
DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 1

23-Feb-06 1

Ch 4 Synchronization

Clocks and time
Global state
Mutual exclusion
Election algorithms
Distributed transactions

Tanenbaum, van Steen: Ch 5
CoDoKi: Ch 10-12 (3rd ed.)

23-Feb-06 2

Skew between computer clocks in
a distributed system

Network

Figure 10.1

23-Feb-06 3

Clock Synchronization

When each machine has its own clock, an event that occurred after
another event may nevertheless be assigned an earlier time.

23-Feb-06 4

Time and Clocks

NOTICE: time is monotonous

computer clockinterval length

network time
(universal time)

order of events

universal time
(network time)

real time

Needs Clocks

23-Feb-06 5

Clock Synchronization Problem

The relation between clock time and UTC when clocks tick at different
rates.

drift rate: 10-6

1 ms ~ 17 min

1 s ~ 11.6 days

UTC: coordinated
universal time
accuracy:
radio 0.1 – 10 ms,
GPS 1 us

23-Feb-06 6

Synchronization of Clocks:
Software-Based Solutions

• Techniques:
– time stamps of real-time clocks
– message passing
– round-trip time (local measurement)

• Cristian’s algorithm
• Berkeley algorithm
• Network time protocol (Internet)

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 2

23-Feb-06 7

Cristian's Algorithm

Current time from a time server: UTC from radio/satellite etc
Problems:

- time must never run backward
- variable delays in message passing / delivery

23-Feb-06 8

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock (be careful with

averages!)

23-Feb-06 9

Clocks and Synchronization
Needs

– ”causality”: real-time order ~ timestamp order (”behavioral
correctness” – seen by the user)

– groups / replicates: all members see the events in the same
order

– ”multiple-copy-updates”: order of updates, consistency
conflicts?

– serializability of transactions: bases on a common
understanding of transaction order

A physical clock is not always sufficent!

23-Feb-06 10

Example: Totally-Ordered
Multicasting (1)

Updating a replicated database and leaving it in an inconsistent state.

23-Feb-06 11

Happened-Before Relation ”a -> b”

• if a, b are events in the same process, and a occurs before b, then a -> b

a b

a

b

• if a is the event of a message being sent, and
b is the event of the message being received,
then a -> b

• a || c if neither a -> b nor b -> a (a and b are concurrent)

Notice: if a -> b and b -> c then a -> c
23-Feb-06 12

Logical Clocks: Lamport Timestamps

process pi , event e , clock Li , timestamp Li(e)
§ at pi : before each event Li = Li + 1
§ when pi sends a message m to pj

1. pi: (Li = Li + 1); t = Li ; message = (m, t) ;
2. pj: Lj = max(Lj, t); Lj = Lj + 1;
3. Lj(receive event) = Lj ;

0 6 12 18 24 30 36 42 48 540

0

0

6

8

10

12

16

20

18

24

30

24

32

40

30

40

50

36

48

60

42

56

70

42

61

70

48

69

80

54

77

90

70

77

99

0 8 16 24 32 40 48 56 64 7224 30

30 40

P1
P2

P3

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 3

23-Feb-06 13

Lamport Clocks: Problems
1. Timestamps do not specify the order of events

– e -> e’ => L(e) < L(e’)
BUT
– L(e) < L(e’) does not implicate that e -> e’

2. Total ordering
– problem: define order of e, e’ when L(e) = L(e’)
– solution: extended timestamp (Ti, i), where Ti is Li(e)
– definition: (Ti, i) < (Tj, j)

if and only if
either Ti < Tj

or Ti = Tj and i < j

23-Feb-06 14

Example: Totally-Ordered
Multicasting (2)

Total ordering:
all receivers (applications) see all messages in the same order
(which is not necessarily the original sending order)
Example: multicast operations, group-update operations

23-Feb-06 15

Example: Totally-Ordered
Multicasting (3)

Guaranteed delivery order
- new message => HBQ

- when all predecessors have
arrived: message => DQ

- when at the head of DQ:
message => application
(application: receive …)

