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Ch 4 Synchronization

Clocks and time

Global state

Mutual exclusion
Election algorithms
Distributed transactions

Tanenbaum, van Steen: Ch 5
CoDoKi: Ch 10-12 (3rd ed.)
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Skew between computer clocks in
a distributed system

@ @ Q 9

Network

Figure10.1
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Clock Synchronization
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When each machine has its own clock, an event that occurred after
another event may nevertheless be assigned an earlier time.
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Time and Clocks

Needs Clocks

real time

universal time
(network time)

interval length computer clock

network time
(universal time)

order of events

NOTICE: time is monotonous
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Clock time, C

Clock Synchronization Problem

rates.

?T(t: CR e drift rate: 106
. O =1
& C}Oc‘}‘ i 1ms ~17 min
o X
& & d€ .4 1s~11.6days
& Q@ \s(‘;\,ofd\ dt
o9 UTC: coordinated
universal time
L accuracy:
radio 0.1—10 ms,
N GPS 1us
uTC, t

The relation between clock time and UTC when clocks tick at different
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Synchronization of Clocks:
Software-Based Solutions

¢ Techniques:
— time stamps of real-time clocks
— message passing
— round-trip time (local measurement)
¢ Cristian’s algorithm
« Berkeley algorithm
« Network time protocol (Internet)

23-Feb-06
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Cristian's Algorithm

Both Tgand Ty are measured with the same clock

To Ty
ClIENt  s— f
Request Cute
Time server ---------- s
nat ime —»

I, Interrupt handling time

Current time from a time server: UTC from radio/satellite etc

Problems:
- time must never run backward
- variable delays in message passing / delivery
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The Berkeley Algorithm

Time daemon

7
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a)  Thetime daemon asks all the other machines for their clock values

b)  The machines answer

c)  The time daemon tells everyone how to adjust their clock (be careful with
averages!)
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Clocks and Synchronization

Needs

— "causality”: real-time order ~ timestamp order ("behavioral
correctness” — seen by the user)

— groups / replicates: all members see the events in the same
order

— "multiple-copy-updates”: order of updates, consistency
conflicts?

— serializability of transactions: bases on a common
understanding of transaction order

A physical clock is not always sufficent!
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Example: Totally-Ordered
Multicasting (1)

% Update 1 _ Update 2 %

Update 1 is Replicated database Update 2 is
performed before performed before
update 2 update 1

Updating a replicated database and leaving it in an inconsistent state.
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Happened-Before Relation "a -> b”

« if a, b are events in the same process, and a occurs before b, then a->b

¢ if aisthe event of a message being sent, and
b isthe event of the message being received,
thena->b

« a| cif neither a->b nor b->a(aand b are concurrent )

Notice: ifa->b and b->c then a->c
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Logical Clocks: Lamport Timestamps

process p, , event e, clock L;, timestamp L,(e)
§ atp,:beforeeacheventl, =L;+1

§ when p; sends a message m to p,
1. p: (L=L+1); t=L; message=(m,t);
2. p L=EmaxL, t); L=L+1
3. Lreceive event) = L;;
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Example: Totally-Ordered

Lamport Clocks: Problems . :
Multicasting (2)

1. Timestamps do not specify the order of events
- e->e¢e => L(e)<L(e)
BUT
— L(e) < L(e") does not implicate that e -> e’
2. Total ordering
—  problem: define order of e, e when L(e) = L(e)

/

—  solution: extended timestamp (T, i), where T, is L;(e)
—  definition: (T, ) < (T, ) [y
if and only if
either T, < T, Total ordering:

orTi=T, andi<j
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all receivers (applications) see all messagesin the same order
(whichisnot necessarily the original sending order)

Example: multicast operations, group-update operations

23-Feb-06
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Example: Totally-Ordered
Multicasting (3)

HBQ 311 201 HBQ Original timestamps
Guaranteed delivery order - . Lo P, 19
_ Application 201ME | P, ® B — Sl201 P, 29
- new message => HBQ . 30.2_? . = Ws02 TS P, 25
delivery [ 302 3L -
- when all predecessors have m Thekeyidea
arrived: message => DQ hold-back queue \_ m" - the same order in al queues
s “;13 Py | m - at the head of HBQ:
. - ' = when dl ack’shave arrived
- when at the head_of I_DQ. 27.3 s |l nobody can pass you
message => application
(application: receive ...) m delivery queue Multicast:
Message passing system - everybody receives the message (incl. the sender!)
Algorithms: - messages from one sender are received in the sending order
see. Defago et al ACM CS, Dec. 2004
-belag D - no messages are lost
23-Feb-06 15 23-Feb-06 16

