



























|            | ult of any execu<br>d and write) ope |                |            | ses on  | the data s     | tore                 |
|------------|--------------------------------------|----------------|------------|---------|----------------|----------------------|
|            | ecuted in some                       | •              | •          |         |                |                      |
| the oper   | ations of each i                     | ndividual p    | process ap | pear in | this seque     | nce                  |
| in the or  | der specified by                     | / its progra   | m. Not     | ice: no | thing said a   | about time           |
|            |                                      |                |            |         |                |                      |
|            |                                      |                |            |         |                |                      |
| P1: W(x)a  |                                      |                | P1         | : W(x)a |                |                      |
|            | W(x)b                                |                | P1<br>P2   | • • •   | W(x)b          |                      |
|            | W(x)b<br>R(x)b                       | R(x)a          |            | :       | W(x)b<br>R(x)b | R(x)a                |
| P2:<br>P3: | R(x)b                                | R(x)a<br>R(x)a | P2         | :       | R(x)b          | R(x)a<br>R(x)a R(x)b |
| P2:        | R(x)b                                | . ,            | P2<br>P3   | :       | R(x)b          | . ,                  |



| Three concurrent    | ly executing processes  |               |
|---------------------|-------------------------|---------------|
| Process P1          | Process P2              | Process P3    |
| x = 1;              | y = 1;                  | z = 1;        |
| print ( y, z);      | print (x, z);           | print (x, y); |
| Initial values: x = | y = z = 0               |               |
| All statements a    | e assumed to be indivis | ible.         |
| xecution sequence   |                         |               |

| ,               |                   | y = 1;            | y = 1;         |
|-----------------|-------------------|-------------------|----------------|
| print (y, z);   | y = 1;            | z = 1;            | x = 1;         |
| y = 1;          | print (x,z);      | print (x, y);     | z = 1;         |
| print (x, z);   | print(y, z);      | print (x, z);     | print (x, z);  |
| z = 1;          | z = 1;            | x = 1;            | print (y, z);  |
| print (x, y);   | print (x, y);     | print (y, z);     | print (x, y);  |
| Prints: 001011  | Prints: 101011    | Prints: 010111    | Prints: 111111 |
| (a)             | (b)               | (c)               | (d)            |
| Four valid exec | ution sequences f | or the processes. |                |
| The contract:   |                   |                   |                |



| P1: W(x):   | а     |       | W(x)c |       |       |  |
|-------------|-------|-------|-------|-------|-------|--|
| <b>2</b> :  | R(x)a | W(x)b |       |       |       |  |
| <b>2</b> 3: | R(x)a |       |       | R(x)c | R(x)b |  |
| P4:         | R(x)a |       |       | R(x)b | R(x)c |  |

| P1: W(x)a          |         | A.(/ ).          |                | _    |                   | ion of a  |  |
|--------------------|---------|------------------|----------------|------|-------------------|-----------|--|
| P2: F<br>P3:       | R(x)a   | N(x)b            | P(v)a          | _    | causall<br>store. | y-consist |  |
| P3.<br>P4:         |         | R(x)b<br>R(x)a   | R(x)a<br>R(x)b | _    | Store.            |           |  |
| (a)                |         |                  |                |      |                   |           |  |
| A correct sequence |         | P1: W(x)a<br>P2: |                | W(x) | b                 |           |  |
| of events in a     |         | P3:              |                |      | R(x)b             | R(x)a     |  |
| causally-con       | sistent | P4:              |                |      | R(x)a             | R(x)b     |  |
| store.             |         |                  |                |      |                   |           |  |



|                   | FIFO  | Con                      | sister    | ncy (2    | 2)        |       |
|-------------------|-------|--------------------------|-----------|-----------|-----------|-------|
| <u>P1: W(x)</u> a | a     |                          |           |           |           |       |
| P2:               | R(x)a | W(x)b                    | W(x)c     |           |           |       |
| P3:               |       |                          |           | R(x)b     | R(x)a     | R(x)c |
| P4:               |       |                          |           | R(x)a     | R(x)b     | R(x)c |
| G                 |       | rom a sing<br>r guarante | le source | must arri | ve in ord | er    |
|                   |       | 10                       | )-Mar-06  |           |           | 23    |