Application

hold-back queue

delivery queue

delivery

Message passing system
Algorithms:
see. Defago et al ACM CS, Dec. 2004

23-Feb-06 16

30.2

30.2

Example: Totally-Ordered
Multicasting (4)

P1

TS

Multicast:
- everybody receives the message (incl. the sender!)
- messages from one sender are received in the sending order
- no messages are lost

P3

TS

P2

TS

27.3
26.3 31.3

20.1

20.1
30.2

20.1

31.2

31.1HBQ HBQ

30.2

30.2

Original timestamps
P1 19
P2 29
P3 25

The key idea
- the same order in all queues
- at the head of HBQ:

when all ack’s have arrived
nobody can pass you

23-Feb-06 17

Various Orderings

• Total ordering
• Causal ordering
• FIFO (First In First Out)

(wrt an individual communication channel)

Total and causal ordering are independent: neither
induces the other;

Causal ordering induces FIFO

23-Feb-06 18

Total, FIFO and Causal Ordering of
Multicast Messages

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

Notice the consistent
ordering of totally
ordered messages T1
and T2,
the FIFO-related

messages F1 and F2
and the causally
related messages C1
and C3
– and the otherwise

arbitrary delivery
ordering of messages.

Figure 11.12

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 4

23-Feb-06 19

Vector Timestamps

Goal:
timestampstimestamps should reflect causal orderingcausal ordering
L(e) < L(e’) => “ e happened before e’ “
=>

Vector clockVector clock
each process Pi maintains a vector Vi :
1.1. VVi[i] is the number of events that have occurred at Pi

(the current local time at Pi)
2. if Vi[j] = k then Pi knows about (the first) k events that have

occurred at Pj

(the local time at Pj was k, as Pj sent the last message that
Pi has received from it)

23-Feb-06 20

Order of Vector Timestamps
Order of timestamps
• V = V’ iff V[j] = V’ [j] for all j
• V V’ iff V[j] V’ [j] for all j
• V < V’ iff V V’ and V V’

Order of events (causal order)
• e -> e’ => V(e) < V(e’)
• V(e) < V(e’) => e -> e’
• concurrency:

e || e’ if not V(e) V(e’)
and not V(e’) V(e)

23-Feb-06 21

Causal Ordering of Multicasts (1)

Event:
message sent

m1

m2

m3

0
0
0

0
0
0

1
0
0

1
0
0

1
0
0

1
1
0

1
0
1

1
1
0

1
1
1

1
1
1

1
1
1

Timestamp [i,j,k] :
i messages sent from P
j messages sent form Q
k messages sent from R

0
0
0

2
1
1

2
1
1

2
2
1

m4

m5

P

Q

R

R: m1 [100] m4 [211]
m2 [110] m5 [221]
m3 [101]

m5 [22221] vs. 111111m4 [22111] vs. 111111

23-Feb-06 22

Causal Ordering of Multicasts (2)

Use of timestamps in causal multicasting
1) PPii multicast: VVii[i] = VVii[i] + 1

2) Message: include vt = VVii[*]

3) Each receiving PPjj : the message can be delivered when
- vt[i] = VVjj[i] + 1 (all previous messages from PPii have arrived)

- for each component k (k i): VVjj[k] vt[k]
(PPjj has now seen all the messages that PPii had seen
when the message was sent)

4) When the message from PPii becomes deliverable at PPjj the message
is inserted into the delivery queue
(notice: the delivery queue preserves causal ordering)

5) At delivery: VVjj[i] = VVjj[i] + 1

23-Feb-06 23

Causal Ordering of a Bulletin Board (1)

Useró BB (“local events”)
• read: bb <= BBi (any BB)
• write: to a BBj that

contains all causal
predecessors of all bb
messages

BBi => BBj (“messages”)
• BBj must contain all

nonlocal predecessors of
all BBi messages

Assumption:
reliable, order-preserving
BB-to-BB transport

23-Feb-06 24

Causal Ordering of a Bulletin Board (2)

