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Abstract

In set theory and formal logic, a set is generally an object containing nothing but other
sets as elements. Not only sets enable uniformity in the formalization of the whole of
mathematics, but their ease-of-use and conciseness are employed to represent information
in some computer languages. Given the intrinsic nesting property of sets, it is natural
to represent them as directed graphs: vertices will stand for sets, while the arc relation
will mimic the membership relation. This switch of perspective is important: from a
computational point of view, this led to many decidability results, while from a logical
point of view, this allowed for natural extensions of the concept of set, such as that of
hyperset.

Interpreting a set as a directed graph gives rise to many combinatorial, structural
and computational questions, having as unifying goal that of a transfer of results and
techniques across the two areas. Here, we study sets under the spotlight of combinatorial
enumeration, canonical encodings by numbers, random generation, digraph immersions
as well-quasi-orders. We also tackle the decidability problem for the celebrated Bernays-
Schönfinkel-Ramsey class of first-order formulae, over hypersets, motivated by a recent
decidability result for standard sets.

This thesis is also devoted to an investigation on the underlying structure of sets;
ultimately, by studying the undirected graphs underlying sets, which we call set graphs, we
study which graphs can be ‘implicitly’ represented by sets. We elucidate the complexity
status of the recognition problem for set graphs, we give characterizations in terms of
hereditary graph classes, and put forth polynomial algorithms for certain graph classes.
The set interpretation of a graph also leads to simpler proofs of two classical results
on claw-free graphs. We have taken advantage of their set-theoretic flavor to formalize
them with moderate effort in the set-based proof-checker Referee; these formal proofs are
presented in full in an Appendix.
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Introduction

Set theory was initially proposed as a study of infinite sets, its birthplace being a series
of papers published between 1874 and 1884 by Georg Cantor. In these, Cantor proved
the uncountability of real numbers, introduced cardinal and ordinal numbers and formu-
lated the celebrated Continuum Hypothesis. During the so-called “foundational crisis in
mathematics”, one of the representative contradictions appearing was Bertrand Russell’s
1901 paradox concerning the existence of a set of all sets. Actually, it is the naturalness
involved in the spontaneous concept of set that, unless properly tamed, leads to Russell’s
and to other similar antinomies. David Hilbert acknowledged that, on the one hand, set
theory had pointed out the necessity to perfect logical theory, and that, on the other hand,
set theory itself, once established axiomatically, can lie at the foundations of mathematics.
The axiomatization of set theory which has now become standard is the one presented by
Ernst Zermelo in 1908, with later emendations and additions due to Hermann Weyl, to
Abraham Fraenkel and Thoralf Skolem (1922/1923), and to John von Neumann (1925).
This theory is commonly referred to as the Zermelo-Fraenkel set theory, or ZF.

The ZF axioms permit a bottom-up construction of the “universe of all sets”: they
basically assert the existence of an empty set and provide rules for constructing new sets
out of existing ones. Under these axioms, a set can only have other sets for elements.
Restricting one’s consideration to such “pure” sets is not limiting in principle: in fact, ZF
suffices for the formalization of the whole of mathematics.

The ease and conciseness with which sets can render complex mathematical or abstract
objects have been the motivation behind the aim of representing information in a set
theoretic manner. A new field, today called computable set theory, emerged as a long-term
research project initiated by Jacob T. Schwartz in the 1970s with the intention of cross-
fertilizing set theory and computer science. This has led, on the one hand, to set-based
programming languages such as SETL [134], or the more recent {log} [48] and CLP(SET )
[49]. On the other hand, it has uncovered decidable fragments of set theory together with
decidability algorithms implementable on a computer [25, 116]. One emblematic example
is the Multi-Level-Syllogistic with Singleton fragment and its enaction into the proof-
checker Referee/ÆtnaNova [96,133]. Referee aims at assisting its users in the development
of computer-verified proofs of mathematical facts, even one as profound as the Cauchy
integral theorem on analytic functions, from the bare root of the ZF axioms.
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The origins of graph theory can be traced back to the 1736 paper of Leonhard Euler on
the Königsberg bridge problem. For many years, graph theory remained a sub-discipline
of combinatorics, but this has no longer been the case during the last century. The rapidly
growing number of applications of graphs as models of various theoretical and practical
problems led to what is now known as modern graph theory. This has not been incidental,
since, like sets, graphs are among the most natural mathematical structures. For this
reason, it is difficult to give an immediate definition of a graph without falling into one of
the two extremes: either a formal definition, or just a delegation to a synonym: network,
map, list of adjacencies. Graphs have been usually considered finite, and it is in fact their
finite combinatorics that gives rise to deep and difficult problems. Many problems ask
what properties are enjoyed by graphs as a consequence of some structural property. For
example, the even degree of every vertex of a graph and its connectedness guarantee the
existence of an Eulerian tour (Euler, 1736), the lack of an odd cycle in a graph ensures that
it is bipartite (König, 1936), the lack of an odd induced cycle of length at least five, and of
the complement of such a cycle, ensures that a graph is perfect (Chudnovsky, Robertson,
Seymour, Thomas, 2006), the fact that a graph has no induced subgraph isomorphic to
the complete bipartite graph K1,3 ensures that certain otherwise difficult computational
problems are tractable, for example the independent set problem [90].

Graphs make no exception from most of mathematics, and their formal definition in-
volves the concept of set: a graph is in fact a set of vertices paired with a set of (ordered)
pairs of vertices. The axiomatic foundation of set theory becomes apparent when studying
graphs endowed with infinitely many vertices. Nevertheless, graphs enter into play when
devising a representation of sets. The nesting property of sets, emerging from their very
first axiomatic beginnings, is the reason why they are better represented by a graph-based
model than by flat Venn diagrams: a directed graph (or digraph) whose vertices corre-
spond to sets and whose arcs mimic membership. Almost as old as sets themselves, this
interpretation of a set has been around mostly for expository purposes. Only recently it
has become crucial, on the one hand, due to the computable set theory community, and
on the other hand thanks to the rise of hyperset theory [3, 11, 12, 56]. Born to model
‘extraordinary’ circular phenomena, these new sets have the peculiarity that the member-
ship relation between them is no longer required to be well-founded. Regarding a set as a
digraph is so rewarding in this more general context, that the axiom stating the existence
of hypersets (the so-called Anti-Foundation Axiom) is expressed by means of digraphs [3].

We are undertaking here a study on graphs which have as defining property that of
being the representations of sets (be they well- or non-well-founded). Contrary to the
common practice of defining a concept in a precise formal set theoretic manner, and then
forgetting this definition once some basic properties have been derived, we are proposing
a slight shift of focus back to the hardwired structure of sets. Thus, we will be looking at
sets under the spotlight of more modern computational and combinatorial issues, and will
strive to find new connections between sets and (di)graphs. We will also seek methods for
shifting results or techniques from one field to the other.

Let us now briefly define sets, together with their digraph-representation. Under the
ZF axioms, each set is uniquely characterized by its elements (Extensionality Axiom), and
the membership relation is well-founded (Foundation Axiom). The standard universe of
ZF sets is von Neumann’s cumulative hierarchy namely the class inductively defined over
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all ordinals α, as the union of Vα, where V0 = ∅, each level Vα is

Vα =
⋃
β<α

P(Vβ)

and P(·) stands for the power-set operator. For example, V1 = {∅}, V2 =
{
∅, {∅}

}
,

V3 =
{
∅, {∅}, {{∅}}, {∅, {∅}}

}
.

To represent a set as a digraph, one must consider the collection of its elements, of the
elements of its elements, and so on. This leads to the transitive closure of a set x, defined
as being TrCl(x) = x∪

⋃
y∈x TrCl(y). The membership digraph associated to x has TrCl(x)

as the vertex set and the inverse of the membership relation as its arc relation:

(TrCl(x), {u→ v | u, v ∈ TrCl(x), v ∈ u}).

Clearly, any such digraph is acyclic—as ∈ is well-founded—, and extensional, in the sense
that different vertices have different sets of out-neighbors. It can be easily seen that
there actually exists a bijection between membership digraphs and (unlabeled) extensional
acyclic digraphs. This is given by the so-called Mostowski’s collapse of an extensional
acyclic digraph, which recursively associates with each vertex the set of sets associated
with its out-neighbors.

∅

{∅}

{{∅}} {∅, {∅}}

{{{∅}}, {∅, {∅}}}

Figure 1: On the left, a membership digraph and the sets associated to its vertices by
Mostowski’s collapse; on the right, a hyper-extensional digraph owning a cycle.

If in the well-founded case extensionality is the criterion that prevents overcrowding
the universe of sets, in a non-well-founded context extensionality must be strengthened
to also take into account cyclic situations. This can be done only by inspecting the full
structure of a set, not just its elements, or, its immediate out-neighbors. For his theory of
hypersets, Aczel proposed the notion of bisimulation for such an irredundancy criterion.
The notion of bisimulation is a broad-range concept in computer science, surfacing almost
contemporarily in various fields: modal logic [145], concurrency theory [89,110], set theory
[56], formal verification (see [37]). Under Aczel’s Anti-Foundation Axiom, a set can be
simply taken to be a digraph devoid of distinct bisimilar vertices (to be called hyper-
extensional in the ongoing).

A method to characterize the structure of objects sharing common specified properties
is also one of the oldest in mathematics, namely counting. Finding the number of distinct
sets with n elements is not a well posed question, since the n elements of such a set can be
arbitrarily complex. However, this problem becomes relevant when considering transitive
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sets, that is, sets whose elements are also subsets of them. A recurrence relation for
transitive sets with n elements was given by Peddicord in 1962 [118], recurrence which also
appears as sequence A001192 in Sloane’s On-Line Encyclopedia of Integer Sequences [135].
Peddicord used Ackermann’s encoding to map such sets to particular n-element vectors,
which were subsequently counted. In light of the bijection between transitive sets and
extensional acyclic digraphs, in Section 2.1 we deal with counting methods for sets inspired
from the count of acyclic digraphs [63]. For example, we will show the following:

Theorem. ([124]) The number ê rn of extensional acyclic digraphs on n > 2 unlabeled
vertices, out of which 0 < r < n are vertices of maximum rank, is

ê rn =
n−r∑
k=1

ê kn−r

(
(2k − 1)2n−r−k

r

)
, ê 1

1 = 1.

In the same paper [124] we conjectured the following result, which was later proved by
Wagner.

Theorem. (Wagner [152]) The proportion of labeled extensional acyclic digraphs among
all labeled acyclic digraphs converges to the limit 0.326210....

Finding the number of hyper-extensional digraphs with n vertices is still an open
problem. Only few tentative steps have been made until now: for example, a brute-force
approach was employed in [88] by generating all digraphs with at most 5 vertices and
checking which of them are hyper-extensional, while [95] gave the complete lists of Finsler,
Scott and Boffa transitive non-well-founded sets with at most 3 elements. Actually, we
believe that a ‘good’ understanding of the structure of hyper-extensional digraphs would
not only solve this problem, but would also provide useful insight in establishing whether
there exists a linear-time algorithm to compute the maximum bisimulation over a digraph,
or it would provide a method for random sampling hyper-extensional digraphs with n
vertices.

Our contribution to this problem, guided by the fact that counting objects amounts
to assigning consecutive natural numbers to them, lies in a generalization of Ackermann’s
order and numeric encoding NA(a) =

∑
b∈a 2NA(b) of hereditarily finite well-founded sets,

HF, to hereditarily finite hypersets, HF [42,43]. In Section 2.2 we use a splitting technique
borrowed from algorithmics to define an order ≺ on HF, and then an encoding to dyadic
rationals Q2 such that, like in the well-founded case, a simple reading of a binary code of
y ∈ Q2 allows one to inductively determine the hyperset having y as code. This encoding
is twofold: we first define a map from HF to Z which assigns positions to hypersets:

ZA(a) =

{
|{ b : b ∈ HF ∧ b ≺ a }| if a ∈ HF,

−|{ b : b ∈ HF \ HF ∧ b ≺ a }| − 1 if a ∈ HF \ HF,

and then define a bijection QA from HF to dyadic rationals

QA(a) =
∑
b∈a

2ZA(b).

Since a set is a basic mathematical and computational object, one is also interested
in uniformly sampling sets in order to perform tests and benchmarks, collect statistical
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data, (dis)prove conjectures, etc. In Section 2.3 we tackle the problem of generating at
random transitive sets with n elements, or equivalently, extensional acyclic digraphs with n
vertices. Notice that, in light of the above mentioned result of [152], sets can be sampled by
running a sampler for acyclic digraphs and then checking whether the produced digraph
is extensional. However, we will give a direct method tailored to (weakly) extensional
acyclic digraphs [122] and obtained by adapting a Markov chain approach for generating
labeled acyclic digraphs [68,82,83].

When enumerating finite objects whose size is no longer bounded by a fixed value,
the sequences under consideration become infinite, and thus the existence of a well-quasi-
order over such objects is an appropriate issue. For example, in a graph-theoretic setting,
one usually looks for graph immersions that are also well-quasi-orders, so that no ‘new’
structures can be built up ad infinitum. The celebrated theorem of Robertson and Seymour
states that the minor relation between graphs is a well-quasi-order on the class of all finite
graphs. There are not many results in the case of digraphs. Recently, strong immersion
between digraphs was proved to be a well-quasi-order on the set of all tournaments [36],
while immersion between Eulerian digraphs was studied by Johnson (see [9, p. 517], [36]).

In [121] we identified a class of well-founded sets whose membership digraphs are well-
quasi-ordered by strong immersion. This result was later refined in [123]: the defining
property of these sets, namely slimness, was translated into a graph-theoretic property of
a digraph. This required that for every vertex x and every out-neighbor of it, y, there exists
another vertex of the digraph having precisely the same out-neighborhood as x, minus the
element y. In order to generalize this result to hypersets, the acyclicity assumption was
also dropped; consequently channeled digraphs were considered, ‘channeled’ meaning that
from every vertex there is a directed path to a sink:

Theorem. ([123]) For every s > 1, the collection Ds of channeled slim finite digraphs
with at most s sources is well-quasi-ordered by strong immersion.

Neither the slimness property, nor the bound on the number of sources can be dropped
without losing the well-quasi-ordering property. This will be argued in Chapter 3.

For our next topic, which we develop in Chapter 4, we turn our attention to the
structure underlying sets, more precisely, to the underlying graphs of the membership
digraphs of hereditarily finite sets. These objects have not been studied before in the
literature; therefore we could freely attach the name set graphs [86] to them. Being born
to facilitate the formalization of the whole of mathematics, the structure underlying sets
is also expected to be as rich as possible. This is in fact true: the collection of set graphs
does not coincide with the class of finite graphs, but deciding whether a graph belongs to
this class is an NP-complete problem:

Theorem. ([85]) It is NP-complete to decide whether a graph admits an extensional
acyclic orientation, a slim extensional acyclic orientation, or a hyper-extensional orienta-
tion, even when the input is restricted to bipartite graphs.

This complexity result shows that it is unlikely that a good characterization of them
exists. Instead, one can look for the largest hereditary (i.e., closed under taking induced
subgraphs) class of graphs such that every connected member of it is a set graph. It turns
out that this class is obtained by forbidding the smallest connected graph which is not a
set graph, the claw, K1,3.
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Theorem. ([86]) Let G be a connected claw-free graph and let r ∈ V (G). G admits an
extensional acyclic orientation whose sink is r if and only if r is not a cut vertex of G.
Moreover, an extensional acyclic orientation of such a graph can be found in polynomial
time.

The connection between set graphs and claw-freeness is all but superficial [87]. On the one
hand, there exists a largest hereditary class of graphs where being a set graph is equivalent
to being claw-free. On the other hand, the claw-freeness condition can be generalized in two
ways. First, by requiring that all claws of a graph be vertex-disjoint together with a further
connectivity condition, another subclass of set graphs will be identified, in Section 4.3.2.
Second, in Section 4.3.3 we show that if we forbid K1,r+2, r > 1, instead of the claw K1,3,
a pseudo-extensionality property, which we call r-extensionality, can be guaranteed.

A practical motivation for the study of this problem lies in the area of identifying and
separating codes. Let us say that a subset C of vertices of a digraph D is an open-out-
separating code if the (open) out-neighborhoods of the vertices of D have pairwise distinct
intersections with C. It is easy to see that a digraph D admits such a separating code
if and only if D is extensional. In Section 4.2.4 we show that it is NP-hard to find an
open-out-separating code of minimum size. To place this in historical context, notice that
we are slightly deviating from the nomenclature introduced by [57], where the notion of
separating code referred to closed in-neighborhoods.

Another motivation for this study is in the graph-theoretic expressive power of heredi-
tarily finite sets. Taking as the vertex set of a set graph any of the transitive closures from
which it originates, its edge relation need not be defined separately since it can be implic-
itly read from the membership relation among its vertices: two vertices are adjacent if and
only if one is a member of the other. As just mentioned, transitive hereditarily finite sets
do express connected claw-free graphs. By studying set graphs, we are studying which
graphs can be represented in this alternative, economical way, useful for any computer
language able to represent/manipulate ZF hereditarily finite sets, such as Referee.

This point of view led to a shorter proof of the fact that squares of connected claw-
free graphs are vertex-pancyclic, which is covered in Chapter 5. This result is due to
Matthews and Sumner [81], who showed that such graphs are Hamiltonian and then
resorted to the general result that in squares of graphs being Hamiltonian is equivalent
to being vertex-pancyclic [54]. Our short proof directly shows vertex-pancyclicity [144].
We also show that the same framework can be employed for proving another well-known
result on claw-free graphs, namely that connected claw-free graphs of even order have a
perfect matching [141]. For both of these short proofs, it actually suffices to work with an
acyclic orientation with a unique sink. However, these results were spawned by our proof
of the result that every connected claw-free graph is a set graph.

The set-theoretic insight behind these proofs shows that two properties of connected
claw-free graphs can be even extended to a larger class of graphs:

Theorem. ([144]) If G is a connected graph admitting an acyclic orientation with a
unique sink that has none of the two digraphs depicted in Figure 2 as induced subdigraphs,
then

• the square of G is vertex-pancyclic;

• if G has an even number of vertices, then G has a perfect matching.
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x1

x2

x3 x4

(a) orientation C1

x1

x2

x3 x4

(b) orientation C2

Figure 2: Two forbidden orientations of a claw that allow the generalization of two classical
results on connected claw-free graphs.

A formalization of these two results [106] using the proof-checker Referee is presented in
Section 5.2. Since Referee deals only with Zermelo-Fraenkel sets, representing a connected
claw-free graph by a transitive ‘claw-free’ set turned out to require the least amount of
formalistic effort. On the one hand, we avoid explicitly defining graphs, together with an
entire armamentarium of graph-theoretic concepts that the original proofs required. On
the other hand, we exploit Referee’s built-in set manipulating operations to reflect with a
minimum degree of encumbrance the two set-theoretic proofs. The complete formalization
in Referee is given as Appendix B.

This is no isolate example of an implicit representation of graphs by sets, in view of
the following more general representation theorem, where weak extensionality means that
only non-sink vertices have pairwise distinct out-neighborhoods:

Theorem. ([86]) Every graph admits a weakly extensional acyclic orientation.

This entails that, given an undirected graph G, one can construct a bijection % between G
and a set xG such that {u, v} is an edge of G if and only if either %(u) ∈ %(v) or %(v) ∈ %(u)
holds. Moreover, xG is almost transitive, in the sense that for any y ∈ xG, if y ∩ xG 6= ∅,
then y ⊆ xG (recall that, if G is connected and claw-free, then a transitive set xG always
exists); more on this in Section 5.2.4.

Finally, we focus on infinite sets, with special emphasis on infinite hypersets. As
we will see in due course, this study is motivated by the decidability problem for the
class of all ∀∗ prenex formulae (the so-called Bernays-Schönfinkel-Ramsey class) involving
membership and equality, over hypersets. Since the celebrated result of Ramsey [126], the
logical variant of this class has stimulated a lot of research, among which we mention the
recent [7].

A graph class defined by forbidden induced subgraphs can be characterized by a ∀∗-
formula: the adjacencies between any tuple of vertices are required not to be the same as
the adjacencies between the vertices of one of the forbidden subgraphs. Having a good
understanding of the structure of graphs from such a class can guarantee, among others,
tractability of otherwise NP-hard problems. The analogous problem of characterizing sets
satisfying a fixed ∀∗-formula is certainly rewarding. For example, a ∀∗-formula can char-
acterize the class of sets obtained by forbidding the two orientations of a claw depicted in
Figure 2, which thus ensures the presence of the two mentioned graph-theoretic properties
in sets. In connection with the decidability problem, we will consider however a more
general question: If one considers the collection of all ∀∗-formulae, which are the sets
that they can express? Since all hereditarily finite (hyper)sets can be characterized by a
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ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

Figure 3: Sets ω0 = {ω0,j : j ∈ ω}, ω1 = {ω1,j : j ∈ ω} such that ιι(ω0,ω1) holds.

∀∗-formula, this question becomes intriguing when asking for the infinite (hyper)sets that
can be thus characterized.

For example, one such infinite set, depicted in Figure 3, is characterized by the following
∀∀-formula ι̃ι(a, b) obtained by the conjunction of the following conditions:

(i) a 6= b ∧ a /∈ b ∧ b /∈ a ∧ a ∩ b = ∅

(ii)
⋃
a ⊆ b ∧

⋃
b ⊆ a

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x).

Theorem. ([105]) Any two hypersets a, b for which ι̃ι(a, b) holds are infinite and well-
founded.

Since infinite sets cannot be expressed with less than two existential and two universal
quantifiers (see Section 6.1.2), the above theorem shows that ∃a ∃b ι̃ι(a, b) is a syntactically
simplest formulation of the Infinity Axiom, independent of whether the Foundation Axiom,
or the Anti-Foundation Axiom, is assumed.

ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

Figure 4: Hypersets ω0 = {ω0,j : j ∈ ω}, ω1 = {ω1,j : j ∈ ω} such that ιι1(ω0,ω1)
holds.

However, genuinely non-well-founded hypersets can be expressed by ∀∗-formulae and
they can be quite involved, as testified by the ∀∀∀-formula ιι1(a, b) obtained by the con-
junction of the following sub-formulae (a model of ιι1 is depicted in Figure 4):
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(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii′)
⋃
a ⊆ b ∧

⋃
b ⊆ a ∪ b ∧ (∀y ∈ b)(y /∈ y)

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x)

(iv′) (∀x ∈ a)(∀y1, y2 ∈ b)(y1 ∈ y2 → y2 ⊆ y1)

(v) (∀y1, y2 ∈ b)(y1 = y2 ∨ y1 ∈ y2 ∨ y2 ∈ y1).

Theorem. ([102]) Any two hypersets a, b for which ιι1(a, b) holds are infinite; moreover,
they have membership cycles and infinite descending membership chains in their transitive
closure.

The graph-theoretic interpretation of a set in this context should be apparent. On the one
hand, we are dealing with hypersets as hyper-extensional digraphs. On the other hand,
our proofs that the sets satisfying such ∀∗-formulae are infinite proceed by contradiction,
turning them into finitarily combinatorial arguments.

Chapter 6 presents an overview of formulae expressing infinite (non-)well-founded sets
[100,112–114], together with the more recent results regarding hypersets [102,103,105].

In conclusion, this thesis should argue that, under our premise “sets as graphs”, a
more systematic study of graph-theoretic problems on sets and of set-theoretic problems
of graphs is fruitful. Some of the connections between the two fields have already surfaced
in the literature, albeit implicitly, e.g., Peddicord’s count of transitive sets, or the recent
work on identifying and separating codes in graphs and digraphs.

We have mentioned, and we will illustrate in detail in the following chapters, multiple
directions which are relevant for a deeper transfer of concepts. On the one hand, there is
still more left to be done for sets under their representation as digraphs: further connec-
tions to acyclic digraphs (for example, a ranking/unranking method similar to the one for
acyclic digraphs of [137], eventually inspired by Peddicord’s bijection to n-element numeric
vectors), or to separating codes (to our knowledge, our notion of “open-out-separating
code” is new).

On the other hand, a flurry of new graph-theoretic questions can be asked for set
graphs, starting from determining the complexity of set graph recognition for particular
classes of graphs, to fixed-parameter algorithms [55], to connections between set graphs,
together with their extensional acyclic orientations, and descriptive complexity theory.
Moreover, set graph recognition can be also stated as an optimization problem, for ex-
ample by asking for a weakly extensional acyclic orientation of a graph with a minimum
number of sinks, or for an r-extensional acyclic orientation with minimum r. It is there-
fore interesting to study approximation algorithms [147] for such optimization variants.
Given the correspondence between the acyclic orientations and the chromatic number of a
graph, and in light of the above result stating that every graph admits a weakly extensional
acyclic orientation, one can analogously introduce a notion of ‘set chromatic number’ of a
graph, and study, for example, ‘set perfect graphs’.
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1
Basic Concepts

1.1 Well-founded sets

We are placing ourselves in the classical framework of the Zermelo-Fraenkel set theory (in
short, ZF). We are thus assuming the Extensionality Axiom, EA,

EA ≡ ∀u ∀ v
(
∀w
(
w ∈ u↔ w ∈ v

)
→ u = v

)
,

stating that two sets are equal if and only is they have the same extension, that is, the
same elements. We are also assuming von Neumann’s Foundation Axiom, FA

FA ≡ ∀ v
(
v 6= ∅ → (∃m ∈ v)(m ∩ v = ∅)

)
,

stating that the membership relation between sets is (strict and) well-founded, i.e., it forms
no cycles or infinite descending chains v0 3 v1 3 v2 3 · · · .

