
DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 1

21-Apr-06 1

Ch. 7 Distributed File Systems

File service architecture
Network File System
Coda file system

Tanenbaum, van Steen: Ch 10
CoDoKi: Ch 8

21-Apr-06 2

File Systems
• Traditional tasks of a FS

– organizing, storing, accessing of data
– naming
– sharing
– protection

• Requirements
– reliability, persistence
– scalability

• Distributed systems: requirements
– old requirements: increased importance
– various transparencies
– consistency
– fault tolerance
– performance
– mobility support

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 2

21-Apr-06 3

1: strict one-copy, weaker, 2: essentially weaker, user actions

Storage systems and their properties
Sharing Persis-

tence
Distributed
cache /
replicas

Consistency
maintenance

Example

Main memory RAM

File system UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (Ch. 16)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
State Service

Peer-to-peer storage
system

OceanStore

1

1
1

Figure 8.1

2

21-Apr-06 4

File service architecture (1)

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

Figure 8.5

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 3

21-Apr-06 5

File Service Architecture (2)

The remote access model The upload/download model
(e.g., NFS) (e.g., Coda)

21-Apr-06 6

Distributed FS: Requirements (1)

Transparency
– Access

• local/remote
• heterogeneity of local servers

– Location
• uniform name space
• relocation of file(group)s without an effect on

pathnames
• name space independent of user location

– Mobility
• client-node tables independent of file movings

– Performance
• server load

– Scaling

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 4

21-Apr-06 7

DFS: Requirements (2)

• Concurrency control of file updates
(file/record-level locking)

• File replication
=> availability, fault tolerance
=> performance, scalability

HW/SW heterogeneity

Fault tolerance
– causes: node failures, communication failures
– tolerance through replication of

• data (=> consistency problems)
• operations (idempotent ops or duplicate-operation problems)

– tolerance through stateless servers

21-Apr-06 8

DFS: Requirements (3)

• Consistency (of replicates)
– unix semantics: one-copy-semantics

(update with immediate effect)
– session semantics: update after closing the file

• transaction (all at the same time)
• lazy update (update propagation as a background activity)

– see: Tanenbaum, Ch 6

• Security
– authentication (each message!)
– access control; protection of message contents
– means: passwords, digital signatures, capabilities,

encryption of data

• Efficiency
– comparable to a local filestore

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 5

21-Apr-06 9

FS Architecture (1)

• Architecture: division of responsibilities =>
separation of concerns, modularity, openness
(CoDoKi, Fig. 8.5)

application program

directory service

flat file service

client module
FS API

DS API

flat FS API

21-Apr-06 10

FS Architecture (2)

• Flat file service
– operations on file contents
– unique file identifiers

• Directory service: text name => UFID

• Client module
– runs in the client node
– provides a unified local API
– responsibilities:

• implements operations not provided by the flat file service
• takes care of remote operation invocations

– management of data communication
– control of data communication

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 6

21-Apr-06 11

Service Interfaces

•• Flat file serviceFlat file service
– Operations of the model flat file service:

CoDoKi, Fig. 8.6 (compare with UNIX!)
– Reasons for differences

• repeatable (idempotent) operations
• stateless servers

=> easier implementation of fault tolerance

•• Directory serviceDirectory service
– Operations of the model directory service: Fig. 8.7

21-Apr-06 12

Flat file service operations

Read(FileId, i, n) -> Data
— throwsBadPosition

If 1 i Length(File): Reads a sequence of up to n items
from a file starting at item i and returns it in Data.

Write(FileId, i, Data)
— throwsBadPosition

If 1 i Length(File)+1: Writes a sequence of Data to a
file, starting at item i, extending the file if necessary.

Create() -> FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes the file from the file store.

GetAttributes(FileId) -> Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not
shaded in).

Figure 8.6

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 7

21-Apr-06 13

Directory service operations

Lookup(Dir, Name) -> FileId
— throws NotFound

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws
an exception.