Example: Totally-Ordered
Multicasting (4)

Various Orderings

« Total ordering Notice the consistent T T
« Causal ordering ordering of totally
. . ordered messages T,
« FIFO (First In First Out) and T,
(wrt an individual communication channel) the FIFO-related Fy
Total and causal ordering are independent: neither messages F; and F, Fy s
induces the other; and the causally
Causal ordering induces FIFO related messages C, Time
and C,
— and the otherwise ¢
arbitrary delivery c
ordering of messages. @
Figure 11.12 k, P P,
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Total, FIFO and Causal Ordering of
Multicast Messages

23-Feb-06
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Vector Timestamps

Goal:

timestamps should reflect causal ordering

L(e) < L(e") => “e happened before e’ “

=>

Vector clock

each process P, maintains a vector V, :

1. V][] is the number of events that have occurred at P,
(the current local time at P, )

2. if V][] = k then P, knows about (the first) k events that have
occurred at P;

(the local time at P, was k, as P, sent the last message that
P, has received from it)
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Order of Vector Timestamps

Order of timestamps

. V=V iff V[j1=V[j] for all j
. VsV oiff V[j]1< V[j]  forallj
. V<V iff VEVand V#V

Order of events (causal order)

. e->e¢ => V(e) < V(e)
. V(e)<V(e) => e->¢
. concurrency:

elle’ if notV(e)=sV(e)
and not V(e’) < V(e)
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Causal Ordering of Multicasts (1)

P 1 1 1] [2
0 1 1] |1
0 0 1] 1] ma
Q mi 1 T 1 2
0 1 1 1
0 0| /Mm2 1 1
R 1 T ms\i\
0 0 1
0 1 1 \

m3

R: m1[100] m4[211]

Event: Timestamp [i,j K] :
m2[110] m5[221]
message sent i messages sent from P m3 {101} (2211
j messages sent form Q

k messages sent fromR mB[221] vs, 111
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Causal Ordering of Multicasts (2)

Use of timestamps in causal multicasting
1) P, multicast: V|[i] = V[[i] + 1
2) Message: include vt = V[*]
3) Each receiving P; : the message can be delivered when
- vt[i] = V|[i] +1 (all previous messages from P; have arrived)
- for each component k (k#i): V|[k] 2 vt[K]
(P, has now seen all the messages that P, had seen
when the message was sent)

4) When the message from P, becomes deliverable at P;the message
is inserted into the delivery queue
(notice: the delivery queue preserves causal ordering)

5) At delivery: V|[i] = V|[i] + 1
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Causal Ordering of a Bulletin Board (1)

User & BB (“local events”)

+ read: bb <= BB, (any BB)

* write: to a BB; that
contains all causal
predecessors of all bb
messages

BB, =>BB; (‘messages”)

+ BB;must contain all
nonlocal predecessors of
all BB,messages

Assumption:
reliable, order-preserving
BB-to-BB transport
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Causal Ordering of a Bulletin Board (2)

timestamps

Lazy propagation of messages betw.
bulletin boards

1) user => P,
|i| 2) P, O P

vector clocks: counters

messages from
users to the node i

messages originally
received by the node j

23-Feb-06 24
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Causal Ordering of a Bulletin Board (3)

Bl B
300 m m clocks (value: visible user messages)

010 01 bulletin boards (timestamps shown)
. user: read and reply
- read stamp: ‘

- reply can be
delivered to: 12,

i
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Causal Ordering of a Bulletin Board (4)

Updating of vector clocks

Process P;

« Local vector clock V;[*]

« Update due to a local event: V,[i] = V;[i] + 1

* Receiving a message with the timestamp vt [*]
— Condition for delivery (to P; from P):
wait until for all k: k#j:  V; [K] = vt [K]
— Update at the delivery: V;[j] = vt[j]
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Global State (1)

Cw

« Needs: checkpointing, garbage collection, deadlock
detection, termination, testing

