General organization of a communication system in which hosts are connected
through a network
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Persistence and Synchronicity in
Communication (2)

» Persistent communication

a submitted message is stored in the system until
delivered to the receiver
(the receiver may start later, the sender may stop earlier)

« Transient communication
a message is stored only as long as the sending and
receiving applications are executing
(the sender and the receiver must be executing in parallel)
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Persistence and Synchronicity in
Communication (3)

Pony and rider

Post # Post
office

____________ » | office

Post |~
# office | - i
- /1 ‘

/ | Post | -
Mail stored and sorted, to office
be sent out depending on destination

and when pony and rider available

Persistent communication of letters back in the days of the Pony Express.
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Persistence and Synchronicity in
Communication (4)

« Asynchronous communication

the sender continues immediately after submission
* Synchronous communication

the sender is blocked until

« the message is stored at the receiving host (receipt -based
synchrony)

« the message is delivered to the receiver (delivery based)
« the response has arrived (response based)
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Persistence and Synchronicity in
Communication (5)

A sends message A sends message A stopped
and continues A stopped and waits until accepted runmsg
\y running
A T 5
| Message is stored /
ﬁi‘(i‘i at B's location for | / Accepted
\ Time later delivery o | | Time
) g s AV 0 4
B starts and Bis not B starts and
Bis not receives running receives
running message message
@ ()
a) Persistent asynchronous communication
b)  Persistent synchronous communication
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Persistence and Synchronicity in
Communication (6)

A sends message

Send request and wait
and continues
-

until received

s .
—— e Af, ,,,,,,,,,
A \ Message can be A \ 2
\ sentonly ifBis /
— |
\( running Request \ /ACK
\‘ Time is recelved\ \ / Time
~
B L B — A%
Breceives Running butvdomg Proz:ess
message something else request
© (d)

c) Transient asynchronous communication
d) Receipt-based transient synchronous communication
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Persistence and Synchronicity in
Communication (7)

Send request and wait until Send request

accepted and wait for reply.
4 \A

A _T ,,,,,,,,,,,,,,, A

Request | Request

is received il N is received

- / Time ~ ¥
B }b - - l B - é\)jf,\ﬁ
Running, but doing Process Running, but doing Process
something else request something else request
© ®

e) Delivery-based transient synchronous communication at message
delivery
f) Response-based transient synchronous communication
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The Message-Passing Interface (MPI)

¢ Traditional communication: sockets

¢ Platform of concern:
high-performance multicomputers
* Issue: easy-to-use communication for applications
« Sockets? No: wrong level, non-suitable protocols
= a new message passing standard: MPI
= designed for parallel applications, transient communication
= no communication servers
= no failures (worth to be recovered from)
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The Message-Passing Interface (MPI)

Primitive Meaning

MPI bsend Append outgoing message to a local send buffer

MPI send Send a message and wait until copied to local or remote buffer
MPI ssend Send a message and wait until receipt starts

MPI sendrecy Send a message and wait for reply

MPI isend Pass reference to outgoing message, and continue

MPI issend Pass reference to outgoing message, and wait until receipt starts
MPI recv Receive a message; block if there are none

MPI irecv Check if there is an incoming message, but do not block

Some of the most intuitive message-passing primitives of MPI.
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Message-Queuing Model (1)

Sender Sender Sender Sender
running running passive passive

[Jem~[]

Receiver Receiver Receiver Receiver
running passive running passive
@ ®) © @

Four combinations for loosely-coupled communications using queues.
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Message-Queuing Model (2)

Primitive | Meaning

Put Append a message to a specified queue
Get Block until the specified queue is nonempty, and remave the first message
Poll Check a specified queue for messages, and remove the first. Never block.

Install a handler to be called when a message is put into the specified
queue.