The standard universe of ZF sets is von Neumann’s cumulative hierarchy of well-
founded sets V, namely the class inductively defined over all ordinals α, as the union of
Vα, where each level Vα is

V0 = ∅,

Vα = P(Vα−1), if α is a successor ordinal,

Vα =
⋃
β<αVβ, if α is a limit ordinal,

so that, in particular, V1 = {∅}, V2 =
{
∅, {∅}

}
, V3 =

{
∅, {∅}, {{∅}}, {∅, {∅}}

}
.

The well-foundedness of the membership relation allows us to associate with each set
x an ordinal, rank(x), in the following recursive way

rank(x) =Def

{
0 if x = ∅,
sup{ rank(y) + 1 : y ∈ x } otherwise.

The rank function is a first approximation of the inner complexity of a set. For a full
description of its structure, one has to consider the transitive closure of a set x, defined
through the recursion

TrCl(x) =Def x ∪
⋃
y∈x TrCl(y).

Among all sets, the ones that equal their own transitive closures are called transitive (or
full). Such a set x can be equivalently characterized by the property (∀y ∈ x)(∀z ∈ y)(z ∈
x).
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Example 1.1.1 The set {{∅}} has rank 2, and its transitive closure is {∅, {∅}}.

An important part of this thesis will focus on hereditarily finite sets, that is, sets having
a finite transitive closure (equivalently, a finite rank). The collection HF of hereditarily
finite sets can be readily singled out from V, since it suffices to consider only the levels
Vα, where α is a finite ordinal.

Another equivalent wording of the property of a set x being hereditarily finite is that
x can be obtained from ∅ by applying a finite number of times the adjunction operation
x = y∪{z}. This last characterization should be readily apparent in light of a specific one-
to-one correspondence between hereditarily finite sets and natural numbers, discovered by
Ackermann. This is recursively defined, for all x ∈ HF, as

NA(x) =Def

∑
y∈x 2NA(y),

where NA(∅) = 0. For example, NA({∅}) = 1, NA({{∅}}) = 2, NA({∅, {∅}}) = 3,
NA({{{∅}}}) = 4. Among other virtues, Ackermann’s bijection enables one to retrieve
the full structure of a hereditarily finite set from its numeric encoding by means of a
simple recursive routine:

the binary representation of NA(x) has a ‘1’ in position NA(y) (1.1.1)

if and only if y ∈ x.

If a set x satisfies x = y ∪ {z} and z /∈ y, then NA(x) = NA(y) + 2NA(z) holds, which
corresponds to the addition of a ‘1’ on bit NA(z) of NA(x). Via the encoding NA, the
standard order < on natural numbers induces an order, called the Ackermann order, on
hereditarily finite sets:

x ≺ y ↔Def NA(x) < NA(y).

Ackermann’s order is compatible with rank comparison, and is, actually, fully described
by the anti-lexicography criterion

x ≺ y ⇔ max≺(x \ y) ≺ max≺(y \ x), (1.1.2)

where by convention, max≺ ∅ ≺ z holds for any non-empty set z.

Given a set V , we write [V ]2 for the set of all 2-element subsets of V . We say that the
elements of a partition P of V are its blocks.

1.2 Graphs and digraphs

Graphs. A graph (or undirected graph) is a pair G = (V (G), E(G)), where V (G) is a set
and E(G) ⊆ [V (G)]2. To avoid notational ambiguities, we always assume that V (G) and
E(G) are disjoint. The set V (G) is called the set of vertices of G, while E(G) is the set
of its edges. We write uv as a shorthand for an edge {u, v} ∈ E(G). If e = uv is an edge,
u and v are called its end vertices (or end points); we say that e is incident to u and to
v, and that u and v are adjacent, or neighbors.

Given a vertex v ∈ V (G), the neighborhood of v is the set of neighbors of v in G,
NG(v) =Def {u ∈ V (G) | vu ∈ E(G)}. The degree of v is dG(v) =Def |NG(v)|. A vertex of
degree 1 is called a leaf. We may omit the subscript G when this is clear from the context.
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Containment relations and graph operations. If H is a graph with V (H) ⊆ V (G)
and E(H) ⊆ E(G) we say that H is a subgraph of G. If W ⊆ V (G), G[W ] is the graph
(W, {e ∈ E(G) | e ⊆ W}), called the subgraph of G induced by W . If H = G[V (H)],
then H is an induced subgraph of G. We write G−W for the graph G[V (G) \W ]. When
W = {v}, we simply write G− v, instead of G− {v}. If F ⊆ [V (G)]2, we write G+ F for
the graph (V (G), E(G) ∪ F ); analogously, G− F is the graph (V (G), E(G) \ F ).

Given graphs G1 and G2, we say that G1 and G2 are isomorphic if there exists a
bijection f : V (G1) → V (G2) such that uv ∈ E(G1) if and only if f(u)f(v) ∈ E(G2). In
this case, f is called an isomorphism (between G1 and G2). A graph property (or class) is
a set of graphs closed under isomorphisms. A graph class is hereditary if it is closed under
taking induced subgraphs.

Given graphs H and G, we say that G is H-free if no induced subgraph of G is
isomorphic to H. Graph H is also called a forbidden induced subgraph. The family of
H-free graphs is a hereditary graph class, for any graph H.

For example, the net is a claw -free graph, while K2,3 is not claw-free (see Figure 1.1).

Connectivity. A path is a graph P = (V,E) of the form

V = {v1, v2, . . . , vk}, E = {v1v2, v2v3, . . . , vk−1vk},

where k > 1 and the vi’s are pairwise distinct. We say that P connects (or joins, or is
between) vertices v1 and vk, and that v1 and vk are its end vertices. The length of P is
the number of its edges, that is, k− 1. We will often designate a path by either one of the
natural orders of its vertices and write, e.g., P = (v1, v2, . . . , vk). We say that a path P is
in a graph G if P is a subgraph of G. We usually denote paths on k vertices with Pk.

Given a graph G, the distance in G between vertices u, v ∈ V (G) is the shortest length
of a path in G between u and v; if no such path exists, then the distance is taken to be∞.
A graph is connected if there is a path between any two distinct vertices of G. A maximal
connected subgraph of G is called a (connected) component of G. If C is a connected
component of G, we will sometimes write C when we actually mean V (C). We say that a
vertex v ∈ V (G) is a cut vertex of G if G− v has more connected components than G.

Basic graph properties. A graph with a finite vertex set is said to be finite. If Pk =
(v1, v2, . . . , vk) is a path and k > 3, then the graph Ck = Pk + {vkv1} is called a cycle.
A connected graph having no cycle as subgraph is called a tree. A graph G such that
uv ∈ E(G) holds for every distinct u, v ∈ V (G) is said to be complete. A complete graph
on n vertices is denoted as Kn. If C ⊆ V (G), then C is called a clique if G[C] is complete;
if on the opposite G[C] has no edges, then C is an independent set.

A graph G is said to be multipartite if there is a partition of V (G) whose blocks are
independent sets. If this partition has k blocks, then the graph is called k-partite. A
multipartite graph G is complete if any two vertices belonging to different blocks of the
partition of V (G) are adjacent. A 2-partite graph is called bipartite. A complete bipartite
graph whose partition of the vertices has blocks of sizes n and m, respectively, is denoted
as Kn,m.

A path P in a graph G is Hamiltonian if V (P ) = V (G). Analogously, a cycle C in G is
Hamiltonian if V (C) = V (G); if G has a Hamiltonian cycle, G is said to be Hamiltonian.

Given a graph G, a subset M ⊆ E(G) is called a matching if no edges of M share an
end vertex. A matching M is said to be perfect if every vertex of G is an end vertex of an
edge of M .
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Example 1.2.1 Under the definitions [V ]0 = {∅}, [V ]1 = {{v} | v ∈ V }, ([V ]2 as before),
the graph

GV( =
(
[V ]0 ∪ [V ]1 ∪ [V ]2, {{u, v} | v ∈ [V ]1 ∪ [V ]2 ∧ u ⊆ v ∧ v \ u ∈ [V ]1}

)
,

is 3-partite, [V ]0, [V ]1, [V ]2 being the blocks of the partition.
The set of all ordered pairs of elements of a set V can be thus defined, slightly deviating

from Kuratowski’s definition, as the set of all edges of GV(. Indeed, (v, v) will stand for
the edge {∅, {v}}, whereas (u, v) corresponds to {{u}, {u, v}}.

Special graphs. Some small graphs, depicted below, will turn out useful in our endeavor.

(a) claw, K1,3 (b) paw (c) dart

(d) K2,3 (e) co-(K3 + 2K1) (f) net

Figure 1.1: Some small graphs.

Digraphs. A digraph (or directed graph) is a pair D = (V (D), E(D)), where V (D) is a
set and E(D) consists of ordered pairs of elements of V (D) (we always assume that V (D)
and E(D) are disjoint). The set V (D) is called the set of vertices of D, while E(D) is the
set of its arcs. We write uv, or u → v, as a shorthand for an arc (u, v) ∈ E(D). Given
an arc e = uv, we say the e is from u to v, that v is an out-neighbor of u, and that u
is an in-neighbor of v. Notice that, in slight deviation from [10], we allow self-loops in a
digraph, that is, arcs of the form (v, v) ∈ E(D).

Given a vertex v ∈ V (D), the out-neighborhood of v is the set of out-neighbors of
v in D, N+

D (v) =Def {u ∈ V (D) | v → u ∈ E(D)}. The in-neighborhood of v is the set
N−D (v) =Def{u ∈ V (D) |u→ v ∈ E(D)}. If the in-degree of v ∈ V (D) d−D(v) =Def|N−D (v)| is
0, we say that v is a source in D, while v is a sink in D if its out-degree d+

D(v) =Def |N+
D (v)|

is 0. We may skip the subscript D when this is clear from the context.

Containment relations and digraph operations. If H is a digraph with V (H) ⊆
V (D) and E(H) ⊆ E(D) we say that H is a subdigraph of D. If W ⊆ V (D), D[W ]
is the digraph (W, {uv ∈ E(D) | {u, v} ⊆ W}), called the subdigraph of D induced by
W . If H = D[V (H)], then H is an induced subdigraph of D. We write D −W for the
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digraph D[V (G) \W ]. When W = {v}, we simply write D − v, instead of D − {v}. If
F ⊆ V (D)×V (D), we write D+F for the digraph (V (D), E(D)∪F ); analogously, D−F
is the digraph (V (D), E(D) \ F ).

Given digraphs D1 and D2, we say that D1 and D2 are isomorphic if there exists a
bijection f : V (D1) → V (D2) such that uv ∈ E(D1) if and only if f(u)f(v) ∈ E(D2). In
this case, f is called an isomorphism (between D1 and D2). The isomorphism relation
between digraphs is an equivalence relation; any class of this relation will be referred to
as an unlabeled digraph.

Connectivity. A (directed) path is a digraph P = (V,E) of the form

V = {v1, v2, . . . , vk}, E = {v1 → v2, v2 → v3, . . . , vk−1 → vk},

where k > 1 and the vi’s are pairwise distinct. We say that P is from vertex v1 to vk, and
that v1 and vk are its end vertices. We also say that vk is reachable from v1. The length
of P is the number of its arcs, that is, k − 1. We will often refer to a path by the natural
order of its vertices and write P = (v1, v2, . . . , vk). We say that a path P is in a digraph
D if P is a subdigraph of D. We usually denote directed paths on k vertices with Pk.

Given a digraph D and v ∈ V (D), we denote by N∗D(v) the set of vertices of D to which
there is a directed path from v. A digraph D is strongly connected if for any u, v ∈ V (D)
there is a directed path from u to v and a directed path from v to u. A maximal strongly
connected subdigraph of D is called a (strongly connected) component of D. For a strongly
connected component C we will sometimes write C when we actually mean V (C).

Basic digraph properties. A digraph with a finite vertex set is said to be finite. If
Pk = (v1, v2, . . . , vk) is a directed path and k > 3, then the digraph Ck = Pk + {vk → v1}
is called a (directed) cycle. A digraph having no directed cycle as subdigraph is called
acyclic. Note that every acyclic digraph has at least a sink and at least a source. The set
of sources of an acyclic digraph D is denoted by O(D).

The acyclicity of a digraph D can be equivalently characterized by requiring that
E(D) be a well-founded relation, i.e., that every non-empty subset W of vertices of D has
a vertex s such that N+(s) ∩W = ∅. This last interpretation has the advantage that it
is extendable to digraphs having an infinite vertex set. When referring to a digraph as
acyclic, we will leave as understood that its vertex set is finite. Otherwise, we will use the
term well-founded.

Orientations. A digraph D is an orientation of a graph G if V (D) = V (G), |E(D)| =
|E(G)|, and {u, v} ∈ E(G) for every (u, v) ∈ E(D). Graph G is said to be the underlying
graph of D. A digraph is said to be connected (or weakly connected) if its underlying
graph is connected. An orientation of a complete graph is said to be a tournament.

1.3 Sets as digraphs

Pictures of sets. Even though for representing (di)graphs one uses sets, as flat collections
of vertices and edges/arcs, digraphs enter into play in capturing the nested membership
structure of a set. For this, one has to consider the digraph whose vertices are the elements
of the transitive closure of x, together with x, and whose arcs correspond to the inverse
of the membership relation. Formally, given a well-founded set x, call the picture of x the
digraph
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(TrCl({x}), {u→ v | u, v ∈ TrCl({x}), v ∈ u}).

A picture of a well-founded set x is a well-founded digraph, since the membership relation
∈ is well-founded; it has precisely one source, the set x, and precisely one sink, the set
∅. Moreover, the out-neighborhoods of its vertices are pairwise distinct, since they arise
from pairwise distinct sets. Let us pinpoint this notion by the following definition:

Definition 1.3.1 A digraph D is said to be extensional if for any distinct u, v ∈ V (D),
it holds that N+(u) 6= N+(v).

Note that extensionality guarantees that a well-founded digraph has precisely one sink.

∅

{∅}

{{∅}} {∅, {∅}}

{{{∅}}, {∅, {∅}}}

Figure 1.2: The picture of the set x = {{{∅}}, {∅, {∅}}}.

A simple, but important, observation establishing the bridge between sets and digraphs
is that the collection of extensional well-founded digraphs having precisely one source
coincides with that of pictures of well-founded sets.

Lemma 1.3.2 (Mostowski’s collapsing lemma) Pictures of well-founded sets are in
one-to-one correspondence with unlabeled extensional well-founded digraphs endowed with
a unique source.

Proof. The direct implication follows by the above observation. For the converse, let D
be an extensional well-founded digraph with precisely one source. Define f recursively as

f(u) = { f(v) | u→ v ∈ E(D) },

where f(u) = ∅, if u is the sink of D. Since D is extensional, then f : V (D)→ {f(v) | v ∈
V (D)} is a bijection. This shows that D is isomorphic to the picture of the set assigned
by f to the source of D.

Membership digraphs. Trying to obtain a full description of a well-founded set x, we
have included the vertex x in its picture, which entailed the requirement that the resulting
digraphs have precisely one source. On the one hand, from a set theoretic perspective, often
one is more interested in the inner structure of a well-founded set, that is, in its transitive
closure. On the other hand, from a graph theoretic point of view, the assumption of
a unique source is irrelevant. Therefore, we will speak of the membership digraph of a
well-founded set x, to be denoted D(x), when referring to the digraph
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1.3. Sets as digraphs 17

D(x) =Def (TrCl(x), {u→ v | u, v ∈ TrCl(x), v ∈ u}).

Since a transitive set owns as members all the elements of its transitive closure, we can
state a slightly modified version of Lemma 1.3.2.

Lemma 1.3.3 Pictures of transitive well-founded sets are in one-to-one correspondence
with unlabeled extensional well-founded digraphs.

The rank of a hereditarily finite well-founded set x admits a straightforward graph
theoretic interpretation: the length of the longest directed path in the picture of x, from
x to ∅. More generally, we define the rank of a vertex v in an acyclic digraph D as the
length of the longest directed path from v to a sink of D.

Given an extensional acyclic digraph D, an Ackermann-like linear order ≺ can be
inductively defined on its vertices by

u ≺ v ↔Def max≺(N+(u) \N+(v)) ≺ max≺(N+(v) \N+(u)).

where by convention, max≺ ∅ ≺ w holds for any vertex w ∈ V (D). A linear-time algorithm
to compute Ackermann’s order on an extensional acyclic digraph appears in [47, Sec. 4]

Flavors of extensionality. Our graph-theoretic approach will consider various exten-
sional criteria, which we summarize here. The first notion allows an arbitrary number of
sinks in an acyclic digraph, while requiring that extensionality be maintained for non-sink
vertices; this originates from set theories with atoms.

Definition 1.3.4 A digraph D is said to be weakly extensional if for any distinct u, v ∈
V (D), if N+(u) 6= ∅, then N+(u) 6= N+(v).

Another way to generalize extensionality is by allowing non-sink vertices with the same
out-neighborhood, but permitting at most r > 1 of them to share precisely the same set
of out-neighbors.

Definition 1.3.5 Given an acyclic digraph D and A ⊆ V (D), we say that A is an r-
collision of D if |A| > r and for any u, v ∈ A we have N+(u) = N+(v). We say that D is
r-extensional if no (r + 1)-collision exists.

In the following definition we capture instead ‘minimal’ extensional digraphs.

Definition 1.3.6 An extensional digraph D is said to be

• slim, if for any e ∈ E(D), the digraph D − {e} ceases to be extensional;

• dependent, if for any arc (u, v) ∈ E(D), the digraph D − {(u, v)} + {(v, u)} is not
extensional;

• irredundant, if for any vertex v ∈ V (D), the digraph D − v is not extensional.

Observe that a slim extensional digraph is both dependent and irredundant.
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1.4 Bisimulation, hyper-extensionality and hypersets

Bisimulation and the stable partitioning problem. The following notion of bisimu-
lation is a broad-range concept appearing in many fields of theoretical computer science.

Definition 1.4.1 A bisimulation over a digraph D is a binary relation B ⊆ V (D)×V (D)
such that xB y implies that

i) for every x′ such that x → x′ holds, there exists a vertex y′ such that y → y′ and
x′B y′; and

ii) for every y′ such that y → y′ holds, there exists a vertex x′ such that x → x′ and
x′B y′.

One is usually interested in deciding whether two distinct vertices u, v of a digraph D
are bisimilar, in the sense that there exists a bisimulation B over D such that uBv. It is
therefore convenient to compute the maximum bisimulation over D, that is, the union of
all bisimulation relations over D—the maximum bisimulation is an equivalence relation,
hence it induces a partition of the vertices of a digraph.

b

a c

d

e

Figure 1.3: A digraph having [e][b, d][a, c] as the maximum bisimulation.

This is usually done by a reformulation of this problem as the stable partitioning
problem. To state this correspondence, we need the following definition.

Definition 1.4.2 Let E be a relation on a set V , E−1 its inverse relation, and P a
partition of V . The partition P is said to be stable with respect to E if for each pair B1,
B2 of blocks of P , either B1 ⊆ E−1[B2], or B1 ∩ E−1[B2] = ∅.

Otherwise stated, stability requires that a block B1 of P be included in the pre-image
E−1[B2] =Def {x ∈

⋃
P | (∃ y ∈ B2)(xE y) } of a block B2 whenever B1 intersects that

preimage. Trivially, any partition whose blocks are singletons is stable.
Let us say that a partition P is coarser than a partition P ′ if every block of P ′

is included in a block of P (then we also say that P ′ is finer than P ). The maximum
bisimulation over a digraph D coincides with the relation induced by the coarsest partition
of V (D), stable with respect to E(D).

Hypersets. If the membership relation between sets is no longer required to be well-
founded, then it is legitimate to think that peculiar set theoretic equations such as

x = {x}, or y = {z} and z = {y},
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admit set-solutions. Aczel’s Anti-Foundation Axiom, AFA, ensures that, on the one hand,
sets satisfying these three equations exist, and that, on the other hand, they all equal the
set

Ω = {Ω}.

Given the close kinship between (pictures of) sets and digraph, we introduce Aczel’s
hypersets—the usual name associated to the elements of a model of ZF in which FA is
withdrawn and EA is superseded by AFA—in terms of digraphs. We say that a pair (D, v),
where D is a digraph and v ∈ V (D) is a distinguished vertex of D, called its point, is
accessible, if there is a directed path from v to any other vertex of D; a well-founded
digraph is accessible if and only if it has a unique source.

Definition 1.4.3 A digraph D is said to be hyper-extensional if every bisimulation over
D is contained in the identity relation, that is, if for every bisimulation B over D, it holds
that x = y whenever xB y.

Equivalently stated, a digraph D is hyper-extensional if the maximum bisimulation over
D is the identity relation. This reduction criterion is the one used by AFA to prevent
overcrowding the universe of non-well-founded sets.

Definition 1.4.4 A hyper-extensional accessible pointed unlabeled digraph is called a hy-
perset.

Figure 1.4: An accessible hyper-extensional digraph; any of its non-sink vertices can be
its point. Notice that the symmetry of the 4-cycle (a, b, c, d) of the digraph in Figure 1.3
is now broken.

When referring to hypersets, we continue employing set theoretic notation, but the
semantics will be the one introduced by the above definition. For example, the transitive
closure of a hyperset (h, h?) is, depending on whether or not we include its point h? in it:

TrCl(h) =Def {(h[N∗h (v)], v) | v ∈ V (h) \ {h?}}
TrCl({h}) =Def {(h[N∗h (v)], v) | v ∈ V (h)}

In particular, given hypersets (h1, h
?
1) and (h2, h

?
2), we use the set theoretic notation h1 ∈

h2 if there exists an out-neighbor h of h∗2 and there exists an isomorphism f between
h2[N∗h2(h)] and h1, and f(h) = h?1. Sometimes, for a hyperset (h, h?), we will write h when
referring to its point h?. We also say that a hyperset is hereditarily finite if its vertex set
is finite; the collection of hereditarily finite hypersets will be denoted with HF.

As already done for the well-founded framework, we will sometimes drop the accessi-
bility requirement, and speak only of a ‘hyper-extensional digraph’. The following lemma,
shows, on the one hand, that hypersets generalize well-founded sets, and, on the other
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hand, that they maintain a property reminiscent of well-foundedness: they have a (unique)
sink and from every vertex there is a directed path to that sink.

Lemma 1.4.5 Let D be a hyper-extensional orientation of a graph. The following hold:

i) D is extensional;

ii) D has a (unique) sink;

iii) there is a directed path from every v ∈ V (D) to the sink of D;

iv) every extensional well-founded digraph is hyper-extensional.

Proof. To see that i) holds, it suffices to observe that if distinct u, v ∈ V (D) have
N+(u) = N+(v), then the equivalence relation that puts u and v in the same class and
keeps every other vertex in a singleton class, that is, the equivalence relation induced by
the partition {{u, v}} ∪ {{w} | w ∈ V (D) \ {u, v}}, is a non-trivial bisimulation over D.

If ii) does not hold, then D is due to have at least two vertices. Hence, the universal
relation, that is, the equivalence relation that puts all vertices of D in the same equivalence
class, is a non-trivial bisimulation over D.

To show iii), take, for a contradiction, a vertex v ∈ V (D) so that there is no directed
path from v to a sink of D. Let C be the set of all vertices u such that there is a directed
path from v to u. By assumption on v, each vertex in C has at least one out-neighbor, and
all such out-neighbors are in C. Since N+(v) 6= ∅, we have that |C| > 2. The equivalence
relation induced by the partition {C}∪{{w} |w ∈ V (D) \C} is a non-trivial bisimulation
over D, contradicting the hyper-extensionality of D.

As far as iv) is concerned, suppose that D is an extensional acyclic digraph that admits
a non-trivial bisimulation B, and let x0, y0 be two distinct vertices of D so that x0By0. By
the extensionality of D, N+(x0) 6= N+(y0). Therefore, we may assume w.l.o.g. that there
exists an x1 ∈ N+(x0) \N+(y0). Since x0By0, there exists y1 ∈ N+(y0), thus y1 6= x1, so
that x1By1. The above procedure can be repeated indefinitely, which contradicts the fact
that D has no infinite descending directed paths.

A digraph satisfying condition iii) of Lemma 1.4.5 will be called channeled. The fol-
lowing lemma shows that hyper-extensional digraphs, even though not simple, are almost
channeled.

Lemma 1.4.6 If D is a hyper-extensional digraph, then at most one vertex v ∈ V (D)
with N+(v) = {v} exists.

Proof. The claim readily follows, since the equivalence relation induced by the partition
{{w} | w ∈ V (D) ∧N+(w) 6= {w}} ∪ {{v ∈ V (D) |N+(v) = {v}}} is a bisimulation over
D.

Historical remarks

A first axiomatization of set theory was proposed by Zermelo in 1908, with the goal
of avoiding logical traps that originate from the careless use of the intuitive notion of
set [153]. This axiomatization was subsequently improved by Skolem, Fraenkel, and also
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by von Neumann, who, in 1925, introduced the Foundation Axiom [149,150]. The concept
of rank appears first in Mirimanov [91], while Ackermann’s encoding of hereditarily finite
well-founded sets emerged in 1937 [2]. For more details on set theoretic concepts and
axiomatics, refer to [25, 70, 78]. Our graph theoretic notation generally follows [10, 44].
The term ‘picture of a set’ was coined by Aczel [3]. Mostowski’s collapsing lemma was
introduced in [93]. Weakly extensional acyclic digraphs were introduced in [124], in con-
nection with a counting problem, on which we report in Section 2.1.2. Slim extensional
acyclic digraph identified a class of digraph well-quasi-ordered by the digraph immersion
relation [121], and they were generalized to slim digraphs in [123]; Chapter 3 is devoted
to slim digraphs. Dependent and irredundant extensional digraphs were briefly mentioned
in [85], where it was argued that it is NP-complete to decide whether a graph admits such
an orientation.