* How to observe the state
« states of processes
* messages in transfer

A state: application-dependent specification

23-Feb-06 27

Detecting Global Properties

P P2
object

reference
message

a. Garbage collection garbage object
Py waitfor P2
b. Deadlock wait-for
P L
activate
c. Termination |l —

Figure 10.8
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Distributed Snapshot

Each node: history of important events
* Observer: at each node i

— time: the local (logical) clock " T;”

— state S; (history: {event, timestamp})

=> system state { S; }
* Acut: the system state { S; } "at time T"
* Requirement:

— {Si} might have existed & consistent with respect to some
criterion

— one possibility: consistent wrt " happened-before relation ”

23-Feb-06 29

Ad-hoc State Snaphots

account A account B

(inconsistent or)
stveaddhy consistent

gate changes money transfersA © B
invariant: A+B = 700
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Consistent and Inconsistent Cuts

P1 J Va

ml
/A m3

N C

7

4

P V m3
s me A
P3
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Cuts and Vector Timestamps

“3

X=1 \a= 100 x,= 10! l x= 90

Py &
AN
S
Physical

P2 time

X, and X, change locally @3) cut G
requirement: [x,- X,|<50

a”large’ change (">9") =>
send the new val ue to the other process

event: achange of thelocal x
=> increase the vector clock

{S} system state history: al events
Cut: all events before the " cut time”
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A cut iscongstent if, for each event,
it dso contains dl the eventsthat
" happened-before”.

Implementation of Snapshot

-

]
— 'Ll
-

]
l».—lj
—J

Chandy, Lamport

Assumption: point-to-point, order-preserving connections
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Chandy Lamport (1)

Qutgoing
State message

.
A

Local

- filesystem
(a)

Incoming
message Process

Marker

The snapshot algorithm of Chandy and Lamport
a) Organization of a process and channels for a distributed snapshot
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b)

)
d)

Chandy Lamport (2)

ﬁMH > >
{albc Q —M-d o] — FH Q E o

f— ‘/uj | [m—1_N
T T k] Tk e
Recorded
state

®) © [C)

Process Q receives a marker for the first time and records its local
state

Q records all incoming messages

Q receives a marker for its incoming channel and finishes recording
the state of this incoming channel
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Chandy and Lamport’s ‘Snapshot’
Algorithm

Marker receiving rulefor processp,
On p;’sreceipt of amarker message over channel c:
if (p; hasnot yet recorded its state) it
records its process state now;
recordsthe state of ¢ asthe empty set;
turnson recording of messages arriving over other incoming channels
else
p; records the sate of ¢ asthe set of messagesiit has received over ¢
since it saved its sate.
end if
Marker sending rulefor process p,
After p; has recorded its state, for each outgoing channel c:
p; sends one marker message over ¢
(beforeit sends any other message over c).

Figure 10.10
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Coordination and Agreement

Coordination of functionality
— reservation of resources (distributed mutual exclusion)
— elections (coordinator, initiator)
— multicasting
— distributed transactions
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Decision Making

« Centralized: one coordinator (decision maker)
— algorithms are simple
— no fault tolerance (if the coordinator fails)
« Distributed decision making
— algorithms tend to become complex
— may be extremely fault tolerant
— behaviour, correctness ?
— assumptions about failure behaviour of the platform !
« Centralized role, changing “population of the role”
— easy: one decision maker at a time
— challenge: management of the “role population”
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Mutual Exclusion:
A Centralized Algorithm (1)

OROROEENORONO RN ORONE)
Request [+ Request Release|
- /,7" No reply Y/

(3) o (3)
e Queue is z‘
A empty

Coordinator

@ () ©

a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted

b)  Process 2 then asks permission to enter the same critical region.
The coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator,

which then replies to 2
23-Feb-06 39

Mutual Exclusion:
A Centralized Algorithm (2)

« Examples of usage
— astateless server (e.g., Network File Server)
— aseparate lock server
¢ General requirements for mutual exclusion

1. safety: at most one process may execute in the critical
section at a time

2. liveness: requests (enter, exit) eventually succeed (no
deadlock, no starvation)

3. fairness (ordering): if the request A happens before the
request B then A is honored before B

— Problems: fault tolerance, performance
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A Distributed Algorithm (1)

. Ricart — Agrawala

, * The general idea:

Tvael_ — ask everybody
— wait for permission from
everybody
The problem:

— several simultaneous requests (e.g., P, and P,
— all members have to agree (everybody: “first P, then P)")

