DS 2006; Ch 4

23-Feb-06

Ch 4 Synchronization

Clocks and time

Global state

Mutual exclusion
Election algorithms
Distributed transactions

Tanenbaum, van Steen: Ch 5
CoDoKi: Ch 10-12 (3rd ed.)

23-Feb-06 1

Skew between computer clocks in
a distributed system

@ @ Q 9

Network

Figure10.1

23-Feb-06

Computer on

Clock Synchronization

2144 2145 2146 2147 «— Time according
+ I I I to local clock

which compiler
runs

Computer on
which editor

+ + + +

S
" output.o created

2142 2143 2144 2145 «— Time according

| + | 1 to local clock

runs

t ‘~ t t

" output.c created

When each machine has its own clock, an event that occurred after
another event may nevertheless be assigned an earlier time.

23-Feb-06 3

Time and Clocks

Needs Clocks

real time

universal time
(network time)

interval length computer clock

network time
(universal time)

order of events

NOTICE: time is monotonous

23-Feb-06

Clock time, C

Clock Synchronization Problem

rates.

?T(t: CR e drift rate: 106
. O =1
& C}Oc‘}‘ i 1ms ~17 min
o X
& & d€ .4 1s~11.6days
& Q@ \s(‘;\,ofd\ dt
o9 UTC: coordinated
universal time
L accuracy:
radio 0.1—10 ms,
N GPS 1us
uTC, t

The relation between clock time and UTC when clocks tick at different

23-Feb-06 5

Synchronization of Clocks:
Software-Based Solutions

¢ Techniques:
— time stamps of real-time clocks
— message passing
— round-trip time (local measurement)
¢ Cristian’s algorithm
« Berkeley algorithm
« Network time protocol (Internet)

23-Feb-06

Timo Alanko, 2006

DS 2006; Ch 4

23-Feb-06

Cristian's Algorithm

Both Tgand Ty are measured with the same clock

To Ty
ClIENt s— f
Request Cute
Time server ---------- s
nat ime —»

I, Interrupt handling time

Current time from a time server: UTC from radio/satellite etc

Problems:
- time must never run backward
- variable delays in message passing / delivery

23-Feb-06 7

The Berkeley Algorithm

Time daemon

7
300 ¥ 300 305 .
N e)
V| A
3:00 i L. +18 \, ;
-~ ™ - e .
4 \3:00 / N\ 20
Ty N —
O - e e = R
EALICS] I8 Ca (D |68
2:50 3:25 2:50 3:25 3:05 3:.05
(@) (b) ©

a) Thetime daemon asks all the other machines for their clock values

b) The machines answer

c) The time daemon tells everyone how to adjust their clock (be careful with
averages!)

23-Feb-06 8

Clocks and Synchronization

Needs

— "causality”: real-time order ~ timestamp order ("behavioral
correctness” — seen by the user)

— groups / replicates: all members see the events in the same
order

— "multiple-copy-updates”: order of updates, consistency
conflicts?

— serializability of transactions: bases on a common
understanding of transaction order

A physical clock is not always sufficent!

23-Feb-06 9

Example: Totally-Ordered
Multicasting (1)

% Update 1 _ Update 2 %

Update 1 is Replicated database Update 2 is
performed before performed before
update 2 update 1

Updating a replicated database and leaving it in an inconsistent state.

23-Feb-06 10

Happened-Before Relation "a -> b”

« if a, b are events in the same process, and a occurs before b, then a->b

¢ if aisthe event of a message being sent, and
b isthe event of the message being received,
thena->b

« a| cif neither a->b nor b->a(aand b are concurrent)

Notice: ifa->b and b->c then a->c

23-Feb-06 1

Logical Clocks: Lamport Timestamps

process p, , event e, clock L;, timestamp L,(e)
§ atp,:beforeeacheventl, =L;+1

§ when p; sends a message m to p,
1. p: (L=L+1); t=L; message=(m,t);
2. p L=EmaxL, t); L=L+1
3. Lreceive event) = L;;