Lazy propagation of messages betw.
bulletin boards
1) user => Pi

2) Pi ó Pj

vector clocks: counters
messages from
users to the node i

messages originally
received by the node j

P1 2 1 2

1 2 3

P3 2 1 2

1 2 3

P2 1 3 0

1 2 3 N
i

N
j

timestamps

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 5

23-Feb-06 25

nodes

clocks (value: visible user messages)

bulletin boards (timestamps shown)

user: read and reply

- read stamp:

- reply can be
delivered to:

300

1, 2, 3

023

1, 2, 3

Causal Ordering of a Bulletin Board (3)

010
020

001
002
003

020 003

P1 P2 P3

100
200
300

300

100
200
300

320 023

024

024

010
020

010
020

100
200
300

023025

23-Feb-06 26

Causal Ordering of a Bulletin Board (4)

Updating of vector clocks
Process PPii

• Local vector clock VVii [∗]
• Update due to a local event: VVii [i] = VVii [i] + 1

• Receiving a message with the timestamp vt [∗]
– Condition for delivery (to PPii from PPjj):

wait until for all k: k j: VVii [k] vt [k]
– Update at the delivery: VVii [j] = vt [j]

23-Feb-06 27

Global State (1)

• Needs: checkpointing, garbage collection, deadlock
detection, termination, testing

mngr?

• How to observe the state
• states of processes
• messages in transfer

A state: application-dependent specification
23-Feb-06 28

Detecting Global Properties
p2p1

message
garbage object

object
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1
activate

passive passivec. Termination

Figure 10.8

23-Feb-06 29

Distributed Snapshot

• Each node: history of important events
• Observer: at each node i

– time: the local (logical) clock ” Ti ”
– state Si (history: {event, timestamp})
=> system state { Si }

• A cut: the system state { Si } ”at time T”
• Requirement:

– {Si} might have existedó consistent with respect to some
criterion

– one possibility: consistent wrt ” happened-before relation ”

23-Feb-06 30

Ad-hoc State Snaphots

500e 200e

450e 250e

account A account B

450e 200e
50 => B =>

channel

state changes: money transfers Aó B
invariant: A+B = 700

cut 2

(inconsistent or)
weakly consistent

cut 1

strongly consistent
inconsistent

cut 3

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 6

23-Feb-06 31

Consistent and Inconsistent Cuts

P1

P2

P3

m1

m2
m3

P1

P2

P3

m1

m2

m3

23-Feb-06 32

m1 m2

p1

p2
Physical

time

Cut C1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)
x1= 1 x1= 100 x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C2

Cuts and Vector Timestamps

x1 and x2 change locally
requirement: |x1- x2|<50
a ”large” change (”>9”) =>
send the new value to the other process

{Si} system state history: all events
Cut: all events before the ”cut time”

event: a change of the local x
=> increase the vector clock

A cut is consistent if, for each event,
it also contains all the events that
”happened-before”.

concurrent

23-Feb-06 33

Implementation of Snapshot

Assumption: point-to-point, order-preserving connections

Chandy, Lamport

23-Feb-06 34

Chandy Lamport (1)

The snapshot algorithm of Chandy and Lamport
a) Organization of a process and channels for a distributed snapshot

23-Feb-06 35

Chandy Lamport (2)

b) Process Q receives a marker for the first time and records its local
state

c) Q records all incoming messages
d) Q receives a marker for its incoming channel and finishes recording

the state of this incoming channel

23-Feb-06 36

Chandy and Lamport’s ‘Snapshot’
Algorithm

Marker receiving rule for process pi
On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it
records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else
pi records the state of c as the set of messages it has received over c

since it saved its state.
end if

Marker sending rule for process pi
After pi has recorded its state, for each outgoing channel c:

pi sends one marker message over c
(before it sends any other message over c).