AddName(Dir, Name, File)
— throws NameDuplicate

If Name is not in the directory, adds (Name, File) to
the directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

UnName(Dir, Name)
— throws NotFound

If Name is in the directory: the entry containing Name
is removed from the directory.
If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern) ->
NameSeq

Returns all the text names in the directory that match
the regular expression Pattern.

Figure 8.7

21-Apr-06 14

File System Model

An incomplete list of file system operations supported by NFS.

Write data to a fileYesYesWrite

Read the data contained in a fileYesYesRead

Set one or more attribute values for a fileYesYesSetattr

Read the attribute values for a fileYesYesGetattr

Read the path name stored in a symbolic linkYesYesReadlink

Read the entries in a directoryYesYesReaddir

Look up a file by means of a file nameYesYesLookup

Close a fileYesNoClose

Open a fileYesNoOpen

Remove an empty subdirectory from a directoryNoYesRmdir

Change the name of a fileYesYesRename

Create a special fileNoYesMknod

Create a subdirectory in a given directoryNoYesMkdir

Create a symbolic link to a fileNoYesSymlink

Create a hard link to a fileYesYesLink

Create a nonregular fileYesNoCreate

Create a regular fileNoYesCreate

Descriptionv4v3Operation

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 8

21-Apr-06 15

File Attributes (1)

Fig. 10-9 (a) Some general mandatory file attributes in NFS.

Server-unique identifier of the file's file systemFSID

Indicator for a client to see if and/or when the file has
changedCHANGE

The length of the file in bytesSIZE

The type of the file (regular, directory, symbolic link)TYPE

DescriptionAttribute

21-Apr-06 16

File Attributes (2)

Fig. 10-9 (b) Some general recommended file attributes in NFS.

Time when the file was createdTIME_CREATE

Time when the file data were last modifiedTIME_MODIFY

Time when the file data were last accessedTIME_ACCESS

The character-string name of the file's ownerOWNER

Locations in the network where this file system may be foundFS_LOCATIONS

A file-system unique identifier for this fileFILEID

The server-provided file handle of this fileFILEHANDLE

an access control list associated with the fileACL

DescriptionAttribute

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 9

21-Apr-06 17

File Grouping

• File group: a collection of files located on a given server
• Groups can be moved between servers

(origins: removable disk cartridges)

• Use: managerial purposes (capacity allocation, …)

• Naming of files: {File group ID, File UFID}
(textual name => file group => file server => file)

• File group ID’s must be globally unique
(e.g., creating server’s IP-address, creation timestamp)

21-Apr-06 18

Sun Network File System (1)

• A long history …
– 2nd version in mid 80’s
– 3rd version beginning of 90’s
– 4th version beginning 2000’s

• Architecture: CoDoKi, Fig. 8.8;
the server is (almost) stateless

• Virtual file system
– access transparency:

• UNIX API <=> “any” fs
• local or remote

– location transparency
– administration: available file services
– communication service (RPC; TCP or UDP)

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 10

21-Apr-06 19

NFS architecture

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file systemVirtual file system

O
th

er
fil

e
sy

st
em

Figure 8.8

21-Apr-06 20

Sun Network File System (2)

• Client integration
– “the client module” in the CoDoKi model
– emulates standard UNIX FS semantics
– integrated with the UNIX kernel, benefits (wrt. routine library):

• a single client module serves all user-level processes, with a
shared cache

• the encryption key used to authenticate user IDs passed to the
server can be retained in the kernel

• Access control and authentication (NFS v.3)
– a stateless server: all operations independent
– all operations authenticated (within the Sun RPC)
– Kerberos integrated

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 11

21-Apr-06 21

Local and remote file systems
accessible on an NFS client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;
the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

Figure 8.10

21-Apr-06 22

NFS Architecture

Fig. 10-2. The basic NFS architecture for UNIX systems.

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 12

21-Apr-06 23

Communication

Fig. 10-4. Operations: Open Network Computing RPC

Reading data from a file
in NFS version 3.

Reading data using a compound
procedure in version 4.