23-Feb-06 12

Timo Alanko, 2006

DS 2006; Ch 4 23-Feb-06

Example: Totally-Ordered

Lamport Clocks: Problems . :
Multicasting (2)

1. Timestamps do not specify the order of events
- e->e¢e => L(e)<L(e)
BUT
— L(e) < L(e") does not implicate that e -> e’
2. Total ordering
— problem: define order of e, e when L(e) = L(e)

/

— solution: extended timestamp (T, i), where T, is L;(e)
— definition: (T,) < (T,) [y
if and only if
either T, < T, Total ordering:

orTi=T, andi<j

23-Feb-06 13

all receivers (applications) see all messagesin the same order
(whichisnot necessarily the original sending order)

Example: multicast operations, group-update operations

23-Feb-06

14

Example: Totally-Ordered
Multicasting (3)

HBQ 311 201 HBQ Original timestamps
Guaranteed delivery order - . Lo P, 19
_ Application 201ME | P, ® B — Sl201 P, 29
- new message => HBQ . 30.2_? . = Ws02 TS P, 25
delivery [302 3L -
- when all predecessors have m Thekeyidea
arrived: message => DQ hold-back queue _ m" - the same order in al queues
s “;13 Py | m - at the head of HBQ:
. - ' = when dl ack’shave arrived
- when at the head_of I_DQ. 27.3 s |l nobody can pass you
message => application
(application: receive ...) m delivery queue Multicast:
Message passing system - everybody receives the message (incl. the sender!)
Algorithms: - messages from one sender are received in the sending order
see. Defago et al ACM CS, Dec. 2004
-belag D - no messages are lost
23-Feb-06 15 23-Feb-06 16

Example: Totally-Ordered
Multicasting (4)

Various Orderings

« Total ordering Notice the consistent T T
« Causal ordering ordering of totally
. . ordered messages T,
« FIFO (First In First Out) and T,
(wrt an individual communication channel) the FIFO-related Fy
Total and causal ordering are independent: neither messages F; and F, Fy s
induces the other; and the causally
Causal ordering induces FIFO related messages C, Time
and C,
— and the otherwise ¢
arbitrary delivery c
ordering of messages. @
Figure 11.12 k, P P,

23-Feb-06 17

Total, FIFO and Causal Ordering of
Multicast Messages

23-Feb-06

18

Timo Alanko, 2006

DS 2006; Ch 4

23-Feb-06

Vector Timestamps

Goal:

timestamps should reflect causal ordering

L(e) < L(e") => “e happened before e’ “

=>

Vector clock

each process P, maintains a vector V, :

1. V][] is the number of events that have occurred at P,
(the current local time at P,)

2. if V][] = k then P, knows about (the first) k events that have
occurred at P;

(the local time at P, was k, as P, sent the last message that
P, has received from it)

23-Feb-06 19

Order of Vector Timestamps

Order of timestamps

. V=V iff V[j1=V[j] for all j
. VsV oiff V[j]1< V[j] forallj
. V<V iff VEVand V#V

Order of events (causal order)

. e->e¢ => V(e) < V(e)
. V(e)<V(e) => e->¢
. concurrency:

elle’ if notV(e)=sV(e)
and not V(e’) < V(e)

23-Feb-06 20

Causal Ordering of Multicasts (1)

P 1 1 1] [2
0 1 1] |1
0 0 1] 1] ma
Q mi 1 T 1 2
0 1 1 1
0 0| /Mm2 1 1
R 1 T ms\i\
0 0 1
0 1 1 \

m3

R: m1[100] m4[211]

Event: Timestamp [i,j K] :
m2[110] m5[221]
message sent i messages sent from P m3 {101} (2211
j messages sent form Q

k messages sent fromR mB[221] vs, 111

23-Feb-06 21

Causal Ordering of Multicasts (2)

Use of timestamps in causal multicasting
1) P, multicast: V|[i] = V[[i] + 1
2) Message: include vt = V[*]
3) Each receiving P; : the message can be delivered when
- vt[i] = V|[i] +1 (all previous messages from P; have arrived)
- for each component k (k#i): V|[k] 2 vt[K]
(P, has now seen all the messages that P, had seen
when the message was sent)