Basic interface to a queue in a message-queuing system.
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General Architecture of a Message-
Queuing System (1)

Look-up
Sender [ transport-level Receiver
address of queue

Queuing - Queue-level " Queuing
layer - layer

address i

Local OS ‘ ™ Address look-up Local 0S Tv\\\

Network

Transport-level
address

The relationship between queue-level addressing and
network-level addressing.
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General Architecture of a Message-Queuing

Sender A SEEUNE)
(( ey w2 0
\ £ [ Message =
e el /

Application

(¢
]
Application o
Router

2-29. The general organization of a message-queuing system with routers.
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Receiver B

Message oriented middleware

appl. A appl. B
)
1

asyncronous messages

— reliable, fault-tolerant
— no loss, duplication, permutation, msg
cluttering
: - queue
persistent subscriptions server [— msg transfer
system
models supported T
— message queue l SSL tms
— request-response (Tusgue msg transfer
- i [~ | system
muIt‘|cast ‘ carvor y
— publish-subscribe I
T~
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MOM = message oriented middleware

« basic model: pipe between client and server
— asyncronous messaging natural, syncronous communication
cumbersome
— message queues support reliability of message transport
— violates access transparency, no support for data heterogenity

unless in programming language mapping, no support for
transactions

— suitable for event notifications, publish/subscribe-based
architectures
— persistent message queues support fault tolearance
« Topics for variation and development
— persistent/transient msgs
— FIFO/priority queues
— translations of msgs
— abstractions on msg ordering
— multithreading, automatic load balancing
— msg routing (source, cost, changes in topology etc)
— secure transfer of msgs (at I%agotgetween msg servers)

Message Brokers

Database with
conversion rules  Destination client

/
12

Source client Message broker

A | < I

Broker
program

\
w Qﬂﬂ uq

[

111

0os

Network
The general organization of a message broker in a message-queuing system.
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CORBA Events & Notifications

Event namespace (names and attributes)
Typed events (header+body; fixed + other)

Consumer event filtering, event batching, event priority, event
expiration, logging, internationalization, flow control mechanism

QoS properties

supplierl

event channel
consumer
umert | 7= —C _
| consumerN | | typed events | supplierN
| |
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Publish-subscribe

» shared mailbox, everyone can send to it
» subscribers can select what filter to use

» guaranteed delivery of all relevant messages
to all subscribers

* models: header-based, topic-based
» problems

— scalability: comparing filters and messages
— ordering of messages
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Stream communication

Sending process Receiving process

» |
@b‘ Program %—)[[]
A

Stream
os ¢ os

Network
@

« Setting up a stream between two processes across a network.
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Specifying QoS (1)

Characteristics of the Input

Service Required

emaximum data unit size (bytes)
«Token bucket rate (hytes/sec)
«Toke bucket size (hytes)

«loss sensitivity (bytes)
«Loss interval (psec)
«Burst loss sensitivity (data units)

«Maximum transmission rate
(bytes/sec)

«Minimum delay noticed (psec)
«Maximum delay variation (psec)
«Quality of guarantee

« A flow specification.
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Specifying QoS (2)

Application

— —
Irregular stream

of data units
- e e oo e

\

—~ Regular stream

« The principle of a token bucket algorithm.
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One token is added
to the bucket every AT

Setting Up a Stream

Sender process RSVP-enabled host
EY

Application

Application le>
data str T
ata stream =

Poiicy | l4——|— RSVP process

control

RSVP
program

Local 0S8 ‘ Reservation requests

from other RSVP hosts

Data link layer ‘ Admission ‘
;

control

Data link layer \ [
data stream —— | \

Local network N —
Setup information to N
other RSVP hosts

« The basic organization of RSVP for resource reservation in a

distributed system.
16-Jan-07 46

Synchronization Mechanisms (1)

Receiver's machine

Application
Procedure that reads
two audio data units for
each video data unit

Incoming stream :AHII

\— |os

Network

* The principle of explicit synchronization on the level data units.
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Synchronization Mechanisms (2)

Application tells
middleware what
to do with incoming
streams

W[
Middleware layer ﬁui\‘;'j: %

Incoming stream

Receiver's machine

Multimedia control

is part of middleware Application

The principle of synchronization as supported by high-level interfaces.
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Other forms of communication

» Multicast (application level)
— overlay network where relays not members of
group (tree, mesh)
» Gossip-based data dissemination

— infect other nodes with useful data by an epidemic
algorithm

— periodically exchange information with a random
node

— states: infected, suspectible, data removed
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