21-Apr-06 24

Semantics of File Sharing (1)
a) On a single processor, when a read

follows a write, the value returned by
the read is the value just written.

a) In a distributed system with caching,
obsolete values may be returned

Fig. 10-10

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 13

21-Apr-06 25

Semantics of File Sharing (2)

Fig. 10-11. Four ways of dealing with the shared files in a distributed system.

All changes occur atomicallyTransaction

No updates are possible; simplifies sharing and replicationImmutable files

No changes are visible to other processes until the file is
closedSession semantics

Every operation on a file is instantly visible to all processesUNIX semantics

CommentMethod

Immutable files
• ”write” => create a new file under the old name (directory update)
• problem solved: read-write conflict
• problem created: two concurrent replacements of a file
• problem created: concurrent reading & replacement

21-Apr-06 26

File Locking in NFS (1)

Fig. 10-12. NFS version 4 operations related to file locking.

Renew the lease on a specified lockRenew

Remove a lock from a range of bytesLocku

Test whether a conflicting lock has been grantedLockt

Creates a lock for a range of bytes
- unblocking (failure => start polling)
- possibility: queuing of requests (to be refreshed)

Grant: for a specific time (cont.: renew operation)

Lock

DescriptionOperation

Stateless server => separate locking service needed
NFS traditionally: ”yes, but ...”
NFS v4: locking integrated into the access protocol

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 14

21-Apr-06 27

File Locking in NFS (2)

• Share reservation
– an implicit way to lock a file
– independent from locking
– usage: implementation of NFS for Windows-based systems

• Open file specifications:
– required type of access (READ, WRITE, BOTH)
– access types to be denied for other clients

(NONE, READ, WRITE, BOTH)

21-Apr-06 28

File Locking in NFS (3)

Fig. 10-13. The result of an open operation with share reservations in NFS.

(b) When the client requests a denial state given the current file access state.

FailSucceedFailSucceedREAD
FailFailSucceedSucceedWRITE
FailFailFailSucceedBOTH

BOTHWRITEREADNONE

(a) When the client requests shared access given the current denial state.

Requested file denial state

FailFailFailSucceedBOTH
FailFailSucceedSucceedWRITE
FailSucceedFailSucceedREAD
BOTHWRITEREADNONE

Current file denial state

Request
access

Current
access
state

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 15

21-Apr-06 29

Caching in NFS

Fig. 10-14. Client-side caching in NFS.

• Caching: file data, attributes, handles, directories
• Server caching: write-through OR write on commit (commit on closing)
• Client caching: write on commit (session semantics)

21-Apr-06 30

Cache Validity
• Reopen a closed file =>validity check

• NFS v3: validation of each read !
– recently checked => accept, otherwise check at server
– performance vs. consistency: what is “recent”?

• NFS v4: delegation of rights to a client
– the client is allowed to locally handle open and close

from other clients on the same node
– requests from other nodes => the server denies
– recalling of delegation: a callback operation

• Consistency of cached of attribute values ??

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 16

21-Apr-06 31

NFS: Delegation of Rights

Fig. 10-15. Using the NFS version 4 callback mechanism to recall file
delegation.

21-Apr-06 32

Fault Tolerance: RPC Failures

The request is still The reply has just The reply has been sent
in progress been returned some time ago, but was lost.

Fig. 10-16. Three situations for handling retransmissions.

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 17

21-Apr-06 33

Fault Tolerance: Locking

• Client / server crashes => granted locks?

• Client:
– the server issues a lease on every lock
– the lease expires => lock is removed
– the client can renew its lease (before it expires)

• Server crashes and recovers:
– the server enters a grace period
– a client can reclaim its old locks
– (no new locks are granted)
– => the previous state wrt locks is rebuilt

• Problems: non-synchronized clocks; network partitioning

21-Apr-06 34

Security in NFS (1)
• NFS file system: remote ~ local => communication is the issue
(security: secure RPC’s)

• File access control: access control attributes of the file & FS access control

Fig. 10-17. The NFS security architecture.