4) When the message from P, becomes deliverable at P;the message
is inserted into the delivery queue
(notice: the delivery queue preserves causal ordering)

5) At delivery: V|[i] = V|[i] + 1

23-Feb-06 22

Causal Ordering of a Bulletin Board (1)

User & BB (“local events”)

+ read: bb <= BB, (any BB)

* write: to a BB; that
contains all causal
predecessors of all bb
messages

BB, =>BB; (‘messages”)

+ BB;must contain all
nonlocal predecessors of
all BB,messages

Assumption:
reliable, order-preserving
BB-to-BB transport

23-Feb-06 23

Causal Ordering of a Bulletin Board (2)

timestamps

Lazy propagation of messages betw.
bulletin boards

1) user => P,
|i| 2) P, O P

vector clocks: counters

messages from
users to the node i

messages originally
received by the node j

23-Feb-06 24

Timo Alanko, 2006

DS 2006; Ch 4

23-Feb-06

Causal Ordering of a Bulletin Board (3)

Bl B
300 m m clocks (value: visible user messages)

010 01 bulletin boards (timestamps shown)
. user: read and reply
- read stamp: ‘

- reply can be
delivered to: 12,

i

23-Feb-06 25

Causal Ordering of a Bulletin Board (4)

Updating of vector clocks

Process P;

« Local vector clock V;[*]

« Update due to a local event: V,[i] = V;[i] + 1

* Receiving a message with the timestamp vt [*]
— Condition for delivery (to P; from P):
wait until for all k: k#j: V; [K] = vt [K]
— Update at the delivery: V;[j] = vt[j]

23-Feb-06 26

Global State (1)

Cw

« Needs: checkpointing, garbage collection, deadlock
detection, termination, testing

* How to observe the state
« states of processes
* messages in transfer

A state: application-dependent specification

23-Feb-06 27

Detecting Global Properties

P P2
object

reference
message

a. Garbage collection garbage object
Py waitfor P2
b. Deadlock wait-for
P L
activate
c. Termination |l —

Figure 10.8

23-Feb-06 28

Distributed Snapshot

Each node: history of important events
* Observer: at each node i

— time: the local (logical) clock " T;”

— state S; (history: {event, timestamp})

=> system state { S; }
* Acut: the system state { S; } "at time T"
* Requirement:

— {Si} might have existed & consistent with respect to some
criterion

— one possibility: consistent wrt " happened-before relation ”

23-Feb-06 29

Ad-hoc State Snaphots

account A account B

(inconsistent or)
stveaddhy consistent

gate changes money transfersA © B
invariant: A+B = 700

23-Feb-06 30

Timo Alanko, 2006

DS 2006; Ch 4

23-Feb-06

Consistent and Inconsistent Cuts

P1 J Va

ml
/A m3

N C

7

4

P V m3
s me A
P3

23-Feb-06 31

Cuts and Vector Timestamps

“3

X=1 \a= 100 x,= 10! l x= 90

Py &
AN
S
Physical

P2 time

X, and X, change locally @3) cut G
requirement: [x,- X,|<50

a”large’ change (">9") =>
send the new val ue to the other process

event: achange of thelocal x
=> increase the vector clock

{S} system state history: al events
Cut: all events before the " cut time”
23-Feb-06 32

A cut iscongstent if, for each event,
it dso contains dl the eventsthat
" happened-before”.

Implementation of Snapshot

-

]
— 'Ll
-

]
l».—lj
—J

Chandy, Lamport

Assumption: point-to-point, order-preserving connections

23-Feb-06 33

Chandy Lamport (1)

Qutgoing
State message

.
A

Local

- filesystem
(a)

Incoming
message Process

Marker

The snapshot algorithm of Chandy and Lamport
a) Organization of a process and channels for a distributed snapshot

23-Feb-06 34

b)

)
d)

Chandy Lamport (2)

ﬁMH > >
{albc Q —M-d o] — FH Q E o

f— ‘/uj | [m—1_N
T T k] Tk e
Recorded
state

®) © [C)