The notion of bisimulation emerged in various fields, almost contemporarily: modal
logic [145], concurrency theory [89, 110], set theory [56], formal verification (cf. [37]). A
notable application of the stable partitioning problem appeared in Hopcroft’s work on
minimizing the number of states in a given finite state deterministic automaton [67]. A
linear-time algorithm for the stable partitioning problem, when the input relation corre-
sponds to a single function, was given by Paige, Tarjan and Bonic in [108]. This problem
was solved for the general case by Paige and Tarjan [107], with an algorithm of complex-
ity O(|E| log |V |) (it is open whether this problem admits a linear-time algorithm). A
linear-time algorithm for the case when the relation is well-founded was later given by
Dovier, Piazza and Policriti in [47]; this approach also produces a more efficient algorithm
for real-case instances than the one by Paige and Tarjan. The connection between stable
partitioning and the maximum bisimulation was observed in [72,73] (see also [47]). Refer
to [62] for other applications of partition refinement techniques.

The Anti-Foundation Axiom was introduced by Aczel in [3]; Barwise and Moss [12,
p. 5] indicate the paper by Forti and Honsell [56] as a precursor of Aczel’s set theory.
The term ‘hyperset’ was coined by [11]. In [3, 79], hyper-extensionality is called ‘strong
extensionality’. Our choice, motivated by the terminology of [11, 99], should emphasize
the fact that a more involved irredundancy criterion is at work here, much more complex
than, for example, the variants of extensionality considered at the end of Section 1.3.

Notational stipulations

We will use ZF− FA for the set of axioms of Zermelo-Fraenkel deprived of the Foundation
Axiom FA. Analogously, ZF − FA + AFA will denote Aczel’s hyperset theory. In the last
chapter we will also drop the Infinity Axiom from ZF and consequently employ ZF− instead
of ZF. Furthermore, the word ‘set’ will stand both for a flat collection of elements, and
for an element of a model of the theory ZF− FA. When willing to emphasize whether the
membership relation is well-founded or not, we will use ‘set’ for the theory ZF, ‘non-well-
founded set’ for the theory ZF− FA, and ‘hyperset’ for the theory ZF− FA + AFA.
We also use the shorthand (w.)e.a. digraph for a (weakly) extensional acyclic digraph.
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2
Combinatorial Enumeration of Sets

Enumerative combinatorics is concerned with counting finite discrete objects sharing com-
mon specified properties. In the 1960s, the following question was addressed: Given n,
how many sets S with n elements exist with the property that any element of S is also a
subset of S? This, of course, is the problem of counting transitive sets of cardinality n.
We will see in this chapter that the graph-theoretic interpretation of this problem offers
an elegant and simpler solution than the one given five decades ago. In doing so, we count
more general objects, that is, sets that can also have atoms, and bring to light connections
with the count of acyclic digraphs.

The well-foundedness of the membership relation between sets plays a crucial role in
this, since it allows one to do recursion. However, this is no longer the case when trying
to enumerate hypersets. This problem remains (wide) open, and we believe that the
ability to give a solution to it would have computational consequences for the maximum
bisimulation problem. Instead, we show that a canonical linear order can be given on
hypersets, so that it extends Ackermann’s celebrated order on well-founded sets. We also
show that hypersets can be mapped to numbers, with possible algorithmic implications.

As it is generally the case, with the increase of n, there is a combinatorial explosion
in the number of these sets (and digraphs), so that an exhaustive generation of them is
not possible. However, since one is usually interested in performing tests and benchmarks,
collecting statistical data, (dis)proving conjectures, these sets can be sampled uniformly
at random. In the last section of this chapter we adapt a Markov chain originally designed
for acyclic digraphs to work for extensional ones.
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2.1 Counting sets as extensional acyclic digraphs

In many cases, having an encoding of structurally rich objects into simpler domains not
only reveals certain hidden properties, but also facilitates many problems. An emblematic
example is the counting of labeled trees. Cayley’s formula [27] stating that there are nn−2

trees with vertex set {1, . . . , n} was obtained by counting trees by their vertex degrees.
However, there is a very simple and elegant encoding for such trees, called Prüfer code
[125], which readily yields this result. Prüfer established a bijection between trees with
vertex set {1, . . . , n} and vectors

(x1, . . . , xn−2) where each xi ∈ {1, . . . , n}, (2.1.1)

obtained in the following algorithmic way: at the ith step (1 6 i 6 n − 2), the least
remaining leaf is deleted, and xi is set to be the neighbor of this leaf. For further details
see [92], which enumerates many classes of trees.

Structurally alike to trees by some means, acyclic digraphs have a similar historical
outline. They were counted in an algebraic manner by Stanley [136], who showed that the
number of acyclic orientations of a labeled undirected graph equals the module of the value
its chromatic polynomial takes in the point −1. Independently, Robinson obtained the
count for unlabeled [130] and labeled [131] acyclic digraphs. Denoting by an the number
of labeled acyclic digraphs with vertex set {1, . . . , n}, his result states that

an =

n∑
k=1

(−1)k+1

(
n

k

)
2k(n−k)an−k, (2.1.2)

where a0 stands for 1. Harary and Palmer counted labeled acyclic digraphs with a given
number of sources [63, p. 19], while Gessel [59] counted them by sources, sinks and arcs.
Since an has no closed form, its asymptotic behavior was studied in [17,18].

Only recently, a Prüfer-like encoding of labeled acyclic digraphs emerged [137], which
also yields a recurrence relation for an. Steinsky’s bijection maps acyclic digraphs with
vertex set {1, . . . , n} into the set of vectors

(X1, . . . , Xn−1), where each Xi ⊆ {1, . . . , n} and (2.1.3)

for all 1 6 k 6 n− 1,

∣∣∣∣∣
k⋃
i=1

Xi

∣∣∣∣∣ 6 k.
Its algorithmic definition is analogous to the Prüfer code of a tree: at the ith step
(1 6 i 6 n − 1), the least remaining sink is deleted, and Xn−i is set to be its set of
in-neighbors. Since acyclic digraphs have many practical applications (e.g., in Bayesian
networks [76], Information Visualization [143]), Steinsky also put forward a procedure to
randomly generate them, by randomly generating the code of an acyclic digraph. The
same problem of generating acyclic digraphs has also been approached by a Markov chain
method in [83], and, for the weakly connected case, in [82].

It is not difficult to see that a code (X1, . . . , Xn−1) complying with (2.1.3) can also be
interpreted as being obtained in the following way: at the ith step, the least remaining
source is deleted, and Xn−i is set to be its set of out-neighbors. This vision is very
similar to Peddicord’s encoding of extensional acyclic digraphs [118], which we are about
to introduce.
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Bringing into play Ackermann’s order, Peddicord’s gave an encoding of transitive sets
with n elements by a two-tier approach. At the outset, he restricted Ackermann’s order
to the elements of such a set, then he used this relative order to give an Ackermann-like
encoding mapping its domain into the set of vectors

(x0, . . . , xn−1), where x0 = 0 and xi−1 < xi < 2i, for all 1 6 i 6 n− 1. (2.1.4)

Since transitive sets with n elements are in one-to-one correspondence with (unlabeled)
extensional acyclic digraphs with n vertices, Peddicord’s encoding of such a digraph D
can be viewed as follows. The lexicographic interpretation (1.1.2) of Ackermann’s order
can be readily used to give a linear order ≺D on the vertices of any extensional acyclic
digraph D. Using this, define a bijection πD : V (D) → {0, . . . , n − 1} to assign positions
to the vertices of D w.r.t. ≺DA , i.e.,

π(v) = |{u ∈ V (D) : u ≺D v}|. (2.1.5)

Then, at the ith step (1 6 i 6 n − 1) of the algorithmic encoding procedure, remove the
source v of D with π(v) maximum, and set

xn−i =
∑

w∈N+(v)

2π(w), (2.1.6)

that is, xn−i equals the number whose binary expansion has a ‘1’ in position π(w) if and
only if the vertex w is an out-neighbor of v. By counting how many encodings satisfying
(2.1.4) exist, Peddicord gave the following recurrence for ên, the number of unlabeled
extensional acyclic digraphs with n vertices,

ên =

(
2n−1 − 2

n− 2

)
−
n−3∑
k=1

(
2n−1 − 2k+1

n− k − 1

)
êk+1, (2.1.7)

where ê1 = 1 and ê2 = 1.

We also mention here a subclass of acyclic digraphs, namely labeled essential acyclic
digraphs, which has been investigated in [138], in connection with Bayesian Networks. A
digraph is said to be essential if for every arc u → v, N−(u) 6= N−(v) \ {u} holds. This
set-theoretic flavor is further emphasized by that fact that the recurrence satisfied by a′n,
which denotes the number of labeled essential acyclic digraphs with vertex set {1, . . . , n},
is quite similar to the one we will give in Section 2.1.1 for labeled extensional acyclic
digraphs.

a′n =
n∑
k=1

(−1)k+1

(
n

k

)
(2n−k − n+ k)ka′n−k, (2.1.8)

Furthermore, the ratio between labeled acyclic digraphs and labeled essential acyclic
digraphs is convergent, as n→∞ [139].

Since no direct counting recursion for extensional acyclic digraphs was considered be-
fore in the literature, our next section tackles this problem.
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2.1.1 Counting labeled extensional acyclic digraphs

Our first approach is to count labeled e.a. digraphs, and then use the automorphism group
of such a digraph to obtain the number of unlabeled e.a. digraphs.

Given two digraphs on n > 1 vertices bijectively labeled by numbers from the set
{1, . . . , n}, we say that they are identical if there exists an isomorphism preserving labels
between them. Denote by en the number of e.a. digraphs on n > 1 vertices labeled by
numbers from the set {1, . . . , n}. Clearly, e1 = 1 and in any acyclic digraph there is a
vertex v with d−(v) = 0.

For all i ∈ {1, . . . , n}, let Ei stand for the set of all e.a. digraphs with n vertices
labeled by numbers from the set {1, . . . , n} with the property that d−(i) = 0. By the
inclusion-exclusion principle, we have

en = |E1 ∪ E2 ∪ · · · ∪ En| =
n∑
k=1

(−1)k+1
∑

16i1<···<ik6n
|Ei1 ∩ · · · ∩ Eik |.

Next, we will see that∑
16i1<···<ik6n

|Ei1 ∩ · · · ∩ Eik | =
(
n

k

)(
2n−k − n+ k

)
k
en−k,

where we have used the falling factorial notation (x)k = x(x−1) . . . (x−k+1). Indeed, the
number of e.a. digraphs with n−k vertices labeled with numbers from the set {1, . . . , n}\
{i1, . . . , ik} is equal to en−k. The vertices labeled with i1, . . . , ik have the property that
d−(i1) = · · · = d−(ik) = 0, hence they can be joined by arcs having a unique orientation
only with the remaining n− k vertices. As the resulting digraph must be extensional, no
two of the k sources can have the same out-neighbors and, additionally, no source can have
the same out-neighbors as a vertex among the remaining n − k. Hence, |Ei1 ∩ · · · ∩ Eik |
is equal to

(
2n−k − (n− k)

)
. . .
(
2n−k − (n− k)− (k − 1)

)
en−k; as there exist

(
n
k

)
ways to

choose i1, . . . , ik, we get the above expression.
In conclusion, en =

∑n
k=1(−1)k+1

(
n
k

)
(2n−k−n+k)ken−k. Note that the nonnull terms

of this sum are for 2n−k > n, or, equivalently, for k 6 n−dlog2 ne. We have the following:

Theorem 2.1.1 The number en of labeled extensional acyclic digraphs on n > 1 vertices
is

en =

n−dlog2 ne∑
k=1

(−1)k+1

(
n

k

)
(2n−k − n+ k)ken−k, e0 = 1.

An automorphism of a digraph D is an isomorphism of D with itself, that is, a per-
mutation on V (D) that preserves adjacency and the orientation of arcs. It is well known
that (under the operation of composition) the set of all automorphisms of a digraph G
forms a group, denoted here by Aut(D), and referred to as the automorphism group of D.
By bringing into play the automorphism group of a digraph D on n vertices, it is possible
to determine the number of distinct labelings (i.e., not having the same set of arcs) of D
from the same set of n labels.

Lemma 2.1.2 (see [13, Ch. 9]) Let D be a digraph on n vertices. The number of dis-
tinct labelings of D is n!/|Aut(D)|.
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Lemma 2.1.3 Given an extensional acyclic digraph D, Aut(D) = {idD : V (D) →
V (D)}, where idD(v) = v, for all v ∈ V (D).

Proof. Let f ∈ Aut(D) and suppose that in the writing of the permutation f on V (D)
as a product of disjoint cycles there is a cycle c = (x1, . . . , xr) of length r > 2. Therefore,
f(x1) = x2, and, by the extensionality of D, N+(x1) 6= N+(x2). As f is an automorphism,
|N+(x1)| = |N+(x2)|, hence, N+(x1) 6= ∅ and there is a y1 ∈ N+(x1) \ N+(x2). If
f(y1) = y1, then (f(x1), f(y1)) = (x2, y1) ∈ E(D), contradicting y1 /∈ N+(x2). Therefore,
f(y1) 6= y1, and hence y1 belongs to a cycle of the permutation f on V (D) of length greater
than or equal to 2. We can repeat the above procedure indefinitely, and, as the number
of vertices of G is finite, we will reach a vertex already visited. We thus contradict the
acyclicity of D.

By considering two digraphs on n > 1 unlabeled vertices identical if they are isomor-
phic, we obtain by Lemmas 2.1.2 and 2.1.3:

Theorem 2.1.4 The number ên of extensional acyclic digraphs on n > 1 unlabeled ver-
tices is

ên =

n−dlog2 ne∑
k=1

(−1)k+1

(
2n−k − n+ k

k

)
ên−k, e0 = 1.

2.1.2 Counting weakly extensional acyclic digraphs by sources, vertices
of maximum rank, or arcs

Counting weakly extensional acyclic digraphs by sources

We consider now weakly extensional acyclic (w.e.a., for short) digraphs, having their sinks
labeled by distinct numbers from the set {0, . . . , |A|} (A to be intended as a finite set
of atoms). Two such w.e.a. digraphs D1 and D2 are said to be identical if there is an
isomorphism f : V (D1) → V (D2) such that for every sink v ∈ V (D1), the label of v in
D1 is the same as the label of f(v) in D2. As one can easily check, Lemma 2.1.3 can be
generalized into the following:

Lemma 2.1.5 If D is a w.e.a. digraph, then the only automorphism f : V (D) → V (D),
with the property that for any sink v of D f(v) = v holds, is the identity morphism.

We proceed next by counting unlabeled digraphs directly, by a recursion on the number
of sources. We will obtain a recurrence relation for the number of w.e.a. digraphs on n > 1
vertices, out of which 0 < s 6 n are sources and 0 < t 6 n are sinks labeled by numbers
from the set {0, . . . , |A|}, denoted here by ŵn,s,t. Clearly, ŵ1,1,1 = |A| + 1, and for all
n > 1, ŵn,s,t = 0, whenever s = 0 or t = 0, and ŵn,k,n = 0, ŵn,n,k = 0, for all 0 < k < n.
Moreover, ŵn,s,t = 0 whenever t > |A|+ 1. Note that if A is empty, ŵn,s,1 is the number
of e.a. digraphs with n > 1 vertices and 0 < s 6 n sources.

A w.e.a. digraph on n > 2 vertices, s sources and t sinks can be obtained from w.e.a. di-
graphs on n − 1 vertices by the addition of a source in several ways. First, a source can
be added to a w.e.a. digraph on n− 1 vertices, s− 1 sources and t− 1 sinks, by putting no
exiting arcs from it, such that it is a source and a sink at the same time. In all there are
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(|A| − t+ 2) ŵn−1,s−1,t−1 ways to add this vertex, as it can be labeled in |A|+ 1− (t− 1)
possible ways.

Second, a source can be added to a digraph on n − 1 vertices, s − 1 sources, and
t sinks. This will be connected to some of the n − 1 − (s − 1) vertices which are not
sources, such that in the resulting digraph its set of out-neighbors is nonnull and is different
from the set of out-neighbors of the (n − 1) − t vertices which are not sinks. There are
(2n−s−n+ t)ŵn−1,s−1,t ways to add this new source. Note that when 2n−s−n+ t < 0 the
above expression would not make sense, unless ŵn−1,s−1,t = 0. Indeed, if 2n−s−n+ t < 0,
then n− t− 1 > 2n−s − 1; since the set of out-neighbors of each of the n− t− 1 non-sink
vertices is one of the 2n−s − 1 nonnull subsets of the n− s non-source vertices, the claim
follows by the pigeonhole principle and extensionality.

Third, a new source can be added to a digraph on n − 1 vertices, t sinks and s + k
sources, for k = 0, . . . , n−s−1, by connecting the new source with exactly k+1 preexistent
sources. This new source can also have arcs towards the remaining n−1− (s+k) vertices.
In this case, the new source is not a sink and, since a preexistent source is among its
elements, it will certainly have the set of out-neighbors different from any set of out-
neighbors of the remaining n − 1 vertices. There are

(
s+k
k+1

)
2n−1−(s+k)ŵn−1,s+k,t ways to

add this vertex.

In the above process each w.e.a. digraph on n vertices, s sources, and t labeled sinks
has been obtained exactly s times, by the addition of each one of its s sources to exactly
one w.e.a. digraph on n− 1 vertices. In conclusion, the following theorem holds.

Theorem 2.1.6 The number ŵn,s,t of w.e.a. digraphs on n > 2 vertices, out of which
0 < s < n are sources, and 0 < t < n are sinks labeled by distinct numbers from the set
{0, . . . , |A|}, is

ŵn,s,t =
1

s

(
(|A| − t+ 2) ŵn−1,s−1,t−1 + (2n−s − n+ t)ŵn−1,s−1,t+

+
n−s−1∑
k=0

(
s+ k

k + 1

)
2n−1−(s+k)ŵn−1,s+k,t

)
,

where ŵ1,1,1 = |A|+1, and for all n > 1, ŵn,s,t = 0, whenever s = 0 or t = 0 or t > |A|+1,
and ŵn,k,n = 0, ŵn,n,k = 0, for all 0 < k < n.

We now give an alternative expression for ên by summing up the number of all exten-
sional digraphs with n vertices and s sources. Let ên,s be the number of e.a. digraphs on
n > 1 unlabeled vertices, out of which s (0 < s 6 n) are sources. Clearly, ê1,1 = 1 and
ên,n = 0 for all n > 2. Since ên,s = ŵn,s,1 we have:

Corollary 2.1.7 The number ên,s of extensional acyclic digraphs on n > 2 unlabeled
vertices, out of which 0 < s < n are sources, is

ên,s =
1

s

(
(2n−s − (n− 1))ên−1,s−1 +

n−s−1∑
k=0

(
s+ k

k + 1

)
2n−1−(s+k)ên−1,s+k

)
,

where ê1,1 = 1, and where we define ên,0 as 0, for all n > 1.
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2.1. Counting sets as extensional acyclic digraphs 29

By extensionality and the pigeonhole principle, ên,s 6= 0 only for 2n−s > n, or equiva-
lently, for s 6 n− dlog2 ne. Hence, we have the following expression for ên, for n > 1:

ên =

n−dlog2 ne∑
s=1

ŵn,s,1 =

n−dlog2 ne∑
s=1

ên,s.

Counting weakly extensional acyclic digraphs by vertices of maximum rank,
or by arcs

Next, we employ the set-theoretic notion of rank, which in fact produces the simplest
recursion. Note again that if a vertex has maximum rank, then it is a source, but the
converse does not hold.

Let ŵ r
n stand for the number of w.e.a. digraphs on n > 1 vertices, out of which

0 < r 6 n are vertices of maximum rank, and with an arbitrary number of sinks labeled
by distinct numbers from the set {0, . . . , |A|}.

Theorem 2.1.8 The following recurrence relation holds for all n > 2 and all 0 < r < n:

ŵ r
n =

n−r∑
k=1

ŵ k
n−r

(
(2k − 1)2n−r−k

r

)
,

where ŵ n
n =

(|A|+1
n

)
, for all n > 0.

Proof. A w.e.a. digraph Dr
n on n vertices out of which r have maximum rank can be

obtained by adding r new vertices to a w.e.a. digraph Dk
n−r on n− r vertices out of which

k have maximum rank (1 6 k 6 n − r), such that in Dr
n only the new r vertices have

maximum rank. There are (2k − 1)2n−r−k total candidates for each set of out-neighbors
of these r vertices, as from the set of k vertices of maximum rank of Dk

n−r at least one
vertex must be chosen, while there is no restriction concerning the remaining n − r − k
vertices. Since the sets of out-neighbors of the new r vertices must be pairwise distinct,

there are
(

(2k−1)2n−r−k

r

)
ways of adding these vertices to Dk

n−r.

Corollary 2.1.9 The number ê rn of extensional acyclic digraphs on n > 2 unlabeled ver-
tices, out of which 0 < r < n are vertices of maximum rank, is

ê rn =

n−r∑
k=1

ê kn−r

(
(2k − 1)2n−r−k

r

)
, ê 1

1 = 1.

Extensional digraph can also be enumerated by arcs; however, the resulting recursions
are quite involved. Denote by zn,r,m the number of w.e.a. digraphs on n > 1 vertices, out
of which 1 6 r 6 n are vertices of maximum rank, and having 0 6 m 6

(
n
2

)
arcs. We also

let an,ir,m stand for the number of ways of adding r > 1 new vertices to a w.e.a. digraph on
n > 1 vertices out of which i are vertices of maximum rank (1 6 i 6 n), by connecting
them with at least one of the i vertices of maximum rank, using a total of m arcs (m > r),
such that the sets of out-neighbors of the r new vertices are pairwise distinct.

For all n > 1, 1 6 r < n, 0 6 m 6
(
n
2

)
, we can write:
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zn,r,m =

m−r∑
k=0

n−r∑
i=1

zn−r,i,m−r−ka
n−r,i
r,r+k,

where zn,n,0 =
(|A|+1

n

)
, for 1 6 n 6 |A|+ 1; and for all n > 1, 1 6 r 6 n, zn,r,m = 0 when

m >
(
n
2

)
, and zn,n,m = 0 when m > 0.

In order to find a recurrence relation for an,ir,m, we shall denote by an,ir,m,t,c the number
of ways of adding these new r vertices, with the restriction that the maximum cardinality
of the sets of out-neighbors of the new vertices is c > 1 and that there are exactly t out of
the r new vertices with this cardinality (1 6 t 6 r).

Lemma 2.1.10 The following recurrence relation holds for all n > 1, 1 6 i 6 n, r > 1,
m > 0, 1 6 t 6 r, 1 6 c 6 m,

an,ir,m,t,c =

((n
c

)
−
(
n−i
c

)
t

) c−1∑
d=1

r−t∑
s=1

an,ir−t,m−tc,s,d,

where for all n > 1, t > 1, c > 1, an,it,tc,t,c =
((nc)−(n−i

c )
t

)
; and an,ir,m,t,c = 0 when tc > m or

r = t, but m 6= tc.

Proof. Since the t vertices of maximum cardinality c must be added along r − t vertices
of cardinality strictly less than c, their sets of out-neighbors will be different from the sets
of the out-neighbors of the existing r − t vertices. Therefore, we have to deal only with
possible collisions among the sets of out-neighbors of cardinality c of the t new vertices.
As they have to contain at least one of the i vertices of maximum rank and must have
cardinality c, there are

(
n
c

)
−
(
n−i
c

)
total candidates for each such set of out-neighbors.

Since the sets of out-neighbors of the t new vertices must be pairwise distinct, there are((nc)−(n−i
c )

t

)
ways of adding these vertices.

Since for all n > 1, 1 6 i 6 n, r > 1, m > r it holds that an,ir,m =
∑m

c=1

∑r
t=1 a

n,i
r,m,t,c,

we have:

Theorem 2.1.11 For all n > 1, 1 6 r < n, 0 6 m 6
(
n
2

)
, the following recurrence

relation holds

zn,r,m =

m−r∑
k=0

n−r∑
i=1

r+k∑
c=1

r∑
t=1

zn−r,i,m−r−ka
n−r,i
r,m,t,c,

where zn,n,0 =
(|A|+1

n

)
, for 1 6 n 6 |A|+ 1; and for all n > 1, 1 6 r 6 n, zn,r,m = 0 when

m >
(
n
2

)
, and zn,n,m = 0 when m > 0.