23-Feb-06 41

Multicast Synchronization

41
%
pl Reply
eply 3.
41

Decision base; p 34
Lamport timestamp 2

Fig. 11.5 Ricart - Agrawaa

23-Feb-06 42

Timo Alanko, 2006



DS 2006; Ch 4

23-Feb-06

A Distributed Algorithm (2)

Oninitialization
state := RELEASED;

To enter the section
state := WANTED;
T = requedt’ stimestamp; ¢t request processing deferred here
Multicast request to dl processes;
Wait until (number of repliesreceived = (N-1) );
state .= HELD;

Onreceipt of arequest <T, p> at p,
if (state = HELD or (state = ANTED and (T, p) < (T, p))
then
queue request from p, without replying;
se

reply immediately to p;;
end if;
To exit the critical section
state := RELEASED;
reply to al queued requests

Fig. 11.4 Ricart - Agrawala

A Token Ring Algorithm

ORERE
ol J\
. _ P (k
OISISIOININIDIO QT) (3) <%> 74,
I T T T T T T \ /
(\7&\/ " }5
An unordered group of processes on a network. 6)
@ (0)

A logical ring constructed in software.
Algorithm:
- token passing: straightforward
- lost token: 1) detection? 2) recovery?
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* Need:
- — computation: a group of concurrent actors
Algorithm 2":5;/:‘-1?‘5 per ?e'gé’azeef?iﬁ::)"y (n | problems — algorithms based on the activity of a special role (coordinator, initiator)
— election of a coordinator: initially / after some special event (e.g., the
Centralized 3 2 Coordinator crash prévmus coordinator has disappeared)
* Premises:
— Crash of any — each member of the group {Pi}
Distributed 2(n-1) 2(n-1) process + knows the identities of all other members
« does not know who is up and who is down
Token ring 1to¥ Oton-1 'g:’:slr:"ke”' process — all electors use the same algorithm
— election rule: the member with the highest Pi

A comparison of three mutual exclusion algorithms.

Notice: the system may contain a remarkable amount of sharable
resources!
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« Several algorithms exist
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The Bully Algorithm (1)

§ P, notices: coordinator lost

1. Pito{all Pjst Pj>Pi}: ELECTION!

2. if noone responds => Piis the coordinator

3. some Pj responds => Pj takes over, Pi's job is done
§ P, gets an ELECTION! message:

1. reply OKto the sender

2. if Pi does not yet participate in an ongoing election: hold
an election

§ The new coordinator P, to everybody:
“ P, COORDINATOR"

§ P, ongoing election & no “P, COORDINATOR”:
hold an election
§ Pjrecovers: hold an election

23-Feb-06 47

The Bully Algorithm (2)

)

’s) (23
00T =

@6

(x)
Prevwous coordmalor -
has crashed
(@ ®) (©
The bully election algorithm
a) Process 4 holds an election
b) Process 5 and 6 respond, telling 4 to stop
c) Now 5 and 6 each hold an election
23-Feb-06 48
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The Bully Algorithm (3)

(d) (e)

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone
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A Ring Algorithm (1)

« Group {Pi} "fully connected”; election: ring
« Pi notices: coordinator lost

— send ELECTION(Pi) to the next P
* Pjreceives ELECTION(PI)

— send ELECTION(PI, Pj) to successor

« Pireceives ELECTION(..., Pi, ...)
— active_list ={collect from the message}
— NC = max {active_list}
— send COORDINATOR(NC; active_list) to the next P
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A Ring Algorithm (2)

Election message

2 »
2
Previous coordinator /;
has crashed
[2.3]
No response
Election algorithm using a ring.
23-Feb-06 51

Distributed Transactions

23-Feb-06 52

The Transaction Model (1)

Previous
inventory

New
( > inventory
—
Computer [ Qutput tape

O —

Today's
updates

Input tapes

Updating a master tape is fault tolerant.
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The Transaction Model (2)

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

Examples of primitives for transactions.
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BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION

(€Y

Notice:

The Transaction Model (3)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION

(b)

a) Transaction to reserve three flights commits
b)  Transaction aborts when third flight is unavailable

¢ atransaction mus have a name
« the name must be attached to each operation,
which belongs to the transaction
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Distributed Transactions

. Nested transaction

‘Subtransaction‘ Subtransaction‘
t { {

.