Process Q receives a marker for the first time and records its local
state

Q records all incoming messages

Q receives a marker for its incoming channel and finishes recording
the state of this incoming channel

23-Feb-06 35

Chandy and Lamport’s ‘Snapshot’
Algorithm

Marker receiving rulefor processp,
On p;’sreceipt of amarker message over channel c:
if (p; hasnot yet recorded its state) it
records its process state now;
recordsthe state of ¢ asthe empty set;
turnson recording of messages arriving over other incoming channels
else
p; records the sate of ¢ asthe set of messagesiit has received over ¢
since it saved its sate.
end if
Marker sending rulefor process p,
After p; has recorded its state, for each outgoing channel c:
p; sends one marker message over ¢
(beforeit sends any other message over c).

Figure 10.10

23-Feb-06 36

Timo Alanko,

2006

DS 2006; Ch 4

23-Feb-06

Coordination and Agreement

Coordination of functionality
— reservation of resources (distributed mutual exclusion)
— elections (coordinator, initiator)
— multicasting
— distributed transactions

23-Feb-06 37

Decision Making

« Centralized: one coordinator (decision maker)
— algorithms are simple
— no fault tolerance (if the coordinator fails)
« Distributed decision making
— algorithms tend to become complex
— may be extremely fault tolerant
— behaviour, correctness ?
— assumptions about failure behaviour of the platform !
« Centralized role, changing “population of the role”
— easy: one decision maker at a time
— challenge: management of the “role population”

23-Feb-06 38

Mutual Exclusion:
A Centralized Algorithm (1)

OROROEENORONO RN ORONE)
Request [+ Request Release|
- /,7" No reply Y/

(3) o (3)
e Queue is z‘
A empty

Coordinator

@ () ©

a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted

b) Process 2 then asks permission to enter the same critical region.
The coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator,

which then replies to 2
23-Feb-06 39

Mutual Exclusion:
A Centralized Algorithm (2)

« Examples of usage
— astateless server (e.g., Network File Server)
— aseparate lock server
¢ General requirements for mutual exclusion

1. safety: at most one process may execute in the critical
section at a time

2. liveness: requests (enter, exit) eventually succeed (no
deadlock, no starvation)

3. fairness (ordering): if the request A happens before the
request B then A is honored before B

— Problems: fault tolerance, performance

23-Feb-06 40

A Distributed Algorithm (1)

. Ricart — Agrawala

, * The general idea:

Tvael_ — ask everybody
— wait for permission from
everybody
The problem:

— several simultaneous requests (e.g., P, and P,
— all members have to agree (everybody: “first P, then P)")

23-Feb-06 41

Multicast Synchronization

41
%
pl Reply
eply 3.
41

Decision base; p 34
Lamport timestamp 2

Fig. 11.5 Ricart - Agrawaa

23-Feb-06 42

Timo Alanko, 2006

DS 2006; Ch 4

23-Feb-06

A Distributed Algorithm (2)

Oninitialization
state := RELEASED;

To enter the section
state := WANTED;
T = requedt’ stimestamp; ¢t request processing deferred here
Multicast request to dl processes;
Wait until (number of repliesreceived = (N-1));
state .= HELD;

Onreceipt of arequest <T, p> at p,
if (state = HELD or (state = ANTED and (T, p) < (T, p))
then
queue request from p, without replying;
se

reply immediately to p;;
end if;
To exit the critical section
state := RELEASED;
reply to al queued requests

Fig. 11.4 Ricart - Agrawala

A Token Ring Algorithm

ORERE
ol J\
. _ P (k
OISISIOININIDIO QT) (3) <%> 74,
I T T T T T T \ /
(\7&\/ " }5
An unordered group of processes on a network. 6)
@ (0)

A logical ring constructed in software.
Algorithm:
- token passing: straightforward
- lost token: 1) detection? 2) recovery?