Numerical evaluations and asymptotic relations

Tables 2.1 and 2.2 contain some numerical evaluations for the recurrences given here. They
suggest the following asymptotic relations, for n→∞:

1. an ∼ α en, where α ≈ 3.06551;

2. ên ∼ β ên,1, where β ≈ 1.74106;
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n ên,1 ê 1
n ŵ1

n, |A| = 1
∑n

t=1 ŵn,1,t ŵ1
n

1 1 1 2 1 1
2 1 1 2 2 2
3 2 2 7 9 15
4 8 8 28 84 132
5 68 76 284 1525 2335
6 1248 1504 5580 52954 79390
7 48640 62496 233600 3515169 5150593
8 3944336 5268272 19670856 448310168 648010744
9 655539168 897967376 3355273808 110518465641 158419173639

10 221111497856 307446110592 1148666852000 52956014818266 75557378403958

Table 2.1: Numerical evaluations for (w.)e.a. digraphs with a unique source and (w.)e.a. di-
graphs with a unique vertex of maximum rank. In the lower table we have chosen
|A|+ 1 = n.

n an/en ên/ên,1 ên/ê
1
n ŵ1

n/ê
1
n , |A| = 1 ŵ1

n/
∑n

t=1 ŵn,1,t

5 2.772 1.294 1.157 3.736 1.531
6 2.914 1.443 1.198 3.710 1.449
7 2.988 1.554 1.209 3.737 1.465
8 3.026 1.628 1.218 3.733 1.445
9 3.046 1.674 1.222 3.736 1.433

10 3.055 1.702 1.224 3.736 1.426
15 3.065 1.739 1.226 3.736 1.419
20 3.065 1.740 1.226 3.736 1.419
25 3.065 1.741 1.226 3.736 1.419
30 3.065 1.741 1.226 3.736 1.419

Table 2.2: The ratio between some of the recurrences given in this section. In the last row
we have chosen |A|+ 1 = n.

3. ên ∼ γ ê 1
n , where γ ≈ 1.22666;

4. ŵ1
n ∼ δ ê 1

n , where δ ≈ 3.73638, if |A| = 1;

5. ŵ1
n ∼ ε

∑n
t=1 ŵn,1,t, where ε ≈ 1.41935, if |A| is chosen as n− 1.

Employing methods from generating functions and complex analysis, Stephan Wagner
proved relations 1–4 in [152]. Wagner also noted that, since almost all acyclic digraphs
have a trivial automorphism group (cf. [18]), relation 1 holds for unlabeled extensional
acyclic digraphs as well. Moreover, the following two theorems were also proved.

Theorem 2.1.12 (Wagner [152]) The maximum rank of a vertex in a random exten-
sional acyclic digraph with n vertices is asymptotically normally distributed with mean
∼ 0.764334n and variance ∼ 0.145210n.

Theorem 2.1.13 (Wagner [152]) The number of arcs in a random extensional acyclic
digraph with n vertices is asymptotically normally distributed, with mean ∼ 1

2

(
n
2

)
and

variance ∼ 1
4

(
n
2

)
.
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2.2 An Ackermann-like enumeration of hypersets

Combinatorial enumeration of hereditarily finite hypersets is much less understood. There
is as yet no counting recursion for the number of hyper-extensional digraphs with n ver-
tices. A brute-force approach was employed in [88] with the help of a computer program
that generated all digraphs with at most 5 vertices and counted how many of them are
devoid of distinct bisimilar vertices. A similar problem was addressed in [95], which gave
the complete lists of Finsler, Scott and Boffa transitive non-well-founded sets with at most
3 elements.

In this section, we are concerned instead with giving a ‘natural’ extensional of Ack-
ermann’s order to hereditarily finite hypersets. Traditional sets, HF, will retain in our
bijection the same images as before; together with those images, which span all natural
numbers, the images of hereditarily finite hypersets will span the set of all dyadic rationals.
The choice of this numeric domain stems from the rationale that we want the membership
relation to be readable, as before, from the binary representation of numbers. Our pro-
posed extension will result from a natural move: we will construct both correspondences,
Ackermann’s and our own, via a splitting technique borrowed from algorithmics.

We can easily realize (cf. also [79]) that an extension of the Ackermann order to the
entire HF cannot be carried out naively on the basis on the property (1.1.2): to see this,
consider the hypersets a = {b}, b = {a, ∅}. Since ∅ ≺ a, we have max≺{c : c ∈ a \ b} = b
and max≺{c : c ∈ b\a} = a. Property (1.1.2) then implies a ≺ b⇔ b ≺ a, a contradiction.

A less naive attempt—which will, in fact, ultimately work—starts with the Ackermann
function NA (from which the Ackermann order can be defined), and tries to extend it to
an encoding QA from HF to a larger codomain Y ⊃ N. This must be done in such a way
as to maintain the characteristic properties of NA, which we can state as follows:

• a “simple” recursive routine manipulating sets should allow one to get the code
y = QA(a) from any given a;

• a “simple” reading of the code y should allow one to inductively determine the
extension of the (unique) set a, such that y = QA(a).

We would also like to have a property corresponding to (1.1.1), which suggests what
follows. As natural numbers have a twofold purpose in the Ackermann coding, being used
both as positions inside a code NA(a) and as the code itself, what happens if we split this
purpose into two, by means of two functions, one assigning a position to each hereditarily
finite hyperset and the other assigning a code to it? Since positions relative to natural
numbers are already occupied by well-founded sets, it is natural to add negative positions
to be used for hypersets. This will result in employing an extra function ZA mapping into
integers in place of natural numbers. By proceeding as outlined, we will obtain a (dyadic)
rational number QA(a) as code of a, and we will aim at the following extension of property
(1.1.1):

the binary representation of QA(a) has a 1 in position ZA(b) if and only if b ∈ a, (2.2.1)

with both ZA and QA extending NA.

In sight of defining the function ZA, which will be obtained via an extension to HF of
the Ackermann Order ≺ on HF, we now provide a concrete characterization of ≺, based
on the so-called splitting technique for the stable partitioning problem (see also [79]).
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2.2.1 A new look at the Ackermann order

We will work out an inductive characterization of Ackermann’s order ≺ of HF, grounding
it on the splitting technique devised in [107] for the stable partitioning problem, which
was subsequently refined—to cite two among many—in [47] and [119]. In the ongoing, it
will be used to impose an order on HF; then, in Section 2.2.2, it will be used to order HF
similarly.

For the stable partitioning problem, one is given a partition π? along with a relation
R on

⋃
π?, and must find the coarsest π? of all partitions that refine π? and are R-stable.

Proceeding top-down, one can begin with π = π? to then replace within π, as long as there
are blocks p, q for which p ∩ R−1[q] and p \ R−1[q] are nonnull, p by the latter two sets.
If
⋃
π? is finite, one will at last attain the desired π? as value of π; more or less rapidly,

depending on the order in which blocks are processed and split.
Within the stabilization process, the basic splitting action, namely replacing p by

p ∩R−1[q] and p \R−1[q], can be packaged together with many other actions of the same
kind; for example (as proposed in [107]), one can trace all p’s which can be split by the
same q, and replace each of them by the resulting two blocks before seeking another q.
Proceeding the other way around (as we will do), one can locate a p which is unstable
relative to at least one q, and then supersede p inside π, in a single shot, by all equivalence
classes into which p gets partitioned by the equivalence relation

x ∼R y ↔Def ∀ q ∈ π
(
x ∈ R−1[q]⇔ y ∈ R−1[q]

)
.

In the two cases which we will study, R will be 3, while the initial partition π? will
first satisfy

⋃
π? = HF and then

⋃
π? = HF. Despite

⋃
π? being infinite in either case,

infinite repetition of the basic splitting action will end into something valuable. To set
the ground for this on a simple preliminary example, suppose here that π? = {HF}, let
π0 = π?, and then for n = 0, 1, 2, . . . :

• observe that there is exactly one infinite block pn ∈ πn;

• observe that pn is a culprit of the instability of πn, as the sets

{x : x ∈ pn | x ∩ pn 6= ∅ } and {x : x ∈ pn | x ∩ pn = ∅ }

are nonnull (actually, the former is infinite);

• put

πn+1 = (πn \ { pn }) ∪
{
{x : x ∈ pn | x ∩ pn 6= ∅}, {x : x ∈ pn | x ∩ pn = ∅}

}
,

that is, we split the class pn by using pn itself as a splitter. At the conclusion,
{
{x :

x ∈ pn | x ∩ pn = ∅ } : n ∈ N
}

turns out to be the partition of HF whose blocks are
the rank-equality classes. These blocks are all finite, but not singletons: an indication,
since stable partitioning must give us the bisimilarity classes, that stability has not been
attained as yet.

In what we are about to see, we resume work with the partition just found. We will
sequence successive splitting actions fairly enough that the stable partition will result after
denumerably many actions; along the way, we will impose an order on the singleton blocks.
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An inductive definition of the Ackermann Order

Processing the collection HF will amount to defining a countable sequence (X n)n∈N of
ordered partitions X n = {Xn

i : i ∈ N } of it. Each partition X n+1 will turn out to be an
ordered refinement of X n, namely (for all i, j, h, k ∈ N):

∃k(Xn+1
i ⊆ Xn

k ), (2.2.2)

Xn+1
i ⊆ Xn

k ∧ Xn+1
j ⊆ Xn

h ∧ k > h⇒ i > j . (2.2.3)

That is, X n+1 v X n and the ordering of the subblocks into which the blocks of X n get
split in the formation of X n+1 will be consistent with the preceding ordering.

For all n, we will maintain the invariant

Finite (Xn
i ) ∧

(
x ∈ Xn

h ∧ rank(y) < rank(x) ∧ y ∈ Xn
k ⇒ h > k

)
, (2.2.4)

implying that the blocks of X n are finite and they, as well as their elements, are ordered in
a way complying with rank comparison—hence complying, in this well-founded case, with
membership. This is important because we want sets to be sorted à la Ackermann when,
at the end of the process, the partition will be 3-stable and blocks will be singletons. To
meet (2.2.4) at the outset, we define X 0 by putting

X0
i = {x : x ∈ HF | rank(x) = i } for all i ∈ N.

Preliminary to defining X n+1, we consider the smallest index h such that the block
Xn
h can be split in the sense that there exist x, y ∈ Xn

h , and some k, such that x shares
elements with Xn

k whereas y does not. We also consider the equivalence relation ∼3 on
Xn
h given by

x ∼3 y ⇔ ∀k(Xn
k ∩ x = ∅ ↔ Xn

k ∩ y = ∅ ).

Then we consider the partition induced by ∼3 on Xn
h , ordered as follows: given two

∼3-classes Z ′, Z ⊆ Xn
h , put Z ′ before Z if and only if, for w ∈ Z ′ and z ∈ Z, the largest

mismatch position k between w, z ‘favors’ z, i.e.

Xn
k ∩ w = ∅ ∧ Xn

k ∩ z 6= ∅ ∧ ∀j > k(Xn
j ∩ w = ∅ ↔ Xn

j ∩ z = ∅ ).

It plainly ensues from the definition of ∼3 that the mismatch position does not depend
on the choice of w and z; hence this relationship imposes an order Z0, Z1, . . . , Zm (m > 1)
on the ∼3-equivalence classes of Xn

h . On this ground we can put:

Xn+1
i =


Xn
i if i < h,

Zi−h if h 6 i 6 h+m,
Xn
i−m if h+m < i.

(2.2.5)

In the well-founded case at hand, an inductive argument on n shows that the smallest
index h such that Xn

h can be split coincides with the smallest index h such that Xn
h is

not a singleton; moreover, it turns out that the relation ∼3 induces a partition of Xn
h into

singleton blocks. These verifications are straightforward, and we leave them to the reader.
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Properties (2.2.4), (2.2.2), and (2.2.3) hold throughout the construction and every
element of HF will eventually belong to a singleton class. Given n ∈ N and x ∈ HF, let
f(x, n) ∈ N be such that

x ∈ Xn
f(x,n).

Then one can easily prove that the full Ackermann order of Section 1.1 is the limit of
the X n’s, that is:

x ≺ y ⇔ ∃n
(
f(x, n) < f(y, n)

)
.

The previous construction will be generalized next to hypersets, by producing a se-
quence (Yn)n∈N of ordered partitions, whose limit linearly orders HF. For all n ∈ N, the
ordered partition Yn+1 will still be an ordered refinement of Yn, but we will not have the
possibility to prove that Yn+1 results from splitting into singleton classes the first class of
Yn which is not a singleton: in spite of the close analogy between the constructions, the
splitting process will behave differently in the case of hypersets.

2.2.2 An Ackermann order on hereditarily finite hypersets

Let us say that a linear order ≺ is an Ackermann order if it extends the Ackermann order
of HF to a superset of HF. In order to get such an order on HF, we will mimic the splitting
process just given for HF. In analogy with the above, we will build a sequence (Yn)n∈N
of ordered partitions Yn = {Y n

i : i ∈ N} of HF, where each partition Yn+1 is an ordered
refinement of Yn. The Yn’s are constructed inductively again, starting with an Y0 which,
by way of first approximation, is taken arbitrarily; as we will see, a linear order on HF will
result as the limit of the sequence (Yn)n∈N if all blocks in Y0 are finite. Moreover, one
further restraint must be met by Y0 in order that this ≺ be an Ackermann order on HF.

The splitting procedure on HF

At step n + 1, the ordered partition Yn+1 is defined as a refinement of Yn, in complete
analogy with the splitting action exploited in the well-founded case. We say that a block
Y n
i can be split if it contains two inequivalent elements with respect to the relation ∼3

defined by

x ∼3 y ⇔ ∀j (Y n
j ∩ x = ∅ ↔ Y n

j ∩ y = ∅ ). (2.2.6)

By considering the smallest number h such that Y n
h can be split, and the partition of the

block Y n
h induced by ∼3, we proceed exactly as before to sort the ∼3-equivalence classes

of Y n
h as Z0, Z1, . . . , Zm (m > 1). Then we put:

Y n+1
i =


Y n
i if i < h,
Zi−h if h 6 i 6 h+m,
Y n
i−m if h+m < i.

(2.2.7)

In sight of getting a linear order of HF, we define as before the dyadic relation

x ≺ y ⇔ ∃n
(
f(x, n) < f(y, n)

)
(2.2.8)

over HF in terms of the function f : HF× N −→ N such that x ∈ Y n
f(x,n).

However, as we see in the following example, the relation ≺ is not necessarily a linear
order.
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36 2. Combinatorial Enumeration of Sets

Example 2.2.1 Suppose Y0 = {HF}, x = Ω, and y = {∅,Ω} for the unique hyperset
Ω such that Ω = {Ω}. Then f(x, 2) < f(y, 2) and hence x ≺ y. As is easily proved by
induction, for all n the class Y n

f(x,n) contains, besides x, the sequence ∅n, ∅n+1, ∅n+2, . . .

where ∅1 = ∅ and ∅n+1 = {∅n}. It follows that f(x, n) coincides with the smallest index h
such that Y n

h can be split. This implies that the non-singleton class Y n
f(y,n) is never split,

and if z ∈ Y n
f(y,n) \ {y} then neither z ≺ y nor y ≺ z holds.

We next give a necessary and sufficient condition for the relation ≺ defined in (2.2.8)
to be a linear order on HF:

Lemma 2.2.2 The relation ≺ is a linear order if and only if

∀x, y ∈ HF
(
∀n
(
f(x, n) = f(y, n)

)
→ ∀n ∀j

(
Y n
j ∩ x = ∅ ↔ Y n

j ∩ y = ∅
))
, (2.2.9)

i.e., iff any sets x, y in HF that remain forever together in the same block never mismatch.

Proof. Condition (2.2.9) is clearly necessary in order that ≺ be a linear order.

Conversely, suppose (2.2.9) holds. Preliminary to proving that ≺ is a linear order,
observe that ≺ is irreflexive and transitive; hence we must only prove that when x 6= y
holds there exists n ∈ N such that f(x, n) 6= f(y, n). This in turn follows from the fact
that the relation [ ⊆ HF× HF defined by

x [ y ⇔ ∀n
(
f(x, n) = f(y, n)

)
is a bisimulation. To see this, suppose x [ y and x′ ∈ x; then x′ ∈ Y n

f(x′,n) ∩x for all n ∈ N.

By (2.2.9) we obtain that also Y n
f(x′,n) ∩ y 6= ∅ for all n ∈ N. Since y is a finite set, from

Y n
f(x′,n) ∩ y 6= ∅ for all n ∈ N we deduce the existence of an element y′ ∈ y belonging to all

classes Y n
f(x′,n). This implies that x′ [ y′.

Likewise, x [ y and y′ ∈ y implies the existence of an x′ ∈ x such that x′ [ y′.

One natural choice to achieve the condition expressed in Lemma (2.2.2) is to start
the splitting process from a partition composed by finite sets, as the following Corollary
shows.

Corollary 2.2.3 If Y0 = {Y 0
i : i ∈ N}, where every Y 0

i is finite, then ≺ linearly orders
HF.

Proof. We can prove that ≺ is a linear order by applying the above lemma, that is by
proving that (2.2.9) holds. Assume x and y are such that there exists a stage n and a
position j such that Y n

j ∩ x = ∅ ↔ Y n
j ∩ y 6= ∅. If x and y belong to the same class Y n

i ,

it follows from our hypothesis on Y0 that at stage n the number of elements belonging to
classes preceding Y n

i is finite. This is sufficient to guarantee that x and y will be eventually
separated.

Corollary (2.2.3) ensures the existence of infinitely many linear orders on HF built
up using the splitting procedure. Among them, we find an Ackermann order if the first
partition Y0 is defined by resorting to a suitable notion of rank.
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A rank notion for HF

We now define a notion of rank for the hereditarily finite hypersets HF. First, for x, y ∈ HF
we define a x, y-path of length ` > 0 to be a sequence x0 = x, x1, . . . , x` = y such that

1. xi 6= xj , for all i, j ∈ {0, . . . , `}, i 6= j;

2. xi+1 ∈ xi, for all i ∈ {0, . . . , `− 1}.

Then, the depth d(x, y) of y relative to x is the maximum length of a x, y-path, if any.

Definition 2.2.4 Let x ∈ HF. The rank of x is

rank(x) =Def max
({
d(x, y) : y ∈ TrCl({x})

})
.

Equivalently, the rank of a hyperset is the longest length of a directed path starting from
its point. For example, the hypersets Ω = {Ω} and x = {Ω, ∅} have rank 0 and 1,
respectively.

The above definition of rank extends the classical one for well-founded sets and allows
us to define a hierarchy of hereditarily finite hypersets. The rest of this section places
a computable bound on the number of hereditarily finite hypersets of rank equal to n.
The strategy is to place a bound r(n) on the cardinality #TrCl({x}), where x ∈ HF
and rank(x) = n; indirectly, this gives us the desired bound, as the overall number of
membership digraphs with a bounded number of vertices can be computed.

Given x ∈ HF and v ∈ TrCl({x}), and a x, v-path π, we define

TrCl(x, π, v) =Def {v} ∪ { z : z ∈ TrCl({x}) | there exists a v, z-path whose

components (other than v) do not belong to π}.

For all n > 0 and 0 6 k 6 n, we let r(n, k) be an upper bound for

max
rank(x)=n, π a x, v-path of length k

#TrCl(x, π, v).

Since TrCl({x}) = TrCl(x, [x], x),1 the desired bound r(n) is actually r(n, 0). In order to
express r(n, k) recursively, we proceed by induction on n− k.

When k = n, consider x, v ∈ HF, rank(x) = n, and a x, v-path π of length n. If there
would exist a z ∈ TrCl(x, π, v) \ {v}, then there would also exist a x, z-path of length at
least n+ 1, violating the rank of x. Hence r(n, n) can be chosen as 1.

Assuming that we have r(n, k+1), we look for r(n, k). Let again x, v ∈ HF, rank(x) = n,
and π be a x, v-path of length k. Clearly,

TrCl(x, π, v) = {v} ∪
⋃

w∈(TrCl(x,π,v)∩v)\{v}

TrCl(x, [π,w], w).

Since for all w ∈ (TrCl(x, π, v) ∩ v) \ {v} the path [π,w] has length k + 1,

#TrCl(x, π, v) 6 1 +
∑

w∈(TrCl(x,π,v)∩v)\{v}

r(n, k + 1).

1For x, y, z ∈ HF, and π a x, y-path not containing z, we denote by [π, z] the path π immediately
followed by z. Moreover, we let [x] stand for the unique x, x-path.
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Hence, in order to calculate a bound for r(n, k) we just need to know how many different
elements w we find in (TrCl(x, π, v)∩v)\{v}. Now, a hyperset w is always characterized by
the isomorphic type of its membership digraph (GTrCl({w}), w); if w ∈ (TrCl(x, π, v)∩v)\{v}
and z ∈ TrCl({w}) then either z ∈ TrCl(x, [π,w], w), or ∃z′ ∈ π such that z ∈ TrCl({z′}).
This implies that the elements w ∈ (TrCl(x, π, v) ∩ v) \ {v} may be characterized by two
factors:

1. the membership digraph of TrCl(x, [π,w], w) which has at most r(n, k + 1) vertices;

2. for each element u ∈ TrCl(x, [π,w], w), the set u ∩ π, having at most k + 1 vertices.

Since there are at most 2r
2(n,k+1) ways to build membership digraphs with at most

r(n, k + 1) vertices, and at most 2k+1 ways to add ‘external’ children in π to an element
of TrCl(x, [π,w], w), we can set

r(n, k) 6 1 + r(n, k + 1)2r
2(n,k+1)2(k+1)r(n,k+1).

In conclusion we have, for all n:

Lemma 2.2.5 There are finitely many hereditarily finite hypersets of rank n.

Remark 2.2.6 Notice that hereditarily finite hypersets behave differently than arbitrary
pointed finite digraphs with respect to Definition 2.2.4. If we define the rank of a pointed
digraph as the maximum length of a directed path starting from the initial point, then it is
not true that the number of pointed finite digraphs with rank smaller than n is finite: e.g.
the daisies Gn = ({a0, a1, a2, . . . , an}, E) with E = {(a0, ai) : i ∈ {1, . . . , n}} ∪ {(ai, a0) :
i ∈ {1, . . . , n}} and initial point a0 are pairwise non isomorphic and all have rank equal
to one.

An Ackermann Order on HF

We start with the partition

Y0 = {Y 0
i : i ∈ N }

where Y 0
i = {x : x ∈ HF | rank(x) = i}, for all i > 0. Consider the splitting sequence

(Yn)n∈N defined as in Section 2.2.2. By Lemma (2.2.5), each class Y 0
i contains a finite

number of hypersets, and from Lemma (2.2.3 ) it follows that the order ≺, defined by

x ≺ y ⇔ ∃n ∈ N(f(x, n) < f(y, n)),

is a linear order on HF. Since the construction is a generalization of the splitting procedure
on HF, and well-founded sets only contain well-founded sets, the order ≺ extends the
Ackermann order on HF.

Example 2.2.7 We consider as an example the HF hypersets depicted in Figure 2.1.

The hypersets a, b, c, d, e, f are all non-well-founded; a, d have rank equal to 3, while
b, c, e, f have rank equal to 2. Hence a, d belong to Y 0

3 , while b, c, e, f belong to Y 0
2 . The

splitting procedure goes as follows:

[∅ . . .] . . . [b, c, e, f . . .][a, d . . .] . . .
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∅

f

e

d

c

b

a

Figure 2.1: Hypersets a = {b}, b = {c, a}, c = {a, ∅}, d = {e}, e = {f}, f = {d, ∅}

[∅] . . . [e . . .][c, f . . .][b . . .][a, d . . .] . . .
[∅] . . . [e . . .][c, f . . .][b . . .][d . . .][a . . .] . . .

[∅] . . . [e . . .][f . . .][c . . .][b . . .][d . . .][a . . .] . . .
Hence, the final order ≺ on a, b, c, d, e, f satisfies

∅ ≺ e ≺ f ≺ c ≺ b ≺ d ≺ a.

Remark 2.2.8 Notice that the extended Ackermann order ≺ resulting from the above
construction is by no means unique. Arguing as in the preceding section, in fact, we
see that the splitting process could have started with any partition Y0 = {Y 0

i : i ∈ N}
composed of finite sets Y 0

i with Y 0
i ⊇ {x : x ∈ HF | rank(x) = i}: the limit of the sequence

(Yn)n∈N would then have been an Ackermann order as well.

The above remark suggests that in the presence of hypersets, different notions of rank can
be used to ground the splitting procedure.

Hereditarily finite hypersets as dyadic numbers

We are now ready to introduce the extension of the Ackermann function. First, we use the
order ≺ on HF just defined to give positions to hypersets in HF. As explained before, we
need to use integer positions, since natural positions are already occupied by well-founded
sets.

If a ∈ HF, define:

ZA(a) =

{
|{ b : b ∈ HF | b ≺ a }| if a ∈ HF,

−|{ b : b ∈ HF \ HF | b ≺ a }| − 1 if a ∈ HF \ HF.

Let Q2 be the set of all dyadic numbers, that is,

Q2 =
{ n

2m
: n,m ∈ N

}
.

Dyadic numbers are rational numbers having a binary expansion with a finite number of
digits.

We define a bijection QA from HF to dyadic numbers as follows:

QA(a) = Σb∈a2
ZA(b).

All properties announced at the beginning are satisfied. In particular:
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• QA : HF → Q2 extends the Ackermann function NA : HF → N; that is, QA(x) =
NA(x) holds when x ∈ HF.

• A simple reading of the code y ∈ Q2 allows us to inductively determine the extension
of the hyperset a such that y = QA(a). This is because from the digits of y we
determine the positions ZA(b) of all b ∈ a, and, since the bijection ZA is effective,
from ZA(b) we are able to determine b.

• A simple recursive routine manipulating hypersets allows us to build the code y =
QA(a) from any given hereditarily finite hyperset a, because if we know a we can
compute ZA(b) for all b ∈ a, and hence QA(a).

The twofold role of the Ackermann function NA : HF → N, by which NA(a) acts at
the same time as code and as position for the hereditarily finite set a, must be played by
distinct functions in the case of hypersets: for these, ZA : HF→ Z defines positions while
QA : HF→ Q2 assigns codes.