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 18

21-Apr-06 35

Security in NFS (2)
Version 3

1. System authentication:
user ID, group ID, memberships in groups => server (as plaintext)

2. Secure NFS: public-key cryptosystem
(problems: key distribution, length of the key)

3. Kerberos authentication

Version 4: A general security framework RPCSEC_GSS
– GSS-API (Generic Security Service)
– user-chosen security mechanisms, for example:

• Kerberos
• LIPKEY

authentication
– clients: password
– servers: public key

21-Apr-06 36

Secure RPCs

Fig. 10-18. Secure RPC in NFS version 4 (with Generic Security Service framework)

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 19

21-Apr-06 37

Access Control

Fig. 10-19. The classification of operations recognized by NFS with respect to access control.

Permission to to access a file locally at the server with synchronous reads and writesSynchronize

Permission to to change the ownerWrite_owner

Permission to to write the named attributes of a fileWrite_named_attrs

Permission to to read the named attributes of a fileRead_named_attrs

Permission to to change the other basic attributes of a fileWrite_attributes

The ability to read the other basic attributes of a fileRead_attributes

Permission to to write the ACLWrite_acl

Permission to to read the ACLRead_acl

Permission to to delete a file or directory within a directoryDelete_child

Permission to to delete a fileDelete

Permission to to create a subdirectory to a directoryAdd_subdirectory

Permission to to add a new file to a directoryAdd_file

Permission to to list the contents of a directoryList_directory

Permission to to execute a fileExecute

Permission to to append data to a fileAppend_data

Permission to to modify a file's dataWrite_data

Permission to read the data contained in a fileRead_data

DescriptionOperation

21-Apr-06 38

Access Control: User Types

Fig. 10-20. The various kinds of users and processes distinguished by NFS with
respect to access control.

Any system-defined service processService

Any authenticated user of a processAuthenticated

Anyone accessing the file without authenticationAnonymous

Any process accessing the file as part of a batch jobBatch

Any process accessing the file through a dialup connection to the
serverDialup

Any process accessing the file via the networkNetwork

Any process accessing the file from an interactive terminalInteractive

Any user of a processEveryone

The group of users associated with a fileGroup

The owner of a fileOwner

DescriptionType of user

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 20

21-Apr-06 39

Performance Problems

• Cache validation (frequent use of getattr)

• Write with the write-through
(for large files; in typical UNIX workloads, only 5% of calls
to the server are writes)

• Name resolving (50% of ops are lookups !)

• Benchmark results: see www.spec.org
measurements:

• ~ 5 ms response times
• 12.000 – 300.000 ops / sec

21-Apr-06 40

Transparencies (1)

• Access: normal UNIX
• Location: individual mountings => single network-wide

name spaces not enforced
• Mobility: filesystems move => mount tables must be

updated
• Scalability: managerial problem (yes - but …)
• File replication:

– read-only OK
– updates:? (Sun Network Information System supports)

http://www.spec.org

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 21

21-Apr-06 41

Transparencies (2)

• Hardware operating system heterogeneity:
NFS is widely implemented

• Fault tolerance
– stateless service, idempotent operations
– remote failures ~ local failures
– restart “at point of interruption”

• Consistency: not for close coordination needs

• Security: secure RPC available (but not always used)

• Efficiency: widely accepted in heavy-use environments

21-Apr-06 42

The Coda File System
• CMU: campus-wide Workstation net (1983);

user mobility: anybody anywhere anytime
• Workstation

– desktop, with a disk
– BSD Unix (modified)
– homogeneous file system (distributed, transparent)
– otherwise: totally independent computers

• Scalability: up to 10.000 workstations, most of which
may be active

• History
– Andrew File System: AFS-1 AFS-2, AFS-3
– AFS-2 => Coda

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 22

21-Apr-06 43

AFS / Coda Architecture

• AFS/Coda vs NFS:
– upload/download model
– consistency control
– Coda: disconnected operation allowed

• Assumptions made
– most files are small
– read operations are more common than write operations
– most files have only one user (at a time)
– sequential access is common, random access is rare
– files are referenced in bursts

• Architecture: Figures
– Tanenbaum 10-21, CoDoKi 8-11

21-Apr-06 44

Overview of AFS (1)

Fig. 10-21. The overall organization of AFS / Coda.