23-Feb-06 43 23-Feb-06 44
* Need:
- — computation: a group of concurrent actors
Algorithm 2":5;/:‘-1?‘5 per ?e'gé’azeef?iﬁ::)"y (n | problems — algorithms based on the activity of a special role (coordinator, initiator)
— election of a coordinator: initially / after some special event (e.g., the
Centralized 3 2 Coordinator crash prévmus coordinator has disappeared)
* Premises:
— Crash of any — each member of the group {Pi}
Distributed 2(n-1) 2(n-1) process + knows the identities of all other members
« does not know who is up and who is down
Token ring 1to¥ Oton-1 'g:’:slr:"ke”' process — all electors use the same algorithm
— election rule: the member with the highest Pi

A comparison of three mutual exclusion algorithms.

Notice: the system may contain a remarkable amount of sharable
resources!

23-Feb-06 45

« Several algorithms exist

23-Feb-06 46

The Bully Algorithm (1)

§ P, notices: coordinator lost

1. Pito{all Pjst Pj>Pi}: ELECTION!

2. if noone responds => Piis the coordinator

3. some Pj responds => Pj takes over, Pi's job is done
§ P, gets an ELECTION! message:

1. reply OKto the sender

2. if Pi does not yet participate in an ongoing election: hold
an election

§ The new coordinator P, to everybody:
“ P, COORDINATOR"

§ P, ongoing election & no “P, COORDINATOR”:
hold an election
§ Pjrecovers: hold an election

23-Feb-06 47

The Bully Algorithm (2)

)

’s) (23
00T =

@6

(x)
Prevwous coordmalor -
has crashed
(@ ®) (©
The bully election algorithm
a) Process 4 holds an election
b) Process 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election
23-Feb-06 48

Timo Alanko, 2006

DS 2006; Ch 4

23-Feb-06

The Bully Algorithm (3)

(d) (e)

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

23-Feb-06 49

A Ring Algorithm (1)

« Group {Pi} "fully connected”; election: ring
« Pi notices: coordinator lost

— send ELECTION(Pi) to the next P
* Pjreceives ELECTION(PI)

— send ELECTION(PI, Pj) to successor

« Pireceives ELECTION(..., Pi, ...)
— active_list ={collect from the message}
— NC = max {active_list}
— send COORDINATOR(NC; active_list) to the next P

23-Feb-06 50

A Ring Algorithm (2)

Election message

2 »
2
Previous coordinator /;
has crashed
[2.3]
No response
Election algorithm using a ring.
23-Feb-06 51

Distributed Transactions

23-Feb-06 52

The Transaction Model (1)

Previous
inventory

New
(> inventory
—
Computer [Qutput tape

O —

Today's
updates

Input tapes

Updating a master tape is fault tolerant.

23-Feb-06 53

The Transaction Model (2)

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

Examples of primitives for transactions.

23-Feb-06 54

Timo Alanko, 2006

DS 2006; Ch 4

23-Feb-06

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION

(€Y

Notice:

The Transaction Model (3)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION

(b)

a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

¢ atransaction mus have a name
« the name must be attached to each operation,
which belongs to the transaction

23-Feb-06 55

Distributed Transactions

. Nested transaction

‘Subtransaction‘ Subtransaction‘
t { {

.

Airline Tmabase\ /Hotel database

Two different (independent)
databases

@

a) A nested transaction

; Distributed transaction
} {

‘Subtransactlon , ‘Su btransaction ,
t { {

F\ -
. [T// ¥
(Distributed database)

“Two physically separated
parts of the same database

(®)

b) A distributed transaction

23-Feb-06 56

— lost updates

— inconsistent retrievals
— dirty reads

— etc.

Concurrent Transactions

(if no further transaction control):

The lost update problem

. . Transaction T : Transaction U :
« Concurrent transactions proceed in parallel B)
. sh d data (datab balance = b.getBalance(); balance = b.getBalance();
are ata (ata aSe) b.setBalance(balance* 1.1); b.setBalance(balance* 1.1);
awithdraw(balance/10) cwithdraw(balance/10)
« Concurrency-related problems