Mapping Q2 into HF

A final, natural, question can arise when considering the mapping QA: is a mapping of
opposite direction—namely, a mapping from Q2 into HF—definable?

Clearly, if no constraint is imposed, the answer is yes. However, if one requires some
kinship with von Neumann’s injection of N into HF, then the question becomes intriguing.
In our opinion, a minimal requirement to impose on any h : Q2 → HF extending von
Neumann’s one, is the following:

∀a ∈ Q2 ∀x ∈ h(a) ∃b ∈ Q2 (b 6 a ∧ x = h(b)) . (2.2.10)

It can be shown that a function h satisfying the above property cannot be defined. If
such a function existed, fix an x ∈ (0, 1) ∩ Q2, and, among the y ∈ (0, x) ∩ Q2, consider
one with TrCl({h(y)}) of minimal cardinality and call it yx. We claim that h(yx) must be
either Ω or the solution Ω′ to the equation X = {X, ∅}. This can be proved as follows.
If a ∈ h(yx) and a 6= ∅, by (2.2.10) we find z ∈ (0, yx] ∩ Q2 with h(z) = a; moreover,
by minimality of |TrCl({h(yx)})|, we must have TrCl({h(z)}) = TrCl({h(yx)}). Hence
h(yx) ∈ TrCl({h(z)}), which, by (2.2.10), implies z = yx. Hence, all non empty elements
of h(yx) must be equal to h(yx), which proves that either h(yx) = Ω or h(yx) = {h(yx), ∅}.

From the claim we easily reach a contradiction by considering x1 = y1/2, x2 = yx1 and
x3 = yx2 , since we should have both x1 < x2 < x3 and h(xi) ∈ {Ω,Ω′}.

2.3 Random generation of sets

Since a set is such a basic mathematical object, one is interested in sampling uniformly at
random sets for performing tests and benchmarks, collecting statistical data, (dis)proving
conjectures, etc. We tackle here the problem of randomly generating transitive sets with
n elements, or equivalently, extensional acyclic digraphs with n vertices. Notice that,
in light of the result of [152] stating that the asymptotic ratio between labeled acyclic
digraphs and labeled e.a. digraphs is constant, the latter class of digraphs can be sampled
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by running a sampler for acyclic digraphs and checking whether the produced digraph is
extensional. However, we aim here for a direct method tailored to (w.)e.a. digraphs.

We will do this by adapting a Markov chain based procedure for generating acyclic di-
graphs, first introduced in [83], to our set-theoretic universe. This Markov chain algorithm
was already modified in [82] to generate simply connected acyclic digraphs. The random
generation of elements from a particular class of acyclic digraphs modeling Bayesian net-
works was proposed in [68]. Finally, the same approach was used in [26] to generate
deterministic acyclic automata. Each of these examples can be seen as a less basic case
than the one tackled here.

The idea behind this Markov chain technique is to start with an arbitrary (weakly)
extensional acyclic digraph on n vertices and apply a certain number T of random local
transformations which preserve weak extensionality and acyclicity. The uniformity of the
resulting distribution is basically proved by showing that any w.e.a. digraph on n vertices
can be thus transformed into any other w.e.a. digraph on n vertices. Like in the acyclic
digraph case, we argue that the transformation rules are symmetric and always allow
reaching a specific digraph among the collection of w.e.a. digraphs with n vertices. In our
case, however, the most natural target digraph for this purpose turns out to be an acyclic
tournament on n vertices, that is, the digraph whose interpretation in the universe of sets
is von Neumann numeral of n+ 1, the unique transitive set with n elements well-ordered
by the membership relation.

We prove here only ‘correctness’ and defer to future work computational aspects such
as estimations for the choice of T or an analysis of the mixing time of the Markov chain [77].

Definition 2.3.1 A discrete time finite stochastic process is a sequence X = {Xt ∈ S :
t ∈ N} where Xt are random variables and S is finite. We say that X is a Markov chain
if

Pr(Xt+1 = st+1 |Xt = st, . . . , X0 = s0) = Pr(Xt+1 = st+1 |Xt = st).

Moreover, a Markov chain X is said to be homogenous if

Pr(Xt+1 = s |Xt = s′) = pss′ , ∀s, s′ ∈ S, ∀t ∈ N.

Definition 2.3.2 A homogenous Markov chain over the state space S is said to be:

• irreducible iff ∀s, s′ ∈ S, ∃t ∈ N such that Pr(Xt = s′ |X0 = s) > 0;

• aperiodic iff ∀s ∈ S, gcd{t ∈ N | Pr(Xt = s |X0 = s) > 0} = 1;

• symmetric iff ∀s, s′ ∈ S, Pr(Xt+1 = s |Xt = s′) = Pr(Xt+1 = s′ |Xt = s).

A well-known result (see, e.g., [77]) states that any finite, irreducible, aperiodic and
symmetric homogenous Markov chain converges toward the uniform distribution on every
state of its space. Therefore, all the Markov chains presented here will be shown to satisfy
these three properties.

Given n > 1, we denote by Wn the set of all w.e.a. digraphs on n vertices, labeled
by distinct numbers from the set {1, . . . , n}, while Wc

n denotes its subset of weakly con-
nected digraphs. Analogously, Wn,m denotes the set of all w.e.a. digraphs on n vertices,
labeled by distinct numbers from the set {1, . . . , n}, and m arcs. We regard two labeled
w.e.a. digraphs identical if they have the same set of arcs.
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A Markov chain algorithm for generating weakly extensional acyclic digraphs

Let M be a Markov chain over Wn, defined in Figure 2.2. Notice that for any t ∈ N and
any two distinct states s, s′ ∈ Wn, Pr(Xt+1 = s | Xt = s′) > 0 if and only if Pr(Xt+1 =
s′ | Xt = s) > 0. To be more precise, the probability of passing from a state s ∈ Wn to
any other state s′ 6= s is either 0 or 1/n2, hence M is indeed symmetric. Since there exists
s ∈ Wn such that the probability of remaining in s at any t > 0 is positive, it holds that
if M turns out to be irreducible, then it will also be aperiodic.

Let Xt denote the state of the Markov chain at time t. Suppose a couple of
integers (i, j) has been drawn uniformly at random from the set
{1, . . . , n} × {1, . . . , n}.

(T1) if (i, j) ∈ E(Xt) and
Xt − (i, j) is w.e., then Xt+1 = Xt − (i, j)

else Xt+1 = Xt.
(T2) if (i, j) /∈ E(Xt) and

Xt + (i, j) is w.e.a., then Xt+1 = Xt + (i, j)
else Xt+1 = Xt.

Figure 2.2: A Markov chain algorithm for generating w.e.a. digraphs.

The initial state of this Markov chain and of the ones given in the next section can
be taken to be a directed path (n, n− 1, . . . , 1). The acyclicity of a digraph on n vertices
and m arcs can be established by a depth-first visit, in time O(n + m). To test whether
a digraph is (weakly) extensional, the algorithm in [47, Sec. 4] can be used, taking time
O(n+m).

Lemma 2.3.3 Let D be a w.e.a. digraph with E(D) 6= ∅. There exists an arc (u, v) ∈
E(D) such that the digraph D − (u, v) is w.e.a.

Proof. Observe first that there exists u ∈ V (D) such that ∅ 6= N+(u) ⊆ I(D). If this
were not the case, then for all u in D with N+(u) 6= ∅, there would exist a vertex u′

in D with N+(u′) 6= ∅ such that (u, u′) ∈ E(D). Since the same property holds for u′

as well, and as the number of vertices of D is finite, we can find a finite directed cycle
(u, u′)(u′, u′′) · · · in D, contradicting hence its acyclicity.

Let now U(D) be the set of vertices of D with the above property, that is, U(D) =

Def {u ∈ V (D) | ∅ 6= N+(u) ⊆ I(D)}. Let u0 ∈ U(D) be a vertex of minimum out-
degree, i.e., d+(u0) = min{d+(u) : u ∈ U(D)}. Since N+(u0) 6= ∅, let v0 be an element of
N+(u0). The arc (u0, v0) can be removed and the resulting digraph remains w.e.a. Indeed,
its removal can cause a collision only between the elements of U(D). Since u0 is among the
vertices of minimal out-degree, in D− (u0, v0) it will be the only vertex in U(D− (u0, v0))
with out-degree d+(u) − 1, hence having its out-neighborhood different from that of any
other vertex of D − (u0, v0).

Theorem 2.3.4 (Irreducibility of M) Let M be the Markov chain defined over the
space Wn together with the transition rules T1 and T2. Given two digraphs D and H in
Wn, there exists in M a sequence of transitions D = D0 → D1 → · · · → Dp−1 → Dp = H,
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where p > 1 and Di ∈ Wn, for all 0 6 i 6 p. Such a sequence exists with length at most
n2 − n.

Proof. Since M is symmetric, it suffices to show that there exists a sequence of transitions
from any given w.e.a. digraph D ∈ Wn to a fixed element O in Wn. For our purpose here,
we will choose O to be the unique totally disconnected digraph, that is, having E(O) = ∅.

From Lemma 2.3.3, we get that there exists an arc (u, v) ∈ E(D) such that D− (u, v)
is w.e.a. Using rule (T1), we can step from D to D−(u, v). Repeating the above argument
a finite number of steps, we arrive at O. The number of transitions from D to O is at
most n(n− 1)/2, and this is obtained when D is a tournament.

A Markov chain algorithm for generating extensional acyclic digraphs

Instead of generating e.a. digraphs, we place ourselves in a more general setting, that of
generating simply connected w.e.a. digraphs. Afterwards, we will argue that, with minor
changes, the proposed Markov chain can generate e.a. digraphs.

Let M c be the Markov chain over Wc
n whose transitions between states are given in

Figure 2.3. Once again, the probability of passing from a state s ∈ Wc
n to any other state

s′ 6= s is either 0 or 1/n2, implying that M c is symmetric. Similarly, the aperiodicity
of M c is implied by its irreducibility, as there are digraphs in Wc

n for which there is a
positive probability to remain in the same state, after a transition of M c. Even if the two
transition rules of M c are not entirely specular, one can think of M c as having three basic
transitions: (1) removal of an arc, (2) reversal of an arc, (3) addition of an arc.

Let Xt denote the state of the Markov chain at time t. Suppose a couple of
integers (i, j) has been drawn uniformly at random from the set
{1, . . . , n} × {1, . . . , n}.

(Tc
1) if (i, j) ∈ E(Xt) then
(a) if Xt − (i, j) is simply connected and w.e., then Xt+1 = Xt − (i, j),

else
(b) if Xt − (i, j) + (j, i) is w.e.a., then Xt+1 = Xt − (i, j) + (j, i),
(c) else Xt+1 = Xt.

(Tc
2) if (i, j) /∈ E(Xt), then
(a) if Xt + (i, j) is w.e.a., then Xt+1 = Xt + (i, j),
(b) else Xt+1 = Xt.

Figure 2.3: A Markov chain algorithm for generating simply connected w.e.a. digraphs.

To show the irreducibility of the Markov chain M c, it is useful to partition the vertices
of an acyclic digraph according to the longest length of a directed path to the sinks of the
digraph. Complying with standard set-theoretic notation, we give the following definition.

Definition 2.3.5 Given an acyclic digraph D, the rank of a vertex v ∈ V (D) is recur-
sively defined as

rank(v) = 1 + max{rank(u) : (v, u) ∈ E(D)},

where rank(v) = 0 if v is a sink.
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Clearly, the following lemma holds.

Lemma 2.3.6 Given an acyclic digraph D, if v, u ∈ V (D) and rank(v) 6= rank(u), then
N+(v) 6= N+(u) holds.

Throughout the subsequent two proofs we employ the following notation: given a
digraph D and a vertex v of D,

R(v) =Def {u ∈ V (D) | u 6= v and rank(u) 6 rank(v)}.

Theorem 2.3.7 (Irreducibility of M c) Let M c be the Markov chain defined over the
space Wc

n together with the transition rules Tc
1 and Tc

2. Given two digraphs D and H in
Wc
n, there exists in M c a sequence of transitions D = D0 → D1 → · · · → Dp−1 → Dp = H,

where p > 1 and Di ∈ Wc
n, for all 0 6 i 6 p. Such a sequence exists with length at most

(3n2 − 7n+ 4)/2.

Proof. As before, first we will show that there exists a sequence of transitions from
any given w.e.a. digraph D ∈ Wc

n to an element T (D) in Wc
n, where T (D) is an acyclic

tournament, with the additional property that whenever rank(v) > rank(u) in D, rank(v) >
rank(u) also holds in T (D). Then, given any D and H in Wc

n, we will show that there is
a sequence of transitions from T (D) to T (H), completing hence the proof.

To show the former claim, we proceed as follows. Pick a vertex v ∈ V (D), in decreasing
order of rank (when more vertices of the same maximum rank exist, pick an arbitrary one).
Apply rule (Tc

2) and add arcs from v to all the vertices u ∈ R(v) \ N+(v), in decreasing
order on the rank of the elements of R(v) \ N+(v). Note that this is possible, first of
all, because the addition of an arc (v, u) does not create a cycle in the resulting digraph.
Second, observe that the subdigraph of D induced by the vertices V (D) \ R(v) is an
acyclic tournament. Therefore, an arc addition would create a collision only between v
and a vertex u ∈ R(v). This is however not the case, since after the first addition of such
an arc rank(v) becomes strictly greater than rank(u), for all u ∈ R(v), and Lemma 2.3.6
guarantees the absence of collisions.

Denote by T (D) the acyclic tournament obtained at the end of this process. Since for
any vertex v we have added arcs only to those vertices of rank less than or equal to v, we
also have that whenever rank(v) > rank(u) in D, the same holds in T (D).

Passing on to the latter point, observe that for any w.e.a. digraph D, since T (D) is
a tournament, there are no two distinct elements of the same rank in T (D), and thus
{rank(v) : v ∈ V (T (D))} = {0, . . . , n− 1}. Hence, to each digraph T (D) we can uniquely
associate a linear order ≺T (D) on V (D) defined in the following way: for all u, v ∈ V (T (D))

u ≺T (D) v iff rank(u) < rank(v) in T (D).

We now show that given two orders x0 ≺T (D) x1 ≺T (D) · · · ≺T (D) xn−1 and y0 ≺T (H)

y1 ≺T (H) · · · ≺T (H) yn−1, where {xi : 0 6 i 6 n− 1} = {yi : 0 6 i 6 n− 1} = {1, . . . , n},
we can transform T (D) in T (H), applying rule (Tc

1).
Observe first that for any two consecutive elements xi ≺T (D) xi+1 (0 6 i < n − 1) it

holds that N+(xi+1) = N+(xi) ∪ {xi}. Therefore, applying rule (Tc
1) on T (D), the arc

(xi, xi+1) cannot be removed (by (a)), but can be reversed (by (b)). In the resulting acyclic
tournament T (D′), xi and xi+1 have swapped positions, i.e., xi+1 ≺T (D′) xi. Starting
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from position i = 0 all the way to i = n − 1, apply the following procedure. If yi = xj ,
(i < j 6 n − 1), then xj will be brought to position i by iteratively reversing the arcs
(xj , xj−1), (xj , xj−2), . . . ,(xj , xi).

The maximum number of transitions to pass from D to T (D) is
(
n
2

)
− (n − 1) =

(n2 − 3n+ 2)/2, number obtained when the underlying graph of D is a tree, thus having
n − 1 edges. To pass from T (D) to T (H),

(
n
2

)
transitions are required at most, when all

the arcs of T (D) have to be reversed. Hence, to pass between two arbitrary D and H in
Wc
n, we need at most (3n2 − 7n+ 4)/2 transitions.

Let us denote by En the set of all e.a. digraphs with vertex set {1, . . . , n}. The Markov
chain illustrated in Figure 2.3 can be transformed into an irreducible, aperiodic and sym-
metric Markov chain, M e, for the generation of digraphs from En. The transitions between
two states in M e are given in Figure 2.4. Theorem 2.3.7 holds for M e as well.

Let Xt denote the state of the Markov chain at time t. Suppose a couple of
integers (i, j) has been drawn uniformly at random from the set
{1, . . . , n} × {1, . . . , n}.

(Tc
1) if (i, j) ∈ E(Xt) then
(a) if Xt − (i, j) is extensional, then Xt+1 = Xt − (i, j),

else
(b) if Xt − (i, j) + (j, i) is e.a., then Xt+1 = Xt − (i, j) + (j, i),
(c) else Xt+1 = Xt.

(Tc
2) if (i, j) /∈ E(Xt), then
(a) if Xt + (i, j) is e.a., then Xt+1 = Xt + (i, j),
(b) else Xt+1 = Xt.

Figure 2.4: A Markov chain algorithm for generating e.a. digraphs.

A Markov chain algorithm for generating weakly extensional acyclic digraphs,
with a specified number of arcs

A Markov chain Ma for generating w.e.a. digraphs with vertex set {1, . . . , n} and m arcs
is given in Figure 2.5. The probability of passing from a state s ∈ Wn,m to any other state
s′ 6= s is either 0 or 1/n4, implying that M c is symmetric. As previously, for any state
s ∈ Wn,m there is a positive probability to remain in s. Our next theorem shows that Ma

is indeed irreducible. If m < n− 1, the initial state of the Markov chain can be a digraph
whose arcs form a directed path of length m. Otherwise, the initial state can be a directed
path (n, n − 1, . . . , 1) together with m − (n − 1) arbitrary arcs of the form (i, j), where
i > j.

Theorem 2.3.8 (Irreducibility of Ma) The Markov chain Ma is irreducible.

Proof. We show that any digraph D ∈ Wn,m can be transformed, by transitions of Ma,
into a digraph K(D) ∈ Wn,m, satisfying the following three properties:

i) for all v ∈ V (D) such that rank(v) > 1 in K(D), it holds that N+(v) = R(v) in
K(D);
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Let Xt denote the state of Ma at time t. Suppose two pairs of integers
(i1, jj) and (i2, j2) have been drawn uniformly at random and independently
from the set {1, . . . , n} × {1, . . . , n}.

if (i1, j1) ∈ E(Xt) and (i2, j2) /∈ E(Xt), then
if Xt − (i1, j1) + (i2, j2) is w.e.a., then Xt+1 = Xt − (i1, j1) + (i2, j2),
else Xt+1 = Xt.

Figure 2.5: A Markov chain algorithm for generating w.e.a. digraphs on n vertices and
m arcs.

ii) there is only one v ∈ V (D) such that rank(v) = 1 in K(D);

iii) for all u, v ∈ V (D) such that rank(u) > rank(v) in D, we have rank(u) > rank(v) in
K(D).

To show this, we argue as in the proof of Theorem 2.3.7, paying particular attention
to preserving m arcs at each intermediary step. Proceed in decreasing order on rank
(arbitrarily choosing one vertex among more of the same rank): pick a vertex v ∈ V (D)
with rank(v) > 1 and consider all the elements u ∈ R(v) \ N+(v), in decreasing order
on rank. Moreover, by the proof of Lemma 2.3.3, there exists an arc (t, s) between a
vertex t ∈ V (D) of rank 1 and a sink s whose removal does not interfere with the weak
extensionality of D. Swap arcs (v, u) and (t, s) by the transition of Ma.

This is possible, since, on the one hand, the addition of an arc (v, u) does not create a
cycle in the resulting digraph. On the other hand, as before, the subdigraph of D induced
by the vertices V (D) \ R(v) is an acyclic tournament. Therefore, one such arc addition
can create a collision only between v and a vertex u ∈ R(v). This is not the case, since
after the first addition of such an arc, rank(v) becomes strictly greater than rank(u), for
all u ∈ R(v), and Lemma 2.3.6 guarantees the absence of collisions.

If at the end of this process more than one vertex of rank 1 exists, denote by v∗ a
vertex of D whose out-neighborhood is inclusion-maximal among the vertices of rank 1.
Repeatedly remove one outgoing arc from a vertex of rank 1 whose out-neighborhood
is inclusion-minimal, and add an arc between v∗ and a sink s /∈ N+(v∗). The digraph
obtained at the end of this process, which we denote by K(D), satisfies i)–iii). Observe
also that in K(D) there are no two distinct vertices having the same positive rank.

It remains to show that, given two digraphs D and H inWn,m, there exists a sequence
of transitions in Ma from K(D) to K(H). To any acyclic digraph K whose vertices of
positive rank have pairwise distinct ranks we can associate a partial order ≺K in the
following way: for all u, v ∈ V (K),

u ≺K v iff rank(u) < rank(v) in K.

For expository purposes, assume that we also order the sinks of K is an arbitrary way
so that ≺K is a linear order on the vertices of K. Therefore, we have to show that we
can transform any order x0 ≺K(D) x1 ≺K(D) · · · ≺K(D) xn−1 into y0 ≺K(H) y1 ≺K(H)

· · · ≺K(H) yn−1, where {xi : 0 6 i 6 n− 1} = {yi : 0 6 i 6 n− 1} = {1, . . . , n}.
Like in the proof of Theorem 2.3.7, given a digraphK(D) satisfying i)–iii), we show that

we can obtain, by transitions of Ma, a digraph K(D′), still satisfying i)–iii), and in which
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a given pair of consecutive elements xi ≺K(D) xi+1, 0 6 i < n−1, have swapped positions.
If such consecutive elements xi and xi+1 are both sinks, then since their order has been
imposed arbitrarily, they can be swapped without changing the digraph. Otherwise, we
have to consider two cases.

If rank(xi+1) > 1, then N+(xi+1) = N+(xi)∪{xi}. The arc (xi+1, xi) can be reversed,
by the application of the transition of Ma on the arcs (xi+1, xi) and (xi, xi+1). Indeed,
the resulting digraph K ′ remains acyclic; K ′ is also w.e. since, on the one hand, vertices
xi, xi+1, . . . , xn−1 induce an acyclic tournament in K ′, by conditions i) and ii). On the
other hand, any non-sink xj , 0 6 j < i, is an out-neighbor of both xi and xi+1. Moreover,
if rank(xi+1) was equal to 2 in K(D) (and hence rank(xi) = 1), then in K ′ we may
have N+(xi) 6= R(xi). However, it suffices to swap arcs out-going from xi+1, the unique
the vertex of rank 1, to xi. The digraph obtained after these transformations satisfies
conditions i)–iii), thus is equal to some K(D′); the vertices of K(D′) have the same ranks
as in K(D), with the exception of xi and xi+1 which have swapped ranks.

When however rank(xi+1) = 1, we have that rank(xi) = 0. Since xi+1 is the unique
vertex of rank 1, there must be an arc from xi+1 to a sink s which can be removed in order
to add the arc (xi, xi+1). After this first arc swap, continue changing all arcs (xi+1, s) into
(xi, s). The resulting digraph K ′ satisfies condition i)–iii) and is equal to some K(D′);
moreover, the vertices of K(D′) have the same ranks as in K(D), with the exception of
xi and xi+1 which, as before, have swapped ranks.

In order to transform K(D) into K(H), start from position i = n − 1 downward to
i = 0, and proceed as follows: if yi = xj (0 6 j < i), then bring xj to position i by
iteratively reversing the arcs (xj+1, xj), (xj+2, xj), . . . , (xi, xj). Finally, change the out-
going arcs of the unique vertex of rank 1 so that it has precisely the same out-neighborhood
as it has in K(H).

Figure 2.6 illustrates the transitions indicated by the above proof in order to pass
between two digraphs in W5,6.

It is immediate to see that Ma can also generate uniformly at random acyclic digraphs
on a given number of vertices and a given number of arcs: simply swap two arcs if the
resulting digraph remains acyclic. The proof of Theorem 2.3.8 also shows its irreducibility.

Concluding remarks

One direction for further research on combinatorial enumeration of sets is, on the one hand,
to enumerate classes of ‘minimal’ extensional acyclic digraphs, such as slim e.a. digraphs
(as introduced in Section 1.3). On the other hand, a more challenging direction is to
enumerate hyper-extensional digraphs.

Much like Ackermann’s bijection which it generalizes, the bijection we proposed in
Section 2.2 is constitutes a ‘natural’ enumeration (to be precise, a ‘natural’ order) of hy-
persets. This embedding into numbers acts as an Occam’s razor, by reducing multiplicity
to simplicity: in the case of HF-sets, one can implement a full battery of set-handling meth-
ods by resorting to natural numbers as their internal representation [24]; likewise, one can
implement HF-sets on top of rational numbers on the ground of the encoding technique
proposed above. A key point in the construction of our bijection has been the notion of
rank, but so far we cannot exclude that other rank notions might lead to encodings more
satisfactory from a logico-mathematical perspective, and along the same lines.
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48 2. Combinatorial Enumeration of Sets
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(a) (4, 5)↔ (3, 5)
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4
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3

1

(b) (2, 4)↔ (3, 4)

5

4

2

3

1

(c) 2 ≺ 4 ≺ 5 ≺ 1 ≺ 3

(1, 5)↔ (5, 1)

(1, 4)↔ (5, 4)

5

4

2

3

1

(d) 1 ≺ 2 ≺ 4 ≺ 5 ≺ 3

(3, 5)↔ (5, 3)

(3, 2)↔ (5, 2)

5

4

2

3

1

(e) 1 ≺ 2 ≺ 4 ≺ 3 ≺ 5

(3, 4)↔ (4, 3)

(3, 1)↔ (4, 1)

5

4

2

3

1

(f) 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5

Figure 2.6: The sequence of transitions of Ma that transforms D ∈ W5,6 (Fig. (a)) into
K(D) ∈ W5,6 (Fig. (c)), and then into a digraph K(H) ∈ W5,6 (Fig. (f))

Another application of Ackermann’s bijection is in algorithmics. The linear-time algo-
rithm of Dovier, Piazza and Policriti [47] for computing the maximum bisimulation on an
acyclic digraph is deeply rooted in Ackermann’s order on well-founded sets. In the case of
our encoding of hypersets, we employed instead an algorithmic concept to define an order.
It is of interest whether new insight on the open problem of the existence of a linear-time
algorithm for the maximum bisimulation problem can be gained. Descriptive complexity
issues, a main focus in the study of linear orderings of the universe of hypersets carried
out in [79], have not been taken into account here and will be the subject of future work.