| z = 1;    | x = 1;<br>y = 1;<br>print(x, z);<br>z); print (y, z);<br>z = 1;<br>y); print (x, y); | z = 1;<br>print (x, y);<br>x = 1; |       |
|-----------|--------------------------------------------------------------------------------------|-----------------------------------|-------|
| Prints: C | 0 Prints: 10                                                                         | Prints: 01                        |       |
| (P1)      | (P2)                                                                                 | (P3))                             |       |
|           | n as seen by the three pro<br>old are the ones that gene                             | -                                 | lide. |



























| Sumi             | mary of Consistency Models (1)                                                                                                                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Consistency      | Description                                                                                                                                       |
| Strict           | Absolute time ordering of all shared accesses matters.                                                                                            |
| Linearizability  | All processes see all shared accesses in the same<br>order. Accesses are furthermore ordered according<br>to a (nonunique) global timestamp       |
| Sequential       | All processes see all shared accesses in the same order. Accesses are not ordered in time                                                         |
| Causal           | All processes see causally-related shared accesses in the same order.                                                                             |
| FIFO             | All processes see writes from each other in the order<br>they were used. Writes from different processes may not<br>always be seen in that order. |
| Consistency mode | s not using synchronization operations.                                                                                                           |
|                  | 10-Mar-06 38                                                                                                                                      |

| Sum             | mary of Consistency Models (2)                                                                                 |    |
|-----------------|----------------------------------------------------------------------------------------------------------------|----|
| Consistency     | Description                                                                                                    |    |
| Weak            | Shared data can be counted on to be consistent only after a synchronization is done                            | у  |
| Release         | All shared data are made consistent after the exit or of the critical section                                  | ut |
| Entry           | Shared data associated with a synchronization variable are made consistent when a critical section is entered. |    |
| Models with syr | nchronization operations.                                                                                      |    |
|                 | 10-Mar-06                                                                                                      | 39 |

































| Issue                      | Push-based                               | Pull-based        |
|----------------------------|------------------------------------------|-------------------|
| State of server            | List of client replicas and caches       | None              |
| Messages sent              | Update (and possibly fetch update later) | Poll and update   |
| Response time<br>at client | Immediate (or fetch-update time)         | Fetch-update time |



- Read-to-update ratio
  - high => push (one transfer many reads)
  - low => pull (when needed check)
- Cost-QoS ratio
  - factors:
    - update rate, number of replicas => maintenance workload
    - need of consistency (guaranteed vs. probably\_ok)
  - examples
    - (popular) web pages
    - arriving flights at the airport
- Failure prone data communication
  - lost push messages => unsuspected use of stale data
  - pull: failure of validation => known risk of usage
  - high reqs => combine push (data) and pull

10-Mar-06

57































|                 |                      | Example 1 | Example 2 | Example 3 |
|-----------------|----------------------|-----------|-----------|-----------|
| Latency         | Replica 1            | 75        | 75        | 75        |
| (msec)          | Replica 2            | 65        | 100       | 750       |
|                 | Replica 3            | 65        | 750       | 750       |
| Voting          | Replica 1            | 1         | 2         | 1         |
| configuration   | Replica 2            | 0         | 1         | 1         |
|                 | Replica 3            | 0         | 1         | 1         |
| Quorum sizes    | R                    | 1         | 2         | 1         |
|                 | W                    | 1         | 3         | 3         |
| Derived perform | nance of file suite: |           |           |           |
| Read            | Latency              | 65        | 75        | 75        |
|                 | Blocking probability | 0.01      | 0.0002    | 0.000001  |
| Write           | Latency              | 75        | 100       | 750       |
|                 | Blocking probability | 0.01      | 0.0101    | 0.03      |



## Quorum Methods Applied

- Possibilities for various levels of "reliability"
  - Guaranteed up-to-date: collect a full quorum
  - Limited guarantee: insufficient quora allowed for reads
  - Best effort
    - read without a quorum
    - write without a quorum if consistency checks available
- Transactions involving replicated data
  - Collect a quorum of locks
  - Problem: a voting processes meets another ongoing voting
    - alternative decisions: abort wait continue without a vote
    - problem: a case of distributed decision making (figure out a solution)

| 10-M | ar- | 06 |
|------|-----|----|
|      |     | 00 |

75