balance= b.getBalance(); $200

b.setBalance(balance* 1.1); $220
a.withdraw(balance/10) $80

balance = b.getBalance(); $200
b.setBalance(balance* 1.1); $220

cwithdraw(balance/10) $280

Figure12.5 Initial values a: $100, b: $200 c: $300

23-Feb-06 57 23-Feb-06 58

The inconsistent retrievals problem A serially equivalent interleaving of T

and U

TransactionV : Transaction W : T o T T Sion U
avithdraw(100 ransaction T : ransaction U :
b.deposi t(le(OO)) aBranch.branchTotal) balance = b.getBalance() balance = b.getBalance()
b.setBal ance(balance* 1.1) b.setBal ance(balance* 1.1)
a.withdraw(100); $100 a.withdraw(bal ance/10) c.withdraw(balance/10)
total = agetBalance() $100 balance= b.getBalance() $200
total = total+b.getBalance() $300 b setBal ance(balance* 1.1) $220
total = total+c.getBalance() balance = b.getBalance() $220
b.deposit(100) $300 N b.setBalance(balance*1.1) $242
a.withdraw(bal ance/10) $80
c.withdraw(balance/10) $278
Figure 12.6 Initial values a: $200, b: $200

Figure 12.7 The result correspondsthe sequential execution T, U

23-Feb-06 59 23-Feb-06 60

Timo Alanko, 2006 10

DS 2006; Ch 4

23-Feb-06

A dirty read when transaction T aborts

TransactionT:
a.getBalance()
a.setBalance(balance + 10)

TransactionU:
a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100
a.setBalance(balance + 10) $110

Methods for ACID

* Atomic
— private workspace,
— writeahead log
« Consistent
concurrency control => serialization
« locks
« timestamp-based control
« optimistic concurrency control

balance = a.getBalance() $110

Isolated (see: atomic, consistent)

a.setBalance(balance + 20) $130
ol) Durable (see: Fault tolerance)

commit transaction

abort transaction

Figure 12.11

23-Feb-06 61 23-Feb-06 62

Private Workspace Writeahead Log
Private
original 7 x=0; Log Log Log
index [0] —--. y=0;
BEGIN_TRANSACTION;
X=x+1; [x=0/1] [x=0/1] [x=01/1]
y=y+2 [y=0/2] [y=0/2]
X=y*y; [x=1/4]
END_TRANSACTION;
(a) (b) © (d)
& 2 . a) A transaction
o X § . b) —d) The log before each statement is executed
a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and appended block 3
c) After committing
23-Feb-06 63 23-Feb-06 64
Concurrency Control (1) Concurrency Control (2)
Transactions
. « General organization of
/ \\ / managers for handling
¢ y distributed transactions.
Transaction
READMRITE | Transaction | BEGIN_TRANSACTION manager
X END_TRANSACTION W S SN
responsible 7 | MAneger S N
vl v A e
for atomicity! LOCK/RELEASE A4 EN =
Scheduler) or) Soheduler Scheduler Scheduler
Timestamp operations
v A A v T ¥ i ¥ TN
Data Execute read/write o
manager h P A G 4
| Data Data Data
manager manager manager
General organization of managers for handling transactions.
Machine A Machine B Machine C
23-Feb-06 65 23-Feb-06 66

Timo Alanko, 2006 11

DS 2006; Ch 4

23-Feb-06

Serializability

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION

X=X+2; X=X+3;

X=x+1; 3 3
END_TRANSACTION END_TRANSACTION

END_TRANSACTION

(@ () ©
Schedule 1 X=0; x=x+1; x=0; Xx=x+2; x=0; x=x+3 Legal
Schedule 2 x=0; x=0; x=x+1; x=x+2; x=0; x=x+3; Legal
Schedule 3 x=0; x=0; x=x+1; Xx=0; X=x+2; X=x+3; llegal
(d)
a) —c) Three transactions T,, T,, and T, d) Possible schedules

Legal: there exists a serial execution leading to the same result.