Although the Markov chains M , M c, and M e are similar to the Markov chains of
[82, 83], the proofs of their irreducibility are different and more involved. In the case of
M , the fixed element which can be reached by a chain of transitions from every element G
of Wn is the same as in [83], namely the totally disconnected digraph. However, the arcs
of G must be removed in a particular order, according to the weak extensionality of G.
Second, in [82] the fixed element is an arbitrary digraph having a path as underlying graph,
which surely cannot be the case for M c or M e, as (weak) extensionality would be violated.
On the other hand, our proof takes this fixed element to be an acyclic tournament on n
vertices (i.e., a digraph isomorphic to the von Neumann numeral of n), ensuring that the
proof proposed here can be used to show the irreducibility of (a slightly modified version
of) the chain of [82] for the generation of weakly connected acyclic w.e.a. digraphs. Lastly,
as noted above, the Markov chain Ma can be easily adapted to generate uniformly at
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random acyclic digraphs on a given number of labeled vertices and a given number of arcs,
a result which we have not found in the literature.

Given this dual usability of the Markov chains considered here, and the fact that the
von Neumann numeral of n is a rich structure in which many types of digraphs can be
embedded, it would be interesting to characterize in general the class of digraphs whose
elements can be generated uniformly at random by these Markov chains.

We regard the generation of hyper-extensional digraphs on n vertices, as the next
natural step to take. We conjecture that a similar Markov chain algorithm, having three
basic operations, addition of an arc, removal of an arc, move of an arc, can be shown to be
irreducible. To be more precise, that any such digraph on n vertices can be transformed
by this Markov chain into a digraph isomorphic to the von Neumann numeral of n.
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3
Infinite Enumeration of Sets

and Well-Quasi-Orders

When enumerating finite discrete objects whose size is no longer bounded by a fixed value,
the sequences under consideration become infinite. This radically changes the setting, and
raises a multitude of new and interesting questions. Among these, is the existence of well-
quasi-orders on such objects. A well-quasi-order is a pair (Q,4) where Q is a set and 4 is
a transitive and reflexive binary relation on Q and so that for every infinite enumeration
(qi)i=1,2,... of elements of Q, there exist 1 6 i < j such that qi 4 qj .

In a graph-theoretic setting, one usually looks for graph immersions that are also well-
quasi-orders, so that no ‘new’ structures can be built up ad infinitum. The celebrated
theorem of Robertson and Seymour, considered by some to be an indication that graph
theory has reached its full bloom as a discipline of mathematics, states that the minor
relation between graphs is a well-quasi-order on the class of all graphs.

Not much is known in the case of digraphs. Recently, strong immersion between
digraphs was proved to be a well-quasi-order on the set of all tournaments, that is, orien-
tations of complete graphs. Complying to our view that sets are digraphs, we focus now
on isolating other classes of digraphs where strong immersion becomes a well-quasi-order,
with such set-theoretic assistance. The main result of this chapter is to introduce the
notion of slimness, which together with a bound on the number of sources of a digraph,
ensures that strong immersion is a well-quasi-order for slim sets, slim hypersets and, even
more generally, for slim digraphs having the property that from every vertex there is a
directed path to a sink. This is best possible, in the sense that neither one of these two
conditions can be dropped without losing the well-quasi-order property.



Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l’Università degli Studi di Udine
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3.1 Well-quasi-orders and digraph immersion

A quasi-order is a pair (Q,4) where Q is a set and 4 is a transitive and reflexive binary
relation on Q. We say that a quasi-order (Q,4) is a well -quasi-order, or wqo, if for every
infinite sequence (qi)i=1,2,... of elements of Q, there exist 1 6 i < j such that qi 4 qj .

One of the earliest results on well-quasi-orderings of graphs belongs to Kruskal [75],
who showed that the class of all finite trees is well-quasi-ordered by the topological mi-
nor relation. This study culminated with the celebrated theorem of Robertson and Sey-
mour [128] stating that the minor relation is a well-quasi-order on the class of all finite
graphs. Later [129], they showed that this is also the case for weak immersion between
graphs, which was a conjecture of Nash-Williams [94]. In the case of digraphs not much is
known. Immersion between eulerian digraphs was studied by Johnson (cf. [9, p. 517], [36]).
Recently, Chudnovsky and Seymour [36] proved that strong immersion between digraphs
is a well-quasi-order on the set of all tournaments, that is, orientations of complete graphs.

In view of this result, we will focus in this chapter on weak and strong immersion
between digraphs, as defined in [36]. A weak immersion of a digraph H into G is a map
η such that:

• for every v ∈ V (H), η(v) ∈ V (G);

• for every u, v ∈ V (H) with u 6= v, it holds that η(u) 6= η(v);

• for each arc uv ∈ E(H), η(uv) is a directed path in G from η(u) to η(v) (recall that
we consider only paths without repeated vertices);

• if e, f ∈ E(H) are distinct, then η(e) and η(f) have no arcs in common, although
they may share vertices.

The map η is called a strong immersion when it also holds that if v ∈ V (H), e ∈ E(H),
and e is not incident with v in H, then η(v) is not a vertex on the directed path η(e). We
say that a digraph H is weakly (strongly) immersed into a digraph G, and write H 4wi G
(H 4si G), if there exists a weak (strong) immersion of H into G.

a1 a2 a3

... ...
an−1 an

b1 b2 bn−1 bn

Figure 3.1: Digraphs Dn, n > 2

As already observed in [36], weak immersion is not a wqo on the set of all digraphs.
Just consider the acyclic digraphs Dn formed by orienting the edges of a cycle of length 2n
alternately clockwise and counterclockwise (see Figure 3.1). That being so, the collection
{Dn | n > 2} has the property that none of its elements can be weakly immersed into
another one.

Under the auspices of our thesis that sets are digraphs, and also motivated by the
observation that, requiring acyclicity, tournaments are forced to be isomorphic to the
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a1 a2 a3

... ...
an−1 an

an+1

b1 b2 bn−1 bn

c d

Figure 3.2: Extensional acyclic digraphs Hn, n > 3

membership digraphs of von Neumann’s numerals, we can ask whether membership di-
graphs of hereditarily finite sets are well-quasi-ordered by strong immersion. The answer
is no, as testified by the sequence of digraphs (Hn)n>3, depicted in Figure 3.2.

Indeed, given Hn and Hm, with 3 6 n < m, and supposing that η is a weak immersion
of Hn into Hm, observe that η(d) ∈ {c, d}, since only c or d have three out-neighbors in
Hm. Each of the out-neighbors of d in Hn has at least one out-neighbor, which implies that
η(d) = d, as one of the three out-neighbors of c in Hm is a sink. Consequently, η(c) = c,
η(a1) = a1, η(a2) = a2, η(b1) = b1, η(an) = am, η(an+1) = am+1, η(bn) = bm. Next,
η(b2) = b2, since otherwise the directed paths η(b2a2) and η(a3a2) would have to share
the arc a3a2, against the fact that η is an immersion. This implies that η(a3) = a3. By
a similar argument, inductively, η(bi) = bi and η(ai+1) = ai+1 hold for all 2 6 i < n − 1.
Moreover, η(an−1) = an−1, and for all 1 6 i < n − 1, the image of the arc biai is the
2-vertex directed path (bi, ai), while the image of ai+1ai is the directed path (ai+1, ai).
At this point, the arc anan−1 must be mapped to the directed path (am, am−1, . . . , an−1).
This leaves no possibility to map bn−1.

In the next two sections we will show that strong immersion becomes a wqo on mem-
bership digraphs of slim hereditarily finite sets of bounded cardinality. A slim set is one in
which every membership relation is necessary (cf. Section 1.3). This is the best possible
result, in the sense that neither slimness nor bounded cardinality can be further dropped
without losing the wqo property.

Our proofs are given in a general context, in which slimness is translated as a graph-
theoretic property and in which acyclicity and extensionality are no longer assumed. Nev-
ertheless, the set-theoretic basis for our results remain, as from acyclicity and extension-
ality, we distill the only property that from every vertex there is a directed path to one
of the sinks of the digraph (we call such a digraph channeled). This result also implies,
as a particular case, the fact that strong immersion is a wqo on the class of membership
digraphs corresponding to slim hereditarily finite hypersets. The following two sections
are thus devoted to proving the following result.

Theorem 3.1.1 For every s > 1, the collection Ds of channeled slim finite digraphs with
at most s sources is well-quasi-ordered by strong immersion.

Wqo’s proved to be a key ingredient in generalizing and unifying many results concern-
ing the decidability of verification problems (e.g. coverability) on infinite-state transition
systems (cf. [1, 53] and the references therein). To be more precise, a transition system
is said to be well-structured when its transition relation is monotonic w.r.t. a wqo of its
states; the classical example is that of Petri nets: the states of the transition system is the
set of all configurations of the net, while the wqo is the inclusion between their markings.
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In this light, our contribution can also be viewed as laying the set-theoretic groundwork
for a class of well-structured transition systems having as states the hereditarily finite
(hyper)sets considered here.

3.2 Slim digraphs and their structure

In accordance with Section 1.3, we say that a well-founded set x is slim if the digraph
obtained by removing any arc from the membership digraph D(x) of x is not extensional.
This is equivalent to saying that x is slim if for any vertex y of D(x) and for any out-
neighbor of it, z, there exists a vertex y′ of D(x) whose set of out-neighbors is precisely
N+(y) \ {z}. In set-theoretic terms, a set x is slim if ∀y ∈ TrCl(x) and ∀z ∈ y, it holds
that y \ {z} ∈ TrCl(x). Observe that the transitive closure of a slim set x is closed under
taking subsets for its elements, in the sense that for any y ∈ TrCl(x), P(y) ⊂ TrCl(x).

The following notion of slimness for hypersets avoids the introduction of a bisimilarity
check in order to establish if a hyperset is slim.

Definition 3.2.1 A hyperset x is slim if the digraph obtained by removing any arc from
D(x) is not extensional.

We will work in the more general setting of digraphs with no assumptions of (hyper-)
extensionality, or of acyclicity. For this, we will employ the following definition, general-
izing Definitions 1.3.6 and 3.2.1.

Definition 3.2.2 A digraph D is slim if for any v ∈ V (D) and for any u ∈ N+(v), there
exists v′ ∈ V (D) so that N+(v′) = N+(v) \ {u}.

Clearly, in any acyclic digraph there is a directed path from every vertex to a sink.
As Lemma 1.4.6 shows, when no longer assuming acyclicity, this property is essentially
guaranteed by the lack of a non-trivial bisimulation. This shows that we can generalize the
notion of rank from well-founded sets to hypersets by taking into account their structural
complexity with respect to their sink. Although there is no such standard generalization,
we propose below a most natural one, useful for the purposes of our proof.

Definition 3.2.3 Given a channeled digraph D, the rank of a vertex v of D is the length
of the longest directed path leading from v to a sink of D.

Given a channeled digraph D, we denote by rank(D) the maximum rank of its vertices.
For any 0 6 r 6 rank(D), we let D=r stand for the set of vertices of D of rank r. Similarly,
D>r stands for the set of vertices of D of rank at least r.

We now argue that dropping slimness or the bound on the number of sources results
in a collection of digraphs no longer well-quasi-ordered by strong immersion (in fact, not
even by weak immersion). For this means, we can adjust the digraphs Hn of Figure 3.2.

On the one hand, in order to render Hn also slim, it suffices to add seven vertices c1,
c2, c3 with out-neighborhoods {a1, b1}, {a2, b1}, {b1}, respectively, and vertices d1, d2, d3,
d4 with out-neighborhoods {an, bn}, {an+1, bn}, {bn}, {an+1}, respectively. This addition
does not disrupt the fact that Hn cannot be weakly immersed in Hm, for any 3 6 n < m.
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On the other hand, in order to make the collection of digraphs Hn of bounded cardi-
nality, it suffices to add to Hn a new source having as out-neighbors all its pre-existing
sources.

However, digraphs Hn still have a further peculiarity of unboundedness: the difference
among the ranks of their sources is unbounded. Even if this is avoided, weak immersion
cannot become a wqo. To see this, it suffices to add, for each source of Hn, a set of new
vertices forming a directed path which ends in that source. The lengths of these paths
can be taken such that the sources of the resulting digraph H ′n all have the same rank.
Moreover, if Hn is rendered slim, then H ′n will remain so. The argument given in the
previous section still applies for showing the lack of a weak immersion between H ′n and
H ′m, for any 3 6 n < m.

We now prove some lemmas characterizing the structure of slim digraphs.

Lemma 3.2.4 If D is a slim digraph, then for any v ∈ V (D) \ O(D), there exists w ∈
V (D) so that N+(w) = {v}.

Proof. If D is slim and v belongs to V (D) \ O(D), then take w ∈ V (D) such that
v ∈ N+(w) and |N+(w)| is minimum among the vertices with this property (such a vertex
exists since v is not a source of D). If there exists z ∈ N+(w)\{v} then from the slimness
of D we can find w′ ∈ V (D) such that N+(w′) = N+(w) \ {z}, and hence v ∈ N+(w′).
This contradicts the minimality of w.

Lemma 3.2.5 If D is a slim digraph, then |{v ∈ V (D) | |N+(v)| > 2}| 6 |O(D)|.

Proof. Denoting by A the set {v ∈ V (D) | |N+(v)| > 2}, we construct a map f from A
to P(V (D)) so that for any v ∈ A, the following hold:

i) v ∈ f(v),

ii) f(v) ∩O(D) 6= ∅,

iii) for any u ∈ A, if u 6= v, then f(u) ∩ f(v) = ∅.

The existence of such a map proves the claim. To see that this is indeed the case,
for a vertex v ∈ A ∩ O(D) we put f(v) = {v}. Otherwise, from Lemma 3.2.4 we can
obtain a w1 ∈ V (D) such that N+(w1) = {v}. If w1 is a source, then we put f(v) =
{v, w1}. Otherwise, apply again Lemma 3.2.4, this time to w1, to obtain w2 ∈ V (D) such
that N+(w2) = {w1}. Since D is finite, we can repeat this procedure until obtaining
w2, . . . , wk ∈ O(D), k > 2, such that N+(wk) = {wk−1}, . . . , N+(w2) = {w1}, N+(w1) =
{v}. In this case, we put f(v) = {v, w1, . . . , wk}. The map f constructed in this way clearly
satisfies i) and ii). Finally, since for any v ∈ A and any w ∈ f(v) \ {v}, |N+(w)| = 1, iii)
is satisfied as well.

Corollary 3.2.6 If D is a slim digraph, then O(D) 6= ∅.

Proof. Apply the argument given in the proof of Lemma 3.2.5 to any vertex v ∈ V (D),
and obtain a directed path (wk, . . . , w1, v) of D so that wk is a source of D.

The following more technical lemma is an analogue of Lemma 3.2.5, expressed in terms
of in-neighbors.
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Lemma 3.2.7 If D is a slim digraph, then |{v ∈ V (D) | |N−(v)| > 2 ∧ ∀w ∈ N−(v),
N+(w) = {v}}| 6 |O(D)|.

Proof. The proof will proceed along the lines of the proof of Lemma 3.2.5. Denoting by
A the set {v ∈ V (D) | |N−(v)| > 2 ∧ ∀w ∈ N−(v), N+(w) = {v}}, we construct a map
f from A to P(V (D)) so that for any v ∈ A, the vertices of f(v) form a directed path
in D from a source of D to an in-neighbor of v. Moreover, for any v ∈ A the following
properties will hold:

i) f(v) ∩O(D) 6= ∅,

ii) for any u ∈ A, if u 6= v, then f(u) ∩ f(v) = ∅,

iii) for any w ∈ f(v), |N+(w)| = 1.

As before, the existence of such a map proves the claim. Construct f iteratively, at
each step complying with the above three properties. For a v ∈ A, we let w1 be a vertex
of N−(v) obtained as follows. If v ∈ A does not belong to the image through f of some
vertex u ∈ A, then take w1 to be an arbitrary vertex of N−(v). Otherwise, this vertex
u ∈ A so that v ∈ f(u) is unique, since the map f constructed so far satisfies ii). Moreover,
precisely one in-neighbor of v also belongs to f(u); hence there is at least one in-neighbor
of v belonging to no image through f of a vertex of A. In this case, we take w1 to be this
vertex.

If w1 is a source, then we put f(v) = {w1}. Otherwise, we obtain a vertex w2 such that
N+(w2) = {w1}, by considering three cases. If w1 /∈ A, then we take w2 to be an arbitray
vertex obtained by Lemma 3.2.4. Otherwise, if w1 ∈ A, but f(w1) has not yet been set,
take w2 to be an arbitray vertex of N−(w1). Finally, if w1 ∈ A and f(w1) has already
been set, observe, as before, that precisely one of its in-neighbors belongs to f(w1). There
is hence an available in-neighbor of w1, which we take to be w2.

Since D is finite, we can repeat this procedure until obtaining w2, . . . , wk ∈ O(D),
k > 2, such that N+(wk) = {wk−1}, . . . , N+(w2) = {w1}, N+(w1) = {w}. In this case, we
put f(v) = {w1, . . . , wk}.

We conclude the proof by observing that for any v ∈ A and any w ∈ f(v), |N+(w)| = 1,
and hence the new map f constructed in this way satisfies i), ii) and iii).

Lemma 3.2.8 If D is a slim digraph, then for any v ∈ V (D) it holds that |N+(v)| 6
|O(D)| + 1.

Proof. Suppose, for a contradiction, that v ∈ V (D) is such that |N+(v)| > |O(D)| + 2.
Since D is slim, then the set A = {w ∈ V (D) | there exists u ∈ N+(v) so that N+(w) =
N+(v)\{u}} has cardinality at least |N+(v)|. Observe also that for any w ∈ A, |N+(w)| >
2 holds, since |O(D)| > 1 (Corollary 3.2.6). The set A just considered contradicts
Lemma 3.2.5.

The following two lemmas characterize the structure of slim sets in terms of the rank
of its vertices.

Lemma 3.2.9 Let D be a channeled digraph. For any v, w ∈ V (D) such that N+(w) =
{v}, it holds that rank(w) = rank(v) + 1.
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Proof. Let P be the longest directed path from v to a sink, of length rank(v). If N+(w) =
{v}, then also w followed by the vertices of P is a directed path from w to a sink. Moreover,
it is of maximum length, since P is of maximum length.

Lemma 3.2.10 If D is a channeled slim digraph, then the following hold:

i) |D=r \O(D)| 6 |D=r+1|, for any 0 6 r < rank(D);

ii) |D=r| 6 |D>r ∩O(D)|, for any 0 6 r 6 rank(D).

Proof. To see that i) holds, observe that for any v ∈ D=r \O(D), by Lemma 3.2.4, there
exists w ∈ V (D) such that N+(w) = {v}. From Lemma 3.2.9, w is of rank r + 1, which
proves i).

For ii), note that any vertex of maximum rank of D must be a source, as just argued, by
Lemmas 3.2.4 and 3.2.9. This implies that ii) holds for r = rank(D). Let now r < rank(D)
be the greatest rank for which |D=r| > |D>r ∩O(D)| and hence that |D=r+1| 6 |D>r+1 ∩
O(D)|. Point i) entails that

|D=r \O(D)| 6 |D=r+1| 6 |O(D) ∩D>r+1|.

This brings the desired contradiction, since

|D=r| = |D=r \O(D)|+ |D=r ∩O(D)| 6
|D>r+1 ∩O(D)|+ |D=r ∩O(D)| = |D>r ∩O(D)|.

3.3 Encoding slim digraphs

Let us begin by considering the collection Ds:

Ds = {D |D is a channeled slim finite digraph ∧ |O(D)| 6 s}.

The vertices of a channeled digraph can be viewed as disposed on layers, according to
their ranks. Point ii) of Lemma 3.2.10 implies that at any rank of D ∈ Ds there are at
most s vertices. Point i) implies that the number of vertices at any given rank r of D is
non-increasing (for decreasing r), save for at most s times, when at most s sources appear
in D.

Additionally, we can classify the vertices of D according to whether they are sinks,
they have exactly one out-neighbor, or more than one. Lemma 3.2.5 implies that this
latter, more complicated case can happen only a bounded number of times in D, so we
can include these vertices in the encoding we will give for the digraphs of Ds.

Indeed, let us say that a rank r is a juncture rank of a digraph D ∈ Ds if one of the
following holds:

• there exists v ∈ D=r with N+(v) > 2;

• there exists v ∈ D=r−1 with N−(v) > 2 and for any w ∈ N−(v), N+(w) = {v};

• O(D) ∩D=r 6= ∅;
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rk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

23421 1 1

Figure 3.3: A channeled slim digraph D of rank 19 and |O(D)| = 7. The juncture ranks
of D are marked with dark gray, and its trace ranks are in light gray. Its encoding D̂ has
rank 13, while δ(D) = 1 2 1 1 4 3 2.

• r = 0.

The second bullet above capures those situations in which a vertex v has more than
one in-neighbor, all of which have only v as out-neighbor (hence, in particular, they are
not captured by the first bullet).

As we are about to see, encoding the vertices at juncture ranks, together with their
out-neighbors, is the main ingredient for showing the wqo property. For this, let us also
say that a rank r′ is a trace rank of D if r′ is not a juncture rank of D and there exists a
juncture rank r of D and v ∈ D=r such that N+(v) ∩D=r′ 6= ∅.

Given a digraph D ∈ Ds, we will employ two encodings for it, D̂ and δ(D). The first
is a channeled slim digraph which captures the involved configurations among juncture
and trace ranks, while the second is a sequence of positive integers capturing the lengths
of the directed paths issuing from vertices at trace ranks.

Entering into details, obtain D̂ by applying to D the following graph-theoretic oper-
ations. If r is a trace rank of D, then let r′ be the greatest rank of D such that r′ < r
and such that r′ is a juncture or a trace rank. Any vertex of rank t of D, r′ < t 6 r, has
precisely one out-neighbor, which is a vertex of rank t − 1 (by Lemma 3.2.9). Moreover,
any vertex of rank t of D, r′ 6 t < r, has precisely one in-neighbor, which is a vertex of
rank t + 1. In D̂, contract all directed paths P = (v1, . . . , vk) leading from v1, a vertex
of rank r, to vk, a vertex of rank r′, by removing vertices v2, . . . , vk−1 from D and adding
the arc v1 → vk. Moreover, if rank r was the ith trace rank of D (starting from the lowest
rank), then set the ith character of δ(D) to be the length of P , that is, k. An example is
given in Figure 3.3.

Observe that the vertices at juncture/trace ranks in D correspond precisely to the
vertices at juncture/trace ranks in D̂.

The proof that strong immersion is a wqo on Ds proceeds as follows. First, we argue
that for any digraph D ∈ Ds, the number of vertices of D̂ is bounded. Therefore, given
an infinite sequence (Di)i=1,2,... of such digraphs, we can extract an infinite subsequence
of digraphs having the same encoding, say D̂.

This implies that digraphs (Dij )j=1,2,... have essentially the same configurations among
juncture and trace ranks. Moreover, the directed paths contracted for obtaining the en-
coding D̂ start at the same trace ranks in any Dij . This is true since, as observed before,
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the vertices at trace ranks in any Dij correspond precisely to the vertices at trace ranks

in D̂.

Finally, since these directed paths can have arbitrary lengths, we have to use a further
basic fact from the theory of wqo’s (see e.g. [66]). If (Q,4) is a wqo, then so is the set of
fixed-length sequences over Q, componentwise ordered by 4. That is, the pair (Q`,4`) is a
wqo, where for any (x1, . . . , x`), (y1, . . . , y`) ∈ Q` we have (x1, . . . , x`) 4` (y1, . . . , y`)⇔def

xi 4 yi, for all 1 6 i 6 `. Since (N,6) is a wqo, this implies that we can find Dij

and Dik in the aforementioned infinite sequence such that taking ` = |δ(Di1)| we have
δ(Dij ) 6

` δ(Dik).

Lemma 3.3.1 For any s > 1 and D ∈ Ds, |V (D̂)| 6 s(s+ 1)(3s+ 1) + s(3s+ 1) holds.

Proof. Observe that the vertices of D̂ are precisely the vertices of D at a juncture or
at a trace rank of D. By Lemma 3.2.5, the number of vertices of D with two or more
out-neighbors is at most s. By Lemma 3.2.7, the same holds for those vertices v of D
with at least two in-neighbors, all of which have precisely v as out-neighbor. Taking into
account the sources of D and its juncture rank 0, D has at most 3s + 1 juncture ranks.
By Lemma 3.2.10, at every rank of D there are at most s vertices. Therefore, by Lemma
3.2.8, the total number of out-neighbors of the vertices at juncture ranks of D is at most
s(s+ 1)(3s+ 1). To sum up, |V (D̂)| 6 s(s+ 1)(3s+ 1) + s(3s+ 1).