Figure 10.10

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 7

23-Feb-06 37

Coordination and Agreement

Coordination of functionality
– reservation of resources (distributed mutual exclusion)
– elections (coordinator, initiator)
– multicasting
– distributed transactions

Pi

Pi

PiPi

Pi
Pi

X

23-Feb-06 38

Decision Making
• Centralized: one coordinator (decision maker)

– algorithms are simple
– no fault tolerance (if the coordinator fails)

• Distributed decision making
– algorithms tend to become complex
– may be extremely fault tolerant
– behaviour, correctness ?
– assumptions about failure behaviour of the platform !

• Centralized role, changing “population of the role”
– easy: one decision maker at a time
– challenge: management of the “role population”

23-Feb-06 39

Mutual Exclusion:
A Centralized Algorithm (1)

a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted

b) Process 2 then asks permission to enter the same critical region.
The coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator,
which then replies to 2

message passing

23-Feb-06 40

Mutual Exclusion:
A Centralized Algorithm (2)

• Examples of usage
– a stateless server (e.g., Network File Server)
– a separate lock server

• General requirements for mutual exclusion
1. safety: at most one process may execute in the critical

section at a time
2. liveness: requests (enter, exit) eventually succeed (no

deadlock, no starvation)
3. fairness (ordering): if the request A happens before the

request B then A is honored before B

– Problems: fault tolerance, performance

23-Feb-06 41

A Distributed Algorithm (1)

• The general idea:
– ask everybody
– wait for permission from

everybody

Pt

Pi

Pl

Pj

resource
Ricart – Agrawala

?

The problem:
– several simultaneous requests (e.g., Pi and Pj)
– all members have to agree (everybody: “first Pi then Pj”)

23-Feb-06 42

Multicast Synchronization

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

Fig. 11.5 Ricart - Agrawala

Decision base:
Lamport timestamp

X

X

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 8

23-Feb-06 43

On initialization
state := RELEASED;

To enter the section
state := WANTED;
T := request’s timestamp; request processing deferred here
Multicast request to all processes;
Wait until (number of replies received = (N-1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if;

To exit the critical section
state := RELEASED;
reply to all queued requests;

A Distributed Algorithm (2)

Fig. 11.4 Ricart - Agrawala

23-Feb-06 44

A Token Ring Algorithm

Algorithm:
- token passing: straightforward
- lost token: 1) detection? 2) recovery?

An unordered group of processes on a network.

A logical ring constructed in software.

23-Feb-06 45

Comparison

A comparison of three mutual exclusion algorithms.
Notice: the system may contain a remarkable amount of sharable
resources!

Lost token, process
crash0 to n – 11 to ∞Token ring

Crash of any
process2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

ProblemsDelay before entry (in
message times)

Messages per
entry/exitAlgorithm

23-Feb-06 46

Election Algorithms
• Need:

– computation: a group of concurrent actors
– algorithms based on the activity of a special role (coordinator, initiator)
– election of a coordinator: initially / after some special event (e.g., the

previous coordinator has disappeared)
• Premises:

– each member of the group {Pi}
• knows the identities of all other members
• does not know who is up and who is down

– all electors use the same algorithm
– election rule: the member with the highest Pi

• Several algorithms exist

23-Feb-06 47

The Bully Algorithm (1)

§ Pi notices: coordinator lost
1. Pi to {all Pj st Pj>Pi}: ELECTION!
2. if no one responds => Pi is the coordinator
3. some Pj responds => Pj takes over, Pi’s job is done

§ Pi gets an ELECTION! message:
1. reply OK to the sender
2. if Pi does not yet participate in an ongoing election: hold

an election
§ The new coordinator Pk to everybody:

“ Pk COORDINATOR”
§ Pi: ongoing election & no “Pk COORDINATOR”:

hold an election
§ Pj recovers: hold an election

23-Feb-06 48

The Bully Algorithm (2)

The bully election algorithm
a) Process 4 holds an election
b) Process 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 9

23-Feb-06 49

The Bully Algorithm (3)

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

23-Feb-06 50

A Ring Algorithm (1)

• Group {Pi} ”fully connected”; election: ring
• Pi notices: coordinator lost

– send ELECTION(Pi) to the next P
• Pj receives ELECTION(Pi)

– send ELECTION(Pi, Pj) to successor
• . . .
• Pi receives ELECTION(..., Pi, ...)