23-Feb-06 67

Implementation of Serializability

Decision making: the transaction scheduler
* Locks
— data item ~ lock
— request for operation
« acorresponding lock (read/write) is granted OR
« the operation is delayed until the lock is released
« Pessimistic timestamp ordering
— transaction <=timestamp; data item <= R-, W-stamps
— each request for operation:
« check serializability
« continue, wait, abort
« Optimistic timestamp ordering
— serializability check: at END_OF_TRANSACTION, only

23-Feb-06 68

Transactions T and U with Exclusive Locks

Transaction U :
balance = b.getBalan

Transaction T:
balance = b.getBalance()

b.setBalance(bal* 1.1) b.setBalance(bal* 1.1)
awithdraw(bal/10) cwithdraw(bal/10)
Operations Locks Operations Locks

openTransaction
bal = b.getBalance() lockB

b.setBalance(bal* 1.1)
awithdraw(bal/10) lock A

openTransaction
bal = b.getBalance() waitsforT's

lockonB
closeTransaction unlock A, B oo
lock B
b.setBalance(bal* 1.1)
cwithdraw(bal/10) lock C
closeTransaction unlock B, C
Figure 12.14
23-Feb-06 69

Two-phase locking (2PL).

Two-Phase Locking (1)

Lock point

Growing phase Shrinking phase
i S B e —

"

Number of locks

-

Time —»
Releases: application controlled
Problem: dirty reads?

23-Feb-06 70

Two-Phase Locking (2)

Lock point

| Shrinking phase
<4

Growing phase

All locks are released
at the same time __

Number of locks

Strict two-phase locking.

Centralized or distributed.

23-Feb-06 7

Pessimistic Timestamp Ordering

Transaction timestamp ts(T)
— given at BEGIN_TRANSACTION (must be unique!)
— attached to each operation
Data object timestamps tsgp(X), tSyyr(X)
— tspp(X) = ts(T) of the last T which read x
— ts,,(x) =ts(T) of the last T which changed x
Required serial equivalence: ts(T) order of T's

23-Feb-06 72

Timo Alanko, 2006

12

DS 2006; Ch 4

23-Feb-06

Pessimistic Timestamp Ordering

Write Operations and Timestamps

@ Tz write (b) T write
¢ The rules:
— you are not allowed to change Before | T2 Before Key:
what later transactions already have seen (or changed!)
— you are not allowed to read e T T Committed
what later transactions already have changed After 202 After | 1Ty T3
« Conflicting operations » Time Time —
. X Tentative
— process the older transaction first
— violation of rules: the transaction is aborted ; . object produced
h A ' © T3 write (d)T5 write by transaction T,
(i.e., the older one: it is too late!) Dy transact i
— if tentative versions are used, the final decision is made at Transaction (with write timestamp T))
END_TRANSACTION Before Before aborts TTRTT,
After After T3 2 max tsg
* Time Time
CoDoKi: Figure 12.30
23-Feb-06 73 23-Feb-06 74
Read Operations and Timestamps Optimistic Timestamp Ordering
(a) Tyread (a) Tread]
° : + Problems with locks
read read — general overhead (must be done whether needed or not)
T proceeds proceeds — possibility of deadlock
c ed — duration of locking (=> end of the transaction)
ommitte . . .
Selected . Selected e « Problems with pessimistic timestamps
——) —_—
me — overhead
@T,read (a) Ts read « Alternative
Tentative — proceed to the end of the transaction
T, read waits T[)a?tsaction object produced by - validate
avorts transaction T, — applicable if the probability of conflicts is low
(with write stamp T))
Selected TisTes To< T,
Time Time
CoDoKi: Figure 12.31
23-Feb-06 76

23-Feb-06 75

Validation of Transactions

Working Validation Update

T [1 1 —————————__ Earlier committed
/ transactions
T2 [I — /
Ts [I —
Transaction -
being validated T [1 —1
active, []
Later active—" "
- g e aclive, []
transactions
CoDoKi: Figure 12.28
23-Feb-06 7

Validation of Transactions

Backward validation of transaction T,
boolean valid = true;
for (int T; =startTn+1; T, <= finishTn; T;++){
if (read set of T, intersectswrite set of T;) valid = fal se;

}

Forward validation of transaction T,
boolean valid = true;
for (int Ty = activel; T,y <= activeN; T;j++){
if (write set of T, intersectsread set of T,y) valid = falsg;
}

CoDoKi: Page 499-500

23-Feb-06 78

Timo Alanko, 2006

13