We can now assemble all results into a proof of our main theorem.

Theorem 3.3.2 For every s > 1, the collection Ds of channeled slim finite digraphs with
at most s sources is well-quasi-ordered by strong immersion.

Proof. Let (Di)i=1,2,... be an infinite sequence of digraphs belonging to Ds. By Lemma
3.3.1, as just argued, there exists an infinite subsequence of it, (Dij )j=1,2,..., such that

D̂i1 = D̂i2 = · · · . This implies that their δ-encodings all have the same length, say `.
Therefore, there exist 1 6 j < k such that for Dij and Dik we have δ(Dij ) 6

` δ(Dik).

Construct the strong immersion η of Dij into Dik by mapping those vertices of Dij

also present in D̂ij to those vertices of Dik also present in D̂ik . Moreover, map the arcs of
Dij between two vertices at a juncture rank, or between a vertex at a juncture rank and
a vertex at a trace rank, to the arcs between the corresponding vertices of Dik .

At this point, the only vertices and arcs of Dij whose images through η is not yet
set belong to directed paths issuing from vertices at trace ranks of Dij . Finally, given

that D̂ij = D̂ik and δ(Dij ) 6
` δ(Dik), we can map these directed paths of Dij to the

corresponding directed paths, of greater lengths, of Dik .

Note that the proof of Theorem 3.3.2 shows a stronger fact: the map η is not only
a strong immersion of Dij into Dik , but one such that for any v ∈ V (Dij ), |N+(v)| =
|N+(η(v))| and |N−(v)| = |N−(η(v))| hold.

Due to Lemma 1.4.5 and to the observations made at the beginning of Section 3.2, the
above theorem has the following two corollaries.

Corollary 3.3.3 The set {D(x) |x is a slim hereditarily finite well-founded set ∧|x| 6 s}
is well-quasi-ordered by strong immersion.
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Corollary 3.3.4 The set {D(x) |x is a slim hereditarily finite hyperset ∧|x| 6 s} is well-
quasi-ordered by strong immersion.

Proof. By Lemma 1.4.6, the membership digraph D of a hereditarily finite hyperset is
almost channeled, in the sense that at most one vertex v ∈ V (D) exists from which there is
no directed path to the sink. Moreover, N+(v) = {v}. We can hence include this vertex v
in the encoding D̂ of D (for example, by assigning to v the juncture rank 0). Analogously
to Lemma 3.3.1, this new encoding still has a number of vertices bounded by a function
depending only on s, and hence the proof given above still holds for obtaining the wqo
property.

Concluding remarks

This result is one of the first steps in studying containment relations between digraphs and
well-quasi-orders for various classes of sets. On the one hand, even though we have shown
that neither one of the two conditions introduced here can be dropped, various other classes
of sets can be considered. For example, a starting point could be dependent or irredundant
extensional acyclic digraphs. Somewhat more challenging, the question can be asked for
hypersets in which every arc is necessary for having hyper -extensionality. On the other
hand, other types of digraph immersions can be considered, starting, for example, from
an adequate generalization to digraphs of the notion of minor for undirected graphs [128].

On the graph-theoretic side, it would be interesting to investigate if the wqo property
holds also when dropping the requirement that the digraphs are channeled (generalizing
in a way Corollary 3.3.4). We believe that this is indeed the case, since Lemma 3.2.5
guarantees that the strongly connected components whose vertices have no directed paths
towards sinks are nearly directed cycles, hence easy to describe/encode.

Another graph-theoretic question is to what degree the class of digraphs considered
in this paper relates to the result of [36] on tournaments: note that tournaments have at
most one source.
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Set Graphs –

The Structure Underlying Sets

While hereditarily finite sets capture, without redundancy, the whole semantic richness
that a well-founded membership can knit, what can be said about the topological diversity
of their underlying (undirected) graphs? To tackle this question, we put forward the notion
of a set graph, that is, a graph admitting an extensional acyclic orientation.

Even though hereditarily finite sets can be easily characterized and can be recognized
in linear time, the problem of recognizing set graphs is NP-complete. This is also the
case for the analogous problem of finding a hyper-extensional orientation of a graph. This
complexity result shows that set graphs form a rich class of graphs, but that it is unlikely
that a good characterization of them exists. Instead, one can look for a largest hereditary
(i.e., closed under taking induced subgraphs) class of graphs such that every connected
member of it is a set graph. It turns out that this class is obtained by forbidding the claw,
K1,3. Surprisingly, the local condition of being claw-free ensures the global property of
admitting an extensional acyclic orientation.

We begin by giving necessary or sufficient conditions for being a set graph, by pro-
viding some graph-theoretic operations which preserve set graphs and by giving a precise
characterization of unicyclic set graphs. As expected, counting the extensional acyclic
orientations of a graph is also difficult, in the sense that this problem belongs to the com-
plexity class #P-complete. However, the recognition problem becomes solvable in linear
time when the input graphs are restricted to have bounded tree-width. Finally, we study
the interplay between ‘claw-free’ conditions and set graphs. In particular, we identify the
maximal hereditary class where being claw-free is equivalent to being a set graph.
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4.1 Basic properties

4.1.1 Necessary or sufficient conditions

We say that a graph is a set graph is it admits an extensional and acyclic orientation.
Whenever in a digraph D we have N+(x) = N+(y) for distinct vertices x and y, we say
that x and y collide. Note that this is not the case if D is acyclic and there is a directed
path from x to y.

Every set graph must be connected, since in every acyclic orientation of a disconnected
graph G there are at least two sinks (which therefore collide). This necessary condition
can be further strengthened as follows:

Proposition 4.1.1 If G is a set graph, then for every X ⊆ V (G), G − X has at most
2|X| connected components.

Proof. Arguing by contradiction, let D be an e.a.o. of G and suppose there is an X ⊆
V (G) such that G−X has Y1, . . . , Yt as connected components, where t > 2|X|. Since D
is acyclic, there exist yi ∈ Yi, such that yi is a sink in D[Yi], for all 1 6 i 6 t. Since D is
extensional, we have that all N+(yi) ⊆ X are different, for all 1 6 i 6 t, which contradicts
the fact that t > 2|X|.

Proposition 4.1.1 shows that the claw is not a set graph: removing the vertex of degree
3 leaves a graph with three connected components.

A slightly more general result holds:

Proposition 4.1.2 Let G be a set graph and let X ⊆ V (G). Denote by Y1, . . . , Yt the
vertex sets of the connected components of the graph G−X. Then,

t 6 max

∣∣∣∣∣
t⋃
i=1

P (N(vi) ∩X)

∣∣∣∣∣ ,
where the maximum is taken over all t-tuples (v1, . . . , vt) ∈ Y1 × · · · × Yt.

Proof. Let D be an e.a.o. of G and let X ⊆ V (G) with Y1, . . . , Yt as above. Since
D is acyclic, there exist yi ∈ Yi, such that yi is a sink in D[Yi], for all 1 6 i 6 t.
Since D is extensional, we have that all N+(yi) ⊆ X are different, for all 1 6 i 6 t.
Since N+(yi) ∈ P (N(yi) ∩X), the set ∪ti=1P (N(yi) ∩X) has at least t elements. In
particular, the maximum value of

∣∣∪ti=1P (N(vi) ∩X)
∣∣, taken over all t-tuples (v1, . . . , vt) ∈

Y1 × · · · × Yt, is at least t.

Example 4.1.3 The graph depicted in Figure 4.1 is not a set graph.

a b

Figure 4.1: A graph violating the condition in Proposition 4.1.2.
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Indeed, taking X = {a, b}, we see that for every v ∈ V (G) \X we have N(v) ∩X ∈
{{a}, {b}}. Hence ∪4

i=1P (N(vi) ∩X) ⊆ {∅, {a}, {b}} for every 4-tuple (v1, v2, v3, v4) as in
Proposition 4.1.2, implying max

∣∣∪4
i=1P (N(vi) ∩X)

∣∣ = 3 < t = 4 .

Proposition 4.1.4 If G is a set graph, then for every X ⊆ V (G), the set Y = {y ∈
V (G) |N(y) = X} has cardinality at most |X|+ 1.

Proof. Let X,Y be subsets of V (G) as in the claim. Observe first that in any acyclic
orientation of G, for any y1, y2 ∈ Y , we have N+(y1) ⊆ N+(y2) or N+(y2) ⊆ N+(y1). If
this were not the case, then we could find x1 ∈ N+(y1)\N+(y2) and x2 ∈ N+(y2)\N+(y1).
Then, we would have x1 → y2 and x2 → y1, which produces the cycle y1 → x1 → y2 →
x2 → y1, a contradiction.

If G admits an e.a.o. D, from the above observation and the fact that N+(y) ⊆ X, for
any y ∈ Y , we get |Y | 6 |X|+ 1.

Proposition 4.1.4 shows that the complete bipartite graph K2,4 is not a set graph.
More generally:

Corollary 4.1.5 A complete bipartite graph Km,n is a set graph if and only if |m− n| 6 1.

Proof. Necessity of the condition follows from Proposition 4.1.4. Sufficiency follows from
Theorem 4.1.6 below.

Notwithstanding, the difference between the cardinalities of the parts of the bipartition
of a bipartite set graph can be exponentially large. Just consider the bipartite graph G
having as two parts a finite set X = {x1, . . . , xn}, n > 1, and the power-set of X, P(X),
and whose e.a. orientation is given by the arc relation {S → x : S ∈ P(X) ∧ x ∈ X ∧ x ∈
S} ∪ {xi+1 → {xi} : 1 6 i < n} ∪ {x1 → ∅}.

As already mentioned at the beginning of this section, a directed path between two
vertices in an acyclic digraph prevents them from colliding. In particular:

Theorem 4.1.6 If G has a Hamiltonian path, then G is a set graph.

Proof. Let |V (G)| = n and denote by (x1, x2, . . . , xn) a Hamiltonian path of G. To obtain
an e.a.o. D of G, orient all edges xixj of G as xj → xi, where 1 6 i < j 6 n. Clearly, D
is acyclic; since between any xi and xj with i < j we have a path in D from xj to xi, D
is also extensional.

Note that the net—see Figure 1.1—is a set graph, but does not contain a Hamilto-
nian path. As a matter of fact, every corona of a clique, Kn ◦ K1 (made up of a clique
{α1, . . . , αn}, n > 3, together with vertices β1, . . . , βn, where each βi is adjacent only to
αi, 1 6 i 6 n) is a set graph without a Hamiltonian path, whose unique e.a.o. is obtained
along the same lines as in Figure 4.2. (The fact that coronas of cliques are set graphs also
follows from Proposition 4.1.8 of Section 4.1.2.)

The next proposition generalizes Corollary 4.1.5 by isolating a larger class of graphs
where having a Hamiltonian path is equivalent to being a set graph.

Proposition 4.1.7 If G is a complete multipartite graph, then G has a Hamiltonian path
if and only if G is a set graph.
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Figure 4.2: The unique e.a. orientation of a net, up to isomorphism.

Proof. We show by induction on |V (G)| that if D is an e.a.o. of G having a vertex s as
sink, then there exists a Hamiltonian path in G ending in s.

When |V (G)| = 1, the claim is clear. Let thus G be a complete multipartite graph,
|V (G)| > 2, and so that D is an e.a.o. of G having s as sink. We claim that D − s is an
e.a.o. of G − s. Assume, for a contradiction, that in D − s there is a collision between
x and y. This implies that x and y belong to the same part of the multipartition of G,
different from the one to which s belongs. Additionally, we have that in D the symmetric
difference between N+(x) and N+(y) is precisely s, so say that s ∈ N+(x) \N+(y). Since
G is multipartite, there must be an edge between s and y, which is thus oriented as s→ y.
This contradicts the fact that s is the sink of D. Moreover, the sink of D−s is a in-neighbor
of s in D.

Therefore, we can apply the inductive hypothesis to the complete multipartite graph
G− s, having the e.a.o. D− s, to obtain a Hamiltonian path in G− s ending in a neighbor
of s in G. This can be extended by the addition of s for obtaining a Hamiltonian path for
G.

Observe that complete multipartite graphs can also be characterized in terms of forbid-
den induced subgraphs: they are precisely the connected members of the class of (P4, paw)-
free graphs (see, e.g., [84]); the paw is depicted in Figure 1.1. However, this is not the
largest hereditary class of graphs where having a Hamiltonian path is equivalent to being a
set graph, since both P4 and the paw are set graphs with a Hamiltonian path. It remains
an open problem to find a precise characterization of such a largest hereditary class of
graphs.

4.1.2 Operations preserving set graphs

In this section, we show that set graphs are closed under certain graph transformations.

Proposition 4.1.8 Let G be a set graph with V (G) = {v1, . . . , vn}, and let G′ be the
graph obtained from G by first adding to it a dominating vertex, and then connecting each
vertex of the resulting graph to a new vertex. Formally:

• V (G′) = V (G) ∪ {v0} ∪ {wi : 0 6 i 6 n}, and

• E(G′) = E(G) ∪ {v0vi : 1 6 i 6 n} ∪ {viwi : 0 6 i 6 n}.

Then, G′ is a set graph.

Proof. Suppose first that G is a set graph and let D be an e.a.o. of G. An e.a.o. D′ of G′

can be obtained as follows: D′[V (G)] = D, vertex v0 becomes a sink in D′[V (G) ∪ {v0}],
and the edges viwi are oriented towards vi for 1 6 i 6 n and towards w0 for i = 0. Clearly,
D′ is acyclic, and it is not hard to verify that it is also extensional.
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If Gi = (Vi, Ei), i ∈ {1, 2}, are graphs with V1 ∩ V2 = ∅ and x is a vertex of G1, the
substitution H = G1(x → G2) of G2 for x in G1 is defined as the graph obtained by
deleting x from G1 and joining each vertex of G2 to each neighbor of x in G1.

Proposition 4.1.9 Set graphs are closed under substitution.

Proof. Let H = G1(x → G2), where G1 and G2 are set graphs and x is a vertex of G1.
Let Di be an e.a.o. of Gi, for i = 1, 2. We obtain an e.a.o. D of H as follows:

• All edges completely within V (G1)\{x} are oriented as in D1.

• All edges completely within V (G2) are oriented as in D2.

• For every v ∈ V (G2) and every w ∈ N+
D1

(x), orient the edge vw as v → w.

• For every w ∈ V (G1) such that x ∈ N+
D1

(w) and every v ∈ V (G2), orient the edge
vw as w → v.

Clearly, D is acyclic. Suppose that there is a collision in D between vertices u and v (so
that uv, vu /∈ E(D)). Then, we cannot have {u, v} ⊆ V (G2) as this would contradict
the extensionality of D2. Similarly, because of the extensionality of D1, we cannot have
{u, v} ∩ V (G2) = ∅. Therefore, |{u, v} ∩ V (G2)| = 1, say u ∈ V (G2) and v 6∈ V (G2). But
now, since uv, vu /∈ E(D) it follows from the construction that N+

D (v) ∩ V (D2) = ∅, thus
N+
D (v) = N+

D1
(v) ⊆ V (D1), and hence N+

D (u) = N+
D1

(x). This collision between x and v
in D1 contradicts its extensionality.

Corollary 4.1.10 Set graphs are closed under:

• adding a dominating vertex (i.e., if G is a set graph, then the graph obtained from
G by introducing a new vertex adjacent to all vertices of G is also a set graph),

• adding true twins (i.e., if G is a set graph and v ∈ V (G), then the graph obtained
from G by introducing a new vertex v′ adjacent precisely to v and to every neighbor
of v is also a set graph).

Note that the converse of Corollary 4.1.10 does not hold, since the set graph in Fig-
ure 4.3 can be obtained from the claw {α1, α0, α2, α4} by the addition of α3 either as a
dominating vertex or as a true twin of α1.

α0

α1

α2

α3

α4

Figure 4.3: A set graph obtained from the claw by one of the two graph operations of
Corollary 4.1.10.

We will now introduce an operation that suppresses a cut vertex. Let G be a set graph
and x ∈ V (G) is a cut vertex in G. By Proposition 4.1.1, G − {x} has precisely two
components, say S1 and S2. We say that G ./ x is the graph (V,E) where
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• V = V (G) \ {x},

• E = (E(G) \ {xs : s ∈ NG(x)}) ∪ {s1s2 : s1 ∈ S1 ∩NG(x) ∧ s2 ∈ S2 ∩NG(x)}.

Lemma 4.1.11 If D is extensional and acyclic, then for every x ∈ V (D), there is at most
one component S of D − {x} such that ∃s ∈ S, x→ s.

Proof. Arguing by contradiction, if there were two such components S and S′ of D−{x}
so that s ∈ S, s′ ∈ S′, and x → s, x → s′, then denote by t and t′ the sinks of D[S] and
of D[S′], respectively. Since D is extensional and {x} is a cut-set, one of these two local
sinks, say t, has x as out-neighbor. However, this contradicts the acyclicity of D, since we
obtain the cycle t, x, s, followed by the vertices on the path from s to t in D[S].

Proposition 4.1.12 If G is a set graph having a cut vertex x then G ./ x is also a set
graph.

Proof. Let G be a set graph having a cut vertex x which gives rise to components S1 and
S2 of G−{x}. Denoting by D an e.a.o. of G, observe first that x is not the sink of D, since
otherwise there would be a collision between the sinks of D[S1] and D[S2], respectively.
From Lemma 4.1.11, we thus get that x has out-neighbors in precisely one of S1 or S2, say
S1. Moreover, since x is a cut vertex, there are vertices in S2 having x as out-neighbor.

Obtain the e.a.o. D′ of G ./ x in the following way:

• all edges completely within S1 or S2 are oriented as in D,

• an edge s1s2, with s1 ∈ S1 and s2 ∈ S2 is oriented as s1 → s2 if and only if
s1x ∈ E(D).

To see that D′ is acyclic, note that any possible cycle of D′ must contain arcs s1 → s2

and s′2 → s′1, with s1, s
′
1 ∈ S1, s1 6= s′1, and s2, s

′
2 ∈ S2. Moreover, choose such vertices

s1, s
′
1, s2, s

′
2 so that this cycle continues from s′1 to s1 using only vertices of S1. However,

this would produce a cycle in D on the vertices s1, x, s′1, followed by the vertices on the
directed path from s′1 to s1 in S1 belonging to the assumed cycle of D′.

To see that D′ is also extensional, argue by contradiction and suppose that there is a
collision in D′ between s and s′ belonging to S1. Since D is extensional, there must exist
a vertex z ∈ V (D) such that, w.l.o.g., z ∈ N+

D (s) \ N+
D (s′). If z 6= x, then z ∈ S1 and

hence also z ∈ N+
D′(s) \N

+
D′(s

′). If however z = x, then, according to the construction, s
receives as out-neighbor an element of S2, which is not the case for s′. If there is a collision
between two vertices of S2, the argument is identical.

We now have to consider a collision between s ∈ S1 and s′ ∈ S2, and here there are a
few cases to analyze. If N+

D′(s)∩S1 6= ∅ and N+
D′(s)∩S2 6= ∅, then ss′ ∈ E(D′), against the

fact that s and s′ collide. Suppose now that N+
D′(s) ⊆ S1, implying that N+

D′(s
′) = N+

D (x)
and hence that there is a collision in D between x and s. The last case that needs to be
considered is when N+

D′(s) ⊆ S2, which implies that s is a sink in D′[S1]. However, this
cannot be true, since s would also be a sink in D[S1], and would hence be in collision in
D with the sink of D[S2].



Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l’Università degli Studi di Udine
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4.1.3 Unicyclic set graphs

Given a connected graph G, let µ(G) denote its cyclomatic number, |E(G)| − |V (G)|+ 1.
Observe that the problem of finding an e.a.o. of a graph G is easy at extremal values
of µ(G). When G is a tree, by Proposition 4.1.1, it can have no vertex of degree 3 or
more, entailing that G is a path. On the other hand, any complete graph is a set graph,
since a complete graph has a Hamiltonian path. Note that its orientation is unique, up
to isomorphism.1 We will now give a characterization of unicyclic set graphs (i.e., having
cyclomatic number 1)—an example is given in Figure 4.4—which also results in a linear
time algorithm for recognizing them.

Given a graph G, a cycle C in G and a sub-tree T of G, we say that T is pendant to
C if C ∩V (T ) = {r}, where r is a vertex of degree 1 in T ; r will be called the articulation
vertex of T .

Definition 4.1.13 (Jellyfish graph) A connected unicyclic graph G, having a cycle C,
is said to be a jellyfish graph if there exist (possibly trivial) paths P , P ′, P ′′ in G, pendant
to C, having their articulation vertices denoted by r, r′, r′′, respectively, such that G =
C ∪ P ∪ P ′ ∪ P ′′, r 6= r′′ and d(r, r′) = d(r′, r′′) = 1.

C

P

P ′

P ′′
C

P

P ′

P ′′

Figure 4.4: A jellyfish graph and its extensional acyclic orientation

Lemma 4.1.14 If D is extensional and acyclic, then for every X ⊆ V (D), there is at
most one component S of D −X such that ∀x ∈ X, ∀s ∈ S, sx /∈ E(D).

Proof. Arguing by contradiction, if there were two such components S and S′ of D−X,
then the sinks of D[S] and D[S′] would also be sinks in D, against the extensionality of
D.

Theorem 4.1.15 A unicyclic graph is a set graph if and only if it is a jellyfish graph.
Moreover, an e.a. orientation of such a graph can be found in linear time.

Proof. Let D be an e.a.o. whose underlying undirected graph G is connected and uni-
cyclic.

Denoting by C the cycle of G, let us examine the orientation of the arcs between
vertices of C. If there were at least two sinks s and s′ in D[C], then obtain a contradiction
from Lemma 4.1.14, by taking as cut-set C \ {s, s′}. Conversely, if there were two sources
in D[C], then this would imply the existence of at least two sinks in D[C]. Hence there is
exactly one source t and one sink s in D[C]. We claim that s ∈ N+(t). If not, then consider
the two vertices s1 and s2 of C such that s ∈ N+(s1)∩N+(s2). Since D is extensional and

1It is not difficult to see that this orientation of a complete graph is also the only one which is hyper-
extensional.
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neither s1 nor s2 is a source in D[C], there exists, w.l.o.g, an s3 ∈ N+(s1) \ (N+(s2)∪C).
Taking C \ {s} as cut-set in Lemma 4.1.14, the components of G− (C \ {s}) containing s,
and s3, respectively, produce the desired contradiction.

Consider now x ∈ V (G) with degree at least three. Since D is extensional, then x ∈ C,
implying that all vertices in V (G)\C lie on paths pendant to C. Moreover, from the same
Proposition 4.1.1, there can be no two pendant paths having the same articulation vertex.

Let P = (p1, . . . , pk) be a pendant path to C, in G, having p1 as articulation vertex.
If there were two sinks pi and pj , i 6= j, in D[P ], then, by Lemma 4.1.14, we obtain a
contradiction by taking P \ {pi, pj} as cut-set. If the sink of D[P ] is pt, where 1 < t < k,
then we obtain again a contradiction, as N+(pt−1) = N+(pt+1) (since otherwise we would
have two sources, and hence also two sinks, in D[P ]). Therefore, the sink of D[P ] is either
p1 or pk. Note that in both cases P is also a directed path in D.

To simplify notation, let c1, . . . , c` be the cyclic order of vertices of C, where N+(c1)∩
C = ∅, N+(c`) ∩ C = {c1, c`−1}, and N+(ct) ∩ C = {ct−1}, for all 1 < t < `. Consider
also a pendant path to C, P = p1, . . . , pk, where p1 is its articulation vertex. If pk is the
sink in D[P ], then p1 = c1, since otherwise we can apply Lemma 4.1.14 by taking C \ {c1}
as cut-set. If p1 is the sink of D[P ], then p1 /∈ {c1, . . . , c`−2}. Indeed, if p1 were some ct,
1 6 t 6 `− 2, then we would have a collision between p2 and ct+1.

To sum up, we have that either p1 = c1, in which case pk is the sink in D[P ], or that
p1 ∈ {c`−1, c`}, in which case p1 is the sink in D[P ]. In all these cases, G is a jellyfish
graph. On the other hand, each jellyfish graph admits an e.a.o., which can be constructed
in linear time, along the same lines of the proof (see also Figure 4.4 as an example).

Note that checking whether a connected graph is a jellyfish graph can be done in linear
time, by first checking whether G is unicyclic (which can be done even in constant time
if the number of edges and vertices is already known), and then finding the cycle C` of G
and ensuring that the pendant trees to C`, if any, comply with Definition 4.1.13.

4.1.4 Related graph classes and notions

In this section we employ the following notations. Given a graph G and a vertex v ∈ V (G),
the closed neighborhood of v is the set NG[v] =Def {v} ∪ NG(v). Given a digraph D and
a vertex v ∈ V (D), the closed out-neighborhood of v is the set N+

D [v] =Def {v} ∪ N+
D (v),

and the closed in-neighborhood of v is the set N−D [v] =Def {v} ∪N−D (v). Because of these
concepts, the standard (out-/in-)neighborhood of a vertex is sometimes said to be open.

Similarly defined graph classes

We begin by reviewing some graph classes whose definition is quite similar to that of set
graphs. We denote by

• C1: underlying graphs of (not necessarily acyclic) directed graphs with distinct out-
neighborhoods;

• C2: underlying graphs of directed acyclic graphs with distinct closed out-
neighborhoods;

• C3: underlying graphs of (not necessarily acyclic) directed graphs with distinct closed
out-neighborhoods;
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• C4: point-determining graphs [140], that is, undirected graphs with distinct neigh-
borhoods;

• C5: point-distinguishing graphs [140], that is, undirected graphs with distinct closed
neighborhoods.