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 23

21-Apr-06 45

Distribution of processes in AFS

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

Figure 8.11

21-Apr-06 46

System call interception in AFS

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

Figure 8.13

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 24

21-Apr-06 47

Overview of AFS (2)

Fig. 10.22. The internal organization of a Virtue workstation.

21-Apr-06 48

AFS: the Implementation

• Files
– local: normal UNIX files, on the WS disk
– shared: stored on servers, copies in local caches

• System call interception (open, close): Fig. 8.13

• Implementation of systems calls: Fig. 8.14

• The name space: CoDoKi, Fig. 8.12
– local: tmp
– user’s directories: cmu

(=> location transparency for moving users)

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 25

21-Apr-06 49

Implementation of file system calls in AFS
User process UNIX kernel Venus Net Vice

If FileName
refers to a file in
shared file space,
pass the request
to Venus.

Open the local file
and return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise,
send a request for the
file to the Vice server
that is custodian of the
volume containing
the file.

Figure 8.14

open
(FileName,
mode)

Place the copy of the file
in the local file system,
enter its local name in
the local cache list and
return the local name to
UNIX.

Transfer a copy of
the file and a
callback promise
to the workstation.
Log the callback
promise.

21-Apr-06 50

Implementation of file system calls in AFS
User process UNIX kernel Venus Net Vice

Figure 8.14

read
(FileDescriptor,
Buffer, length)

Perform a
normal UNIX
read operation
on the local copy.

write
(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write
operation
on the local copy.

close
(FileDescriptor)

Close the local
copy and notify
Venus that the file
has been closed.

If the local copy
has been
changed, send a
copy to the Vice
server that is the
custodian of the
file.

Replace the file
contents and send
a callback break
to all other clients
holding
callback promises
on the file.

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 26

21-Apr-06 51

File name space seen by clients of AFS

/ (root)

tmp bin cmuvmunix. . .

bin

SharedLocal

Symbolic
links

Figure 8.12 Compare with NFS name space

21-Apr-06 52

Communication in Coda

Communication method: “advanced RPC”
– reliable RPC on top of UDP
– client: thread per call
– server: “still working” messages (=> “fail stop”)

• Side effect (see: Fig. 10-23)

– interface for application-dependent protocols
– example: create an isochronous stream connection

• Support for multicasting (see: Fig. 10-24)

need: implementation of cache consistency
(notification of invalidity)

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 27

21-Apr-06 53

Communication: Side Effects

Fig. 10-23. Side effects in Coda's RPC2 system.

21-Apr-06 54

Communication: MultiRPC

Sending an invalidation message
one at a time.

Sending invalidation messages
in parallel.

Transparency:
• the callee: fully transparent
• the caller: “largely transparent”

Implementation:
multiple RPCs in parallel

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 28

21-Apr-06 55

FS Organization: Volumes

• Volume (see: Fig. 10-25)
– a subtree in the shared name space
– volume ~ user

• Mounting
– a mount point is a leaf node of a volume …

… that refers to the root node of another volume

• Unit of server-side replication
(AFS: only read-only volumes replicated)

Note: when a volume is mounted, Venus follows the structure of
the shared name space (unlike NFS) .

21-Apr-06 56

Naming

Fig. 10-25. Clients in Coda have access to a single shared name space.

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 29

21-Apr-06 57

File Identifiers

Fig. 10-26. The implementation and resolution of a Coda file identifier.

• Volume Id

• Replicated Volume Id

21-Apr-06 58

Sharing Files (1)

1. A,B download F (r)
2. C downloads F (wr)
3. C updates F
4. C closes F
5. F: Virtue -> Vice

A,B: old versions ?