– active_list = {collect from the message}
– NC = max {active_list}
– send COORDINATOR(NC; active_list) to the next P

• …

23-Feb-06 51

A Ring Algorithm (2)

Election algorithm using a ring.

23-Feb-06 52

Database

ser-
ver

Distributed Transactions

client

Database

ser-
ver

atomic

client
ser-
ver

isolated
serializable

Atomic
Consistent
Isolated
Durable

client

ser-
ver

23-Feb-06 53

The Transaction Model (1)

Updating a master tape is fault tolerant.

23-Feb-06 54

The Transaction Model (2)

Examples of primitives for transactions.

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 10

23-Feb-06 55

The Transaction Model (3)

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)

Notice:
• a transaction must have a name
• the name must be attached to each operation,

which belongs to the transaction

23-Feb-06 56

Distributed Transactions

a) A nested transaction
b) A distributed transaction

23-Feb-06 57

Concurrent Transactions
• Concurrent transactions proceed in parallel
• Shared data (database)

• Concurrency-related problems
(if no further transaction control):
– lost updates
– inconsistent retrievals
– dirty reads
– etc.

23-Feb-06 58

Transaction T :
balance = b.getBalance();
b.setBalance(balance*1.1);
a.withdraw(balance/10)

Transaction U :

balance = b.getBalance();
b.setBalance(balance*1.1);
c.withdraw(balance/10)

balance = b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

The lost update problem

Figure 12.5 Initial values a: $100, b: $200 c: $300

23-Feb-06 59

TransactionV :
a.withdraw(100)
b.deposit(100)

Transaction W :

aBranch.branchTotal()

a.withdraw(100); $100
total = a.getBalance() $100
total = total+b.getBalance() $300
total = total+c.getBalance()

b.deposit(100) $300

The inconsistent retrievals problem

Figure 12.6 Initial values a: $200, b: $200

23-Feb-06 60

A serially equivalent interleaving of T
and U

Transaction T :
balance = b.getBalance()
b.setBalance(balance*1.1)
a.withdraw(balance/10)

Transaction U :
balance = b.getBalance()
b.setBalance(balance*1.1)
c.withdraw(balance/10)

balance = b.getBalance() $200
b.setBalance(balance*1.1) $220

balance = b.getBalance() $220
b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80
c.withdraw(balance/10) $278

Figure 12.7 The result corresponds the sequential execution T, U

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 11

23-Feb-06 61

TransactionT:
a.getBalance()
a.setBalance(balance + 10)

TransactionU:
a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100
a.setBalance(balance + 10) $110

balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction
abort transaction

A dirty read when transaction T aborts

Figure 12.11

$100$100

$110$110

23-Feb-06 62

Methods for ACID
• Atomic

– private workspace,
– writeahead log

• Consistent
concurrency control => serialization

• locks
• timestamp-based control
• optimistic concurrency control

• Isolated (see: atomic, consistent)

• Durable (see: Fault tolerance)

23-Feb-06 63

Private Workspace

a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and appended block 3
c) After committing

23-Feb-06 64

Writeahead Log

• a) A transaction
• b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;
x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a)

23-Feb-06 65

Concurrency Control (1)

General organization of managers for handling transactions.

responsibleresponsible
forfor atomicityatomicity!!

23-Feb-06 66

Concurrency Control (2)

• General organization of
managers for handling
distributed transactions.

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 12

23-Feb-06 67

Serializability

a) – c) Three transactions T1, T2, and T3; d) Possible schedules
Legal: there exists a serial execution leading to the same result.