Airline Tmabase\ /Hotel database

Two different (independent)
databases

@

a) A nested transaction

; Distributed transaction
} {

‘Subtransactlon , ‘Su btransaction ,
t { {

F\ -
. [T// ¥
( Distributed database )

“Two physically separated
parts of the same database

(®)

b) A distributed transaction
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— lost updates

— inconsistent retrievals
— dirty reads

— etc.

Concurrent Transactions

(if no further transaction control):

The lost update problem

. . Transaction T : Transaction U :
« Concurrent transactions proceed in parallel B )
. sh d data (datab balance = b.getBalance(); balance = b.getBalance();
are ata ( ata aSe) b.setBalance(balance* 1.1); b.setBalance(balance* 1.1);
awithdraw(balance/10) cwithdraw(balance/10)
« Concurrency-related problems

balance= b.getBalance(); $200

b.setBalance(balance* 1.1); $220
a.withdraw(balance/10) $80

balance = b.getBalance(); $200
b.setBalance(balance* 1.1); $220

cwithdraw(balance/10)  $280

Figure12.5 Initial values a: $100, b: $200 c: $300
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The inconsistent retrievals problem A serially equivalent interleaving of T

and U

TransactionV : Transaction W : T o T T Sion U
avithdraw(100 ransaction T : ransaction U :
b.deposi t(le(OO) ) aBranch.branchTotal ) balance = b.getBalance() balance = b.getBalance()
b.setBal ance(balance* 1.1) b.setBal ance(balance* 1.1)
a.withdraw(100); $100 a.withdraw(bal ance/10) c.withdraw(balance/10)
total = agetBalance() $100 balance= b.getBalance() $200
total = total+b.getBalance()  $300 b setBal ance(balance* 1.1) $220
total = total+c.getBalance() balance = b.getBalance() $220
b.deposit(100) $300 N b.setBalance(balance*1.1) $242
a.withdraw(bal ance/10) $80
c.withdraw(balance/10)  $278
Figure 12.6 Initial values a: $200, b: $200

Figure 12.7 The result correspondsthe sequential execution T, U
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A dirty read when transaction T aborts

TransactionT:
a.getBalance()
a.setBalance(balance + 10)

TransactionU:
a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100
a.setBalance(balance + 10) $110

Methods for ACID

* Atomic
— private workspace,
— writeahead log
« Consistent
concurrency control => serialization
« locks
« timestamp-based control
« optimistic concurrency control

balance = a.getBalance() $110

Isolated (see: atomic, consistent)

a.setBalance(balance + 20) $130
ol ) Durable (see: Fault tolerance)

commit transaction

abort transaction

Figure 12.11
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Private Workspace Writeahead Log
Private
original 7 x=0; Log Log Log
index [0] —--. y=0;
BEGIN_TRANSACTION;
X=x+1; [x=0/1] [x=0/1] [x=01/1]
y=y+2 [y=0/2] [y=0/2]
X=y*y; [x=1/4]
END_TRANSACTION;
(a) (b) © (d)
& 2 . a) A transaction
o X § . b) —d) The log before each statement is executed
a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 and appended block 3
c) After committing
23-Feb-06 63 23-Feb-06 64
Concurrency Control (1) Concurrency Control (2)
Transactions
. « General organization of
/ \\ / managers for handling
¢ y distributed transactions.
Transaction
READMRITE | Transaction | BEGIN_TRANSACTION manager
X END_TRANSACTION W S SN
responsible 7 | MAneger S N
vl v A e
for atomicity! LOCK/RELEASE A4 EN =
Scheduler ) or ) Soheduler Scheduler Scheduler
Timestamp operations
v A A v T ¥ i ¥ TN
Data Execute read/write o
manager h P A G 4
| Data Data Data
manager manager manager
General organization of managers for handling transactions.
Machine A Machine B Machine C
23-Feb-06 65 23-Feb-06 66
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Serializability

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION

X=X+2; X=X+3;

X=x+1; 3 3
END_TRANSACTION END_TRANSACTION

END_TRANSACTION

(@ () ©
Schedule 1 X=0; x=x+1; x=0; Xx=x+2; x=0; x=x+3 Legal
Schedule 2 x=0; x=0; x=x+1; x=x+2; x=0; x=x+3; Legal
Schedule 3 x=0; x=0; x=x+1; Xx=0; X=x+2; X=x+3; llegal
(d)
a) —c) Three transactions T,, T,, and T, d) Possible schedules

Legal: there exists a serial execution leading to the same result.