Coda:
1. Vice -> A,B :

“F invalid”

F
F

F

F

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 30

21-Apr-06 59

Sharing Files (2)

Fig. 10-27. The transactional behavior in sharing files in Coda:
session ~ transaction

21-Apr-06 60

Sharing Files (3)

Fig. 10-27. The transactional behavior in sharing files in Coda:
session ~ transaction

Open(WR)Open(WR)

FailsFails

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 31

21-Apr-06 61

Caching in AFS

• Caching is crucial
– scalability
– fault tolerance
=> entire file caching

• Open => download (to cache)

• Close => upload, a copy remains in the
cache

21-Apr-06 62

AFS: Cache Consistency

• Re-open: the copy still valid?
• AFS-1: Ask Vice (=> a performance problem!)
• AFS-2 / Coda :

– open => Venus to Vice: make a callback promise
– update => Vice to all on the callback list: callback break
– re-open => Venus:

• check the callback promise
• valid => use the file
• cancelled => fetch the file from the server

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 32

21-Apr-06 63

Client Caching

Fig. 10-29. The use of local copies when opening a session in Coda.

21-Apr-06 64

Server replication: Coda

Coda
– scalability of AFS: only read-only volumes replicated
– availability in spite of disconnections in the network
– availability for portable workstations
⇒ constant data availability

• Volume Storage Group:
the servers which have a copy of the volume

• Accessible VSG:
the servers of the VSG which the client can contact

• Disconnected client: the AVSG is empty

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 33

21-Apr-06 65

Use of a Replicated File
• Open for read: read any (in AVSG)
• Close an updated file (“write all available”) :

send the file to AVSG using multiRPC

• Problem: AVSG != VSG (network partitioned)

Fig. 10-30

21-Apr-06 66

File Consistency

• Concurrent usage allowed:
– transaction semantics
– AVSG != VSG => an optimistic approach: use it

• Consistency checking at reconnection
– detect conflicts
– recovery: application / manager dependent

• Detection:
– file f: version number k

– server i , file f : version vector CVVi(f)

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 34

21-Apr-06 67

Coda Version Vector
• CVVi(f)[j] = kó

– Si knows that
– Sj has seen at least version k of the file f
– CVVi[i] : the current version of the local copy

• Update: increment CVV[i] for all i: Si in AVSG
(file transfer: a reliable multicast wrt. AVSG, see Ch. 6)

• Consistency check at reintegration of Si and Sj :
if CVVi(f) =< CVVj(f) or CVVj(f) >= CVVi(f) then
– no conflicts
– the newer replica is based on the older one, which can be

brought up to date with the newer one

21-Apr-06 68

Disconnected Operation (1)

Fig. 10-31. The state-transition diagram of a Coda client with respect to
a volume.

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 35

21-Apr-06 69

Disconnected Operation (2)
• Disconnected operation OK if all needed files in the

local cache => prefetch!
• Hoarding state

– the client is connected to (at least) one server
– keep the cache full of useful data (files, directories, …)
– selection: some intelligence is used

• Emulation state
– use the local cache
– in case of a miss, try to (re-)contact a server

• Reintegration state
– updated files => servers

21-Apr-06 70

AFS: Other Aspects

• Location database: fully replicated (in all servers)
• Vice, Venus: thread based (=> concurrent ops)
• Bulk transfers (64 kbytes): to minimize latency
• Security:

– all data transfer encrypted
– directories: access control lists (incl: negative rights)

• Performance (method: benchmarking)
– important features

• whole-file caching, callbacks
• workload: write-sharing hardly ever occurs

– outperforms NFS;
reason: load transfer from the server to the WS

For more information, see:
M. Satyanarayanan, The Evolution of Coda; ACM TOCS, May 2002

DS 2006; Ch 7 21-Apr-06

imo Alanko, 2006 36

21-Apr-06 71

A distributed system

is
a collection of independent computers

that appears to its users
as a single coherent system.

The EndThe End