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

(d)

23-Feb-06 68

Implementation of Serializability
Decision making: the transaction scheduler
• Locks

– data item ~ lock
– request for operation

• a corresponding lock (read/write) is granted OR
• the operation is delayed until the lock is released

• Pessimistic timestamp ordering
– transaction <= timestamp; data item <= R-, W-stamps
– each request for operation:

• check serializability
• continue, wait, abort

• Optimistic timestamp ordering
– serializability check: at END_OF_TRANSACTION, only

23-Feb-06 69

Transactions T and U with Exclusive Locks
Transaction T :
balance = b.getBalance()
b.setBalance(bal*1.1)
a.withdraw(bal/10)

Transaction U :
balance = b.getBalance()
b.setBalance(bal*1.1)
c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction
bal = b.getBalance() lockB

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T ’s
lock on B

closeTransaction unlock A , B

lock B

b.setBalance(bal*1.1)
c.withdraw(bal/10) lock C

closeTransaction unlock B , C

Figure 12.14
23-Feb-06 70

Two-Phase Locking (1)

Releases: application controlled

Problem: dirty reads?

Two-phase locking (2PL).

23-Feb-06 71

Two-Phase Locking (2)

Strict two-phase locking. Centralized or distributed.

23-Feb-06 72

Pessimistic Timestamp Ordering
• Transaction timestamp ts(T)

– given at BEGIN_TRANSACTION (must be unique!)
– attached to each operation

• Data object timestamps tsRD(x), tsWR(x)
– tsRD(x) = ts(T) of the last T which read x
– tswr(x) = ts(T) of the last T which changed x

• Required serial equivalence: ts(T) order of T’s

DS 2006; Ch 4 23-Feb-06

Timo Alanko, 2006 13

23-Feb-06 73

Pessimistic Timestamp Ordering
• The rules:

– you are not allowed to change
what later transactions already have seen (or changed!)

– you are not allowed to read
what later transactions already have changed

• Conflicting operations
– process the older transaction first
– violation of rules: the transaction is aborted

(i.e., the older one: it is too late!)
– if tentative versions are used, the final decision is made at

END_TRANSACTION

23-Feb-06 74

Write Operations and Timestamps
(a) write write

(c) T3 write
object produced
by transaction Ti

(with write timestamp Ti)

(b)T3 T3

write(d) T3

T1<T2<T3<T4

Time

Before

After

T2

T2 T3

Time

Before

After

T2

T2 T3

T1

T1

Time

Before

After

T1

T1

T4

T3 T4

Time

Transaction
abortsBefore

After

T4

T4

Tentative

Committed

Ti

Ti

Key:

CoDoKi: Figure 12.30

T3 max tsR

23-Feb-06 75

Read Operations and Timestamps

CoDoKi: Figure 12.31

(a) T3 read

Time

read
proceeds

Selected

T2

Time

read
proceeds

Selected

T2 T4

Time

read waits

Selected

T1 T2

Time

Transaction
abortsT4

Key:

Tentative

Committed

Ti

Ti

object produced by
transaction Ti
(with write stamp Ti)
T1 < T2 < T3 < T4

(a) T3 read

(a) T3 read (a) T3 read

23-Feb-06 76

Optimistic Timestamp Ordering

• Problems with locks
– general overhead (must be done whether needed or not)
– possibility of deadlock
– duration of locking (=> end of the transaction)

• Problems with pessimistic timestamps
– overhead

• Alternative
– proceed to the end of the transaction
– validate
– applicable if the probability of conflicts is low

23-Feb-06 77

Validation of Transactions

Earlier committed
transactions

Working Validation Update

T1

Tv
Transaction
being validated

T2

T3

Later active
transactions

active1

active2

CoDoKi: Figure 12.28

23-Feb-06 78

Validation of Transactions

Backward validation of transaction Tv
boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){

if (read set of Tv intersects write set of Ti) valid = false;
}

Forward validation of transaction Tv
boolean valid = true;
for (int Tid = active1; Tid <= activeN; Tid++){

if (write set of Tv intersects read set of Tid) valid = false;
}

CoDoKi: Page 499-500