23-Feb-06 67

Implementation of Serializability

Decision making: the transaction scheduler
* Locks
— data item ~ lock
— request for operation
« acorresponding lock (read/write) is granted OR
« the operation is delayed until the lock is released
« Pessimistic timestamp ordering
— transaction <=timestamp; data item <= R-, W-stamps
— each request for operation:
« check serializability
« continue, wait, abort
« Optimistic timestamp ordering
— serializability check: at END_OF_TRANSACTION, only
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Transactions T and U with Exclusive Locks

Transaction U :
balance = b.getBalan

Transaction T:
balance = b.getBalance()

b.setBalance(bal* 1.1) b.setBalance(bal* 1.1)
awithdraw(bal/10) cwithdraw(bal/10)
Operations Locks Operations Locks

openTransaction
bal = b.getBalance() lockB

b.setBalance(bal* 1.1)
awithdraw(bal/10) lock A

openTransaction
bal = b.getBalance() waitsforT's

lockonB
closeTransaction unlock A, B oo
lock B
b.setBalance(bal* 1.1)
cwithdraw(bal/10)  lock C
closeTransaction unlock B, C
Figure 12.14
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Two-phase locking (2PL).

Two-Phase Locking (1)

Lock point

Growing phase Shrinking phase
i S B e —

"

Number of locks

-

Time —»
Releases: application controlled
Problem: dirty reads?
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Two-Phase Locking (2)

Lock point

| Shrinking phase
<4

Growing phase

All locks are released
at the same time __

Number of locks

Strict two-phase locking.

Centralized or distributed.
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Pessimistic Timestamp Ordering

Transaction timestamp ts(T)
— given at BEGIN_TRANSACTION (must be unique!)
— attached to each operation
Data object timestamps tsgp(X), tSyyr(X)
— tspp(X) = ts(T) of the last T which read x
— ts,,(x) =ts(T) of the last T which changed x
Required serial equivalence: ts(T) order of T's
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Pessimistic Timestamp Ordering

Write Operations and Timestamps

@ Tz write (b) T write
¢ The rules:
— you are not allowed to change Before | T2 Before Key:
what later transactions already have seen (or changed!)
— you are not allowed to read e T T Committed
what later transactions already have changed After 202 After | 1Ty T3
« Conflicting operations » Time Time —
. X Tentative
— process the older transaction first
— violation of rules: the transaction is aborted ; . object produced
h A ' © T3 write (d)T5 write by transaction T,
(i.e., the older one: it is too late!) Dy transact i
— if tentative versions are used, the final decision is made at Transaction (with write timestamp T))
END_TRANSACTION Before Before aborts TTRTT,
After After T3 2 max tsg
* Time Time
CoDoKi: Figure 12.30
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Read Operations and Timestamps Optimistic Timestamp Ordering
(a) Tyread (a) Tread ]
° : + Problems with locks
read read — general overhead (must be done whether needed or not)
T proceeds proceeds — possibility of deadlock
c ed — duration of locking ( => end of the transaction)
ommitte . . .
Selected . Selected e «  Problems with pessimistic timestamps
——) —_—
me — overhead
@T,read (a) Ts read « Alternative
Tentative — proceed to the end of the transaction
T, read waits T[)a?tsaction object produced by - validate
avorts transaction T, — applicable if the probability of conflicts is low
(with write stamp T))
Selected TisTes To< T,
Time Time
CoDoKi: Figure 12.31
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Validation of Transactions

Working Validation Update

T [ 1 1 —————————__ Earlier committed
/ transactions
T2 [ I — /
Ts [ I —
Transaction -
being validated T [ 1 —1
active, [ ]
Later active—" "
- g e aclive, [ ]
transactions
CoDoKi: Figure 12.28
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Validation of Transactions

Backward validation of transaction T,
boolean valid = true;
for (int T; =startTn+1; T, <= finishTn; T;++){
if (read set of T, intersectswrite set of T;) valid = fal se;

}

Forward validation of transaction T,
boolean valid = true;
for (int Ty = activel; T,y <= activeN; T;j++){
if (write set of T, intersectsread set of T,y) valid = falsg;
}

CoDoKi: Page 499-500
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