Observe that C2 = C3 = {all undirected graphs}, since every acyclic orientation of
a graph G has the property that all closed out-neighborhoods are distinct. Moreover, a
graph belongs to C4 if and ony if its complement belongs to C5. It is also clear that every
set graph is in the class C1. On the other hand, there are no other inclusion relations
among these classes. Denoting by C0 the class of all set graphs, we collect in Table 4.1
below some examples of graphs G ∈ Ci \ Cj , for all i, j ∈ {0, 1, 4, 5} such that i 6= j and
(i, j) 6= (0, 1).

i / j 0 1 4 5

0

1

4

5

Table 4.1: Separating examples for classes C0, C1, C4, C5

Separating codes for digraphs

Related practical applications refer to codes in graphs and digraphs. Let us say that
a subset C of vertices of a digraph D is an open-out-separating code if the (open) out-
neighborhoods of the vertices of D have pairwise distinct intersections with C. It is easy
to see that a digraph D admits such a separating code if and only if D is extensional.

To place this in historical context, notice that we are slightly deviating from the nomen-
clature introduced by [57], where the notion of separating code referred to closed in-
neighborhoods. We summarize below the various concepts of codes in graphs introduced
during the last decade. Given a graph G, a subset C ⊆ V (G) is called:

• dominating set, if for all v ∈ V (G), N [v] ∩ C 6= ∅;

• separating code, if for distinct u, v ∈ V (G) it holds N [u] ∩ C 6= N [v] ∩ C, cf. [57];

• identifying code, if C is a dominating set and a separating code, cf. [74];

Moreover, if G is a bipartite graph G = (A ∪B,E), then C ⊆ B is called

• discriminating code, if for all v ∈ A, N(v) ∩ C 6= ∅ and for distinct u, v ∈ A it holds
N(u) ∩ C 6= N(v) ∩ C, [28, 29].

In case of digraphs, these notions have been analogously defined in terms of in-
neighbors. Given a digraph D, a subset C ⊆ V (D) is called:

• dominating set, if for all v ∈ V (G), N−[v] ∩ C 6= ∅;



Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l’Università degli Studi di Udine
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• separating code, if for distinct u, v ∈ V (G) it holds N−[u] ∩ C 6= N−[v] ∩ C, [57]);

• identifying code, if C is a dominating set and a separating code, [74];

As applications of these problems we mention emergency sensor networks in facilities
or fault detection in multiprocessor systems (see [30, 127] and the references therein).
For the latter, consider a digraph D whose vertices correspond to processors, and whose
arcs correspond to unidirectional links between them. Assume that exactly one of the
processors is malfunctioning and that it has to be identified. This can only be done by
selecting some processors (constituting the open-out-separating code) which are assigned
the task of testing their in-neighbors and sending an alarm signal in case one of them is
faulty. We require that we can precisely tell which processor is malfunctioning only by
looking up which processors produced an alarm.

For a refinement of this problem equivalent to finding an e.a. orientation of a graph,
assume that we are given such a network with the additional property that the links
between the processors form no directed cycles. Moreover, assume that we are allowed
to flip the orientations in any subset of links, as long as the resulting network is acyclic.
We want to decide for which networks of processors such a change of the orientations is
possible (and find one), so that there is a way to detect any faulty processor under the
rules stated above.

Logics capturing PTIME

Assigning an e.a. orientation to a (finite) graph is equivalent to equipping every vertex with
a unique identity, given by its Mostowski’s collapse. Set graphs are those graphs which
provide such a unique identity internally, without the need of external labelings (albeit a
vertex can have more absolute set identities, corresponding to all e.a. orientations of the
set graph).

This relates, among others, to descriptive complexity theory and its quest for logics
capturing the complexity class PTIME on finite unlabeled graphs (for an introduction,
see [60]). If it turned out that there exists no logic capturing PTIME on finite unlabeled
graphs, this would show that PTIME 6= NP, since Existential Second Order Logic does
capture the complexity class NP on such graphs [51]. On the other hand, a sufficient
condition for PTIME to be captured by some logic on finite unlabeled graphs from a class
C is the ability to define a linear order, in that logic, on the vertices of any graph from
C [69, 146]. Since the vertices of an e.a. digraph have a unique identity, a linear order on
them is indeed definable in First Order Logic + Least Fixed Point [79]. For this reason, it
is interesting to explore deeper connections between (subclasses of) set graphs, together
with their e.a. orientations, and logics capturing PTIME. As a motivation, we mention a
recent conjecture by Grohe [61] stating that there is a logic capturing PTIME on the class
of (connected) chordal claw-free graphs, thus on a subclass of set graphs.

Bayesian networks and essential acyclic digraphs

Finding an orientation of a graph also resembles the problem of learning the structure of a
Bayesian network. Such a network, used in machine learning to model real-life phenomena,
is an acyclic digraph in which vertices stand for random variables, while arcs encode
their conditional interdependencies. When trying to discover the structure of a Bayesian
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4.2. Complexity issues 71

network from input data, one approach is to first discover if there is an interdependence
between any two variables (i.e., find the undirected edges), and then to find an acyclic
orientation which best explains the data [32].

A more precise connection with Bayesian networks refers to their subclass of essential
acyclic digraphs (see e.g. [8, 139]). An acyclic digraph D is essential if each vertex has a
unique identity, in the sense that for every arc xy ∈ E(D), the set of in-neighbors of x is
distinct from the set of in-neighbors of y minus the vertex x. This set-theoretic flavor is
further emphasized by numerical evaluations showing that the asymptotic ratio between
labeled essential acyclic digraphs and labeled e.a. digraphs is constant (see [124,139]).

The acyclic orientation game

Let us also mention the somewhat related acyclic orientation game in which an unknown
acyclic orientation of a given graph has to be discovered by querying edges one by one
(see [6, 120] and the references therein). One is usually interested in finding such an
orientation with the minimum number of queries, or in characterizing the graphs for
which all edges have to be queried. For example, the minimum number of queries for
finding an acyclic orientation of the complete graph Kn represents the minimum number
of comparisons needed to sort n pairwise distinct elements.

4.2 Complexity issues

4.2.1 Recognizing set graphs is hard

In this section, we prove that the following three problems are NP-complete:

Problem EAO. Given a graph G, decide whether G is a set graph.

Problem sEAO. Given a graph G, decide whether G admits a slim e.a.o.

Problem HEO. Given a graph G, decide whether G admits a hyper-extensional orienta-
tion.

Let HP denote the NP-complete problem of determining whether a given graph has a
Hamiltonian path [58]. To obtain the above results, we offer a reduction from the following
variant of HP:

Problem HP′. Given a graph G with exactly two leaves, decide whether G has a Hamil-
tonian path.

To see that also Problem HP′ is NP-complete, the following reduction from Problem HP
suffices. Given a graph G, construct G+ having V (G) ∪ {s1, s2, t1, t2} as vertex set, and
E(G)∪ {s1s2, t1t2} ∪ {s2v, t2v | v ∈ V (G)} as edge set. Clearly, G has a Hamiltonian path
if and only if G+ has a Hamiltonian path (having s1 and t1 as endpoints). Moreover, the
Hamiltonian paths of G are in bijection with the Hamiltonian paths of G+, an observation
which will turn out useful in Section 4.2.2.
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Finding a (slim) extensional acyclic orientation

Given a graph G = (V,E), denote by S(G) the subdivision graph of G, that is, the bipartite
graph obtained by subdividing once every edge of G. Stated formally, S(G) = (V ∪X,F ),
where

• X = {xe | e ∈ E}

• F = {uxuv | uv ∈ E}

A vertex of X is called an edge vertex.

Lemma 4.2.1 If G is a graph with exactly two leaves that has a Hamiltonian path, then
S(G) admits a slim e.a.o.

Proof. Let (v1, v2, . . . , vn) be a Hamiltonian path in G. Then s = v1 and t = vn are the
two leaves of G. An edge vertex of X is called touched if the above Hamiltonian path of
G uses the corresponding edge of G, and untouched otherwise. Partition X as X = T ∪U
by distinguishing touched edge vertices from untouched ones. Choose any total order ≺
on the vertices of S(G) with the following properties:

i) every vertex in U is placed after any vertex in T ∪ V ;

ii) vi ≺ xvivi+1 ≺ vi+1, for every i ∈ {1, . . . , n− 1}.

Notice that such a total order exists. Consider the orientation D of S(G) such that
every edge uv ∈ E(S(G)) is oriented in D as u → v if and only if u � v. Clearly, this is
an acyclic orientation. Furthermore, D is also extensional, since:

• vertex s = v1 is the only vertex with N+(s) = ∅;

• every untouched vertex in U , say xuv ∈ U , is the only vertex having N+(xuv) =
{u, v};

• every touched vertex in T , say xvivi+1 ∈ T , is the only vertex having N+(xvivi+1) =
{vi};

• every vertex in V \ {s}, say vi ∈ V (with 2 6 i 6 n), is the only vertex with
N+(vi) = {xvi−1vi}.

To see that D is also slim, observe first that the out-neighborhood of any vertex
v ∈ T ∪ (V \ {s}) is a singleton. Therefore, in the digraph obtained by removing the
out-going arc from v, vertex v collides with s. Finally, since both s and t are leaves in G,
for every untouched vertex in U , say xvivj ∈ U , we have i, j ∈ {2, . . . , n− 1}. The removal
of the arc xvivjvi creates a collision between xvivj and xvjvj+1 , and similarly the removal
of the arc xvivjvj creates a collision between xvivj and xvivi+1 .

Lemma 4.2.2 Let G be a graph. If S(G) admits an e.a.o., then G has a Hamiltonian
path.
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Proof. Let D be an e.a.o. of S(G) and let its sink be v. We claim that D has a directed
path passing through all the vertices of G, which hence produces a Hamiltonian path for
G.

Indeed, let P be a longest directed path in D starting in a vertex of G and ending at
v. Let u ∈ V (G) be the endpoint of P other than v. If all vertices of G are on P , we are
done. If not, let u′ be a vertex of G not on P . Let Q be a longest directed path from u′

to v, and let x be the first vertex on Q that belongs to P . Let y and z (y 6= z) be the
predecessors of x on P and on Q, respectively.

If x is a vertex of G, then y and z are edge vertices (thus different from u and u′). Note
that by construction each of y and z have exactly two incident arcs, one in-coming, on P
or on Q, and one out-going to x. This implies that N+(y) = N+(z) = {x}, contradicting
the extensionality of D.

Otherwise, x is an edge vertex, and x must be the sink of D, since its two incident
arcs are in-coming. But y and z are again in collision, since from the maximality of the
paths and the acyclicity of D they cannot have other out-neighbors than x.

Theorem 4.2.3 Problems EAO and sEAO are NP-complete, even when the input is re-
stricted to bipartite graphs with exactly two leaves.

Proof. The problems belong to NP, since acyclicity, extensionality and slimness can be
checked in polynomial time; actually, extensionality of an acyclic digraph can be verified
in linear time [47]. The hardness follows by reducing from Problem HP′, by Lemmas 4.2.1
and 4.2.2.

Remark 4.2.4 Instead of requiring that the digraph obtained by removing any arc from
an extensional acyclic digraph creates a collision (as in the definition of slimness), one can
consider, in a similar way, extensional acyclic digraphs with the property that reversing
any arc produces either a cycle or a collision. Notice that the slim e.a. orientation of S(G)
given in the proof of Lemma 4.2.1 has this property as well (in fact, reversing any arc
produces a collision). In particular, this implies that it is NP-complete to verify whether
a given bipartite graph with exactly two leaves admits an e.a.o. such that reversing any
arc in it produces either a cycle or a collision.

Finding a hyper-extensional orientation

Given digraphs D1 and D2 with disjoint vertex sets, and given vertices vi ∈ V (Di), i = 1, 2,
we denote by U(D1, v1, v2, D2) the digraph obtained by taking a copy of D1 and a copy of
D2 and adding the arc v1 → v2. Formally, U(D1, v1, v2, D2) has

• V (D1) ∪ V (D2) as vertex set,

• E(D1) ∪ E(D2) ∪ {v1 → v2} as the arc relation.

We define this operation analogously for graphs.
Our reduction will encode any graph G having two leaves s and t by the graph

U(S(G), s, a8, G8), where G8 is the underlying graph of digraph D8, depicted in Figure
4.5. We start with a preliminary lemma.

Lemma 4.2.5 Let D1 and D2 be two hyper-extensional digraphs. If the sink of D1 is s
and if D2 has a source t, then the digraph U(D1, s, t,D2) is hyper-extensional.
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Proof. Let D = U(D1, s, t,D2) and let B be a bisimulation over D. Digraph D is ex-
tensional, since D1 and D2 are extensional, by Lemma 1.4.5, and t is a source of D2. To
prove that x = y whenever xBy, we argue by contradiction, and consider three cases.

First, by construction, B restricted to V (D2), that is the relation B2 = {(x, y) | xBy ∧
x, y ∈ V (D2)}, is a bisimulation over D2. Therefore, xBy cannot hold for distinct x, y ∈
V (D2).

Second, suppose that x0By0 holds for (distinct) x0 ∈ V (D1) and y0 ∈ V (D2). Take
x1 ∈ N+(x0) so that x1 is a vertex on the directed path from x0 to s (or x1 = t, if x0 = s).
Since x0By0, there exists y1 ∈ N+(y0), thus y1 6= x1, such that x1By1. By repeating the
above procedure sufficiently many times, we reach a pair (xi, yi) (where i > 0) such that
xi = s, yi ∈ V (D2) and sByi. Since N+(s) = {t}, there exists a yi+1 ∈ N+(yi) so that
tByi+1. Recall that t is a source of D2, therefore t 6= yi+1. This contradicts the previous
case.

Finally, we claim that also the restriction of B to V (D1), that is the relation B1 =
{(x, y) | xBy ∧ x, y ∈ V (D1)}, is a bisimulation over D1. Observe that neither sBx nor
xBs can hold for x ∈ V (D1) \ {s}. This is true, since N+(s) = {t}, and, by the previous
case, there can be no x1 ∈ V (D1) such that tBx1, or x1Bt. Hence, also sB1x or xB1s
cannot hold for x ∈ V (D1) \ {s}. If xB1y, for distinct x, y ∈ V (D1) and s /∈ {x, y}, then
both conditions i) and ii) of the bisimulation definition hold, by construction and by the
fact that xBy. Therefore, B1 is a bisimulation over D1, and by hyper-extensionality of
D1 it follows that x = y, a contradiction.

a1

a2

a3 a4 a5

a6

a7

a8

Figure 4.5: Digraph D8 (denote by G8 its underlying graph); D8 is a gadget to force a sink
when the orientation can have cycles; one of a1 or a2 must be a sink in any extensional
orientation of G8.

Lemma 4.2.6 If G is a graph with two leaves s and t, and if G has a Hamiltonian path,
then the graph U(S(G), s, a8, G8) admits a hyper-extensional orientation.

Proof. First, let D be the e.a.o. of S(G) obtained as explained in the proof of Lemma
4.2.1, where s is taken to be its sink. By Lemma 1.4.5, D is also hyper-extensional.
Next, observe that also D8 is hyper-extensional, by applying, for example, the partition
refinement algorithm of [107]. Since a8 is a source of D8, by Lemma 4.2.5, the digraph
U(D, s, a8, D8) is hyper-extensional, which proves the claim.

Lemma 4.2.7 Let G be a graph. If U(S(G), s, a8, G8) admits a hyper-extensional orien-
tation, then G has a Hamiltonian path.

Proof. We reason as in the proof of Lemma 4.2.2. Let D be a hyper-extensional orienta-
tion of U(S(G), s, a8, G8). Therefore, D
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• is extensional,

• has a (unique) sink v that belongs to G8, and

• from every vertex of D there is a directed path to v.

We claim that D has a directed path passing through all the vertices of G, which thus
produces a Hamiltonian path for G.

Indeed, let P be a longest directed path in D starting in a vertex of G and ending at v,
the sink of D. Let u ∈ V (G) be the endpoint of P other than v. If all vertices of G are on
P , we are done. If not, let u′ be a vertex of G not on P . Let Q be a longest directed path
from u′ to v, and let x be the first vertex on Q that belongs to P . From construction, we
have that x is a vertex of S(G). Let y and z (y 6= z) be the predecessors of x on P and
on Q, respectively.

If x is a vertex of G, then y and z are edge vertices (thus different from u and u′). Note
that by construction, each of y and z have exactly two incident arcs, one in-coming, on P
or on Q, and one out-going to x. This implies that N+(y) = N+(z) = {x}, contradicting
the extensionality of D.

Otherwise, x is an edge vertex, and x must be the sink of D, since its two incident
arcs are in-coming. This contradicts the fact that the sink of D is a vertex of G8.

Theorem 4.2.8 Problem HEO is NP-complete, even when the input is restricted to bi-
partite graphs with exactly three leaves.

Proof. The problem belongs to NP, since hyper-extensionality can by checked in polyno-
mial time, for example by the algorithm of [107]. The hardness follows by reducing from
Problem HP′, by Lemmas 4.2.6 and 4.2.7.

The problem of recognizing set graphs appears to be quite delicate, since seemingly
negligible variations result in antithetical complexity. Indeed, if one asks for a weakly
extensional acyclic orientation, then such an orientation always exists and can be found
in linear time.

Theorem 4.2.9 Every graph admits a weakly extensional acyclic orientation. Such an
orientation can be found in linear time.

Proof. Let G be a graph. We may assume that G is connected, since otherwise we can
obtain a weakly e.a.o. of G by orienting in a weakly e.a. way the edges of each of its
components. Let now T be a depth-first-search tree of G, rooted at an arbitrary vertex
r. Note that for every edge xy ∈ E(G) \ E(T ), we have that x is an ancestor of y in T ,
or vice versa. To obtain a weakly e.a.o. D of G, orient all edges xy as x → y if x is an
ancestor of y in D. Clearly, D is acyclic. To see that it is also weakly extensional, suppose
that there is a collision between x and y in D. Hence, x is not an ancestor of y, nor y an
ancestor of x. Since N+(x) 6= ∅, there exists a vertex x′ ∈ N+(x); but x′ /∈ N+(y), as T
is a depth-first-search tree.
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4.2.2 The complexity of counting extensional orientations

We denote by #EAO, #sEAO, #HEO, #HP and #HP′ the corresponding counting variants
of the problems considered in Section 4.2.1. For instance, in the #EAO problem the task
is to determine the number of all e.a.o.s of a given graph. We consider two orientations
D = (V,E) and D = (V,E′) of a graph G to be identical if the have the same arc set,
that is E = E′. Similarly, two Hamiltonian paths P = (v1, . . . , vn) and P ′ = (v′1, . . . , v

′
n)

in a graph G are identical if they have the same edge set, that is {v1v2, . . . , vn−1vn} =
{v′1v′2, . . . , v′n−1v

′
n}.

Since Problem #HP is #P-complete (see [109, Ch.18], [50]), the simple reduction we
gave at the beginning of Section 4.2.1 implies that Problem #HP′ is #P-complete as well.

Theorem 4.2.10 Problems #EAO and #sEAO are #P-complete, even when the input is
restricted to bipartite graphs with exactly two leaves.

Proof. We first show that if G is a graph with two leaves, s and t, then any e.a.o. D of
S(G) is slim. As argued in the proof of Lemma 4.2.2, the vertices of G belong to a directed
path P of D. The endpoints of P are s and t, since they are leaves in G. We may assume
that s is its last vertex, so that s is the sink of D. Denote by (t = vn, vn−1, . . . , v1 = s)
the order in which the vertices of G appear on P . By the construction of S(G) and the
fact that P is a directed path, N+(xvi+1vi) = {vi}, for every 1 6 i 6 n − 1. Every
vertex of D not on P is an edge vertex xvivj , with i, j ∈ {2, . . . , n − 1}. If xvivj had
only one out-neighbor in D, say vi, then it would be in collision with xvi+1vi . Therefore,
N+(xvivj ) = {vi, vj}. We can conclude that N+(vi) = {xvivi−1}, for every 2 6 i 6 n. This
shows that D is an orientation obtained as explained in Lemma 4.2.1, hence it is also slim.

We now reduce from #HP′. If G is a graph with two leaves s and t, every Hamiltonian
path in G between s and t induces two slim e.a.o.s (having either s or t as sink) for S(G),
as argued in Lemma 4.2.1. Moreover, different Hamiltonian paths of G induce different
pairs of such slim e.a.o.s for S(G). Conversely, by Lemma 4.2.2 and the above argument,
every e.a.o. of S(G) is slim, and it induces a Hamiltonian path of G. This shows that the
number of (slim) e.a.o.s of S(G) is exactly twice the number of Hamiltonian paths in G,
hence Problems #EAO and #sEAO are #P-complete.

Remark 4.2.11 The above proof implies that it is #P-complete to determine the number
of all e.a. orientations in which any arc reversal produces either a cycle or a collision, even
when the input is restricted to bipartite graphs with exactly two leaves.

Regarding Problem #HEO, we need the following lemma, describing the possible ori-
entations of the graph G8.

Lemma 4.2.12 The digraph D8 depicted in Figure 4.5, together with D′8, the digraph
obtained from D8 by reversing the arcs a2a3 and a3a1, are the only digraphs having G8 as
underlying graph and satisfying properties i), ii) and iii) stated in Lemma 1.4.5.

Proof. Suppose for a contradiction that there exists an orientation D of G8 different from
D8 or D′8 and satisfying the properties i), ii) and iii) stated in Lemma 1.4.5.

Note that exactly one of a1 or a2 must be a sink in D, as otherwise they would have
the same out-neighborhood. Say a3 → a1 and a2 → a3. This implies that a8 → a7.
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Since from every vertex of D there is a directed path to a1, we have a4 → a3. Since
N+(a2) 6= N+(a4), we have that a4 has at least one other out-neighbor.

Assume first that a7 → a4, and hence a4 → a5. Since N+(a5) 6= ∅, we have a5 → a6.
Similarly, a6 → a7. Hence, N+(a6) = N+(a8), contradicting the extensionality of D.
Otherwise, since from a7 there must be a directed path to a1, we have a7 → a6 → a5 → a4,
which contradicts the fact that D is not D8, nor D′8.

Theorem 4.2.13 Problem #HEO is #P-complete, even when the input is restricted to
bipartite graphs with exactly three leaves.

Proof. We reduce again from #HP′. If G is a graph with two leaves s and t, every
Hamiltonian path in G between s and t induces a pair of hyper-extensional orientations
of U(S(G), s, a8, G8). Indeed, the edges between vertices of S(G) can be oriented as in
Lemma 4.2.1 (taking s as a ‘local’ sink for S(G)), whereas the edges between the vertices
of G8 can be oriented as in D8 or as in D′8. Moreover, different Hamiltonian paths of G
induce different pairs of such hyper-extensional orientations of U(S(G), s, a8, G8).

Conversely, if D is a hyper-extensional orientation of U(S(G), s, a8, G8), Lemma 4.2.7
and the argument employed in the proof of Theorem 4.2.10 show that D[V (S(G))] must
be oriented as indicated by the proof of Lemma 4.2.1. Moreover, Lemma 4.2.12 shows
that D[V (G8)] is either D8 or D′8. This allows us to conclude that the number of hyper-
extensional orientations of U(S(G), s, a8, G8) is exactly twice the number of Hamiltonian
paths in G. Hence also Problem #HEO is #P-complete.

4.2.3 Tractability on graphs of bounded tree-width

We now show that set graph recognition is solvable in linear time if the input graph is of
bounded treewidth. This follows from Courcelle’s Theorem (see [39, 40]): Any property
of graphs, or, more generally, relational structures, which is expressible by a Monadic
Second Order (MSO) sentence, can be decided in linear time if the treewidth of the input
structures is bounded by a fixed constant. (We assume familiarity with these concepts;
otherwise, we refer to the excellent monograph [55].) Together with Problem EAO, we also
show the tractability of its two generalizations:

Problem EAOsources. Given a graph G and S ⊆ V (G), decide whether G admits an
e.a.o. in which all vertices of S are sources.

Problem EAOarcs. Given a graph G and a partial orientation F of G, decide whether G
admits an e.a.o. extending F .

We observe in passing that these two problems have been shown to be NP-complete also
by a direct reduction from the propositional satisfiability problem [86].

Theorem 4.2.14 For every k, Problems EAO, EAOsources and EAOarcs are all solvable
in linear time if the input graph G is of treewidth at most k.

Proof. By Courcelle’s Theorem, it suffices to show that each of these problems can be
expressed by a Monadic Second Order sentence. Consider the vocabulary τ consisting of
two unary relation symbols V and E, and a binary relation symbol I. We represent a graph
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G = (V ′, E′) by a τ -structure A = (A, V,E, I) with the universe A := V ′ ∪ E′, and the
following interpretations of the relations: V := V ′, E := E′ and I := {(v, e) | v ∈ V ′, e ∈ E′
and v ∈ e} is the vertex-edge incidence relation. For our purpose, we will not need the
definition of the treewidth and tree decompositions; it will be enough to recall that a σ-
structure B has the same tree decompositions as its Gaifman graph G(B) := (V,E) where
V := B, the universe of the structure, and E := {{a, b} | a, b ∈ B, a 6= b, there exists an
R ∈ σ and a tuple (b1, . . . , br) ∈ R where r := arity(R), such that a, b ∈ {b1, . . . , br}}.
The Gaifman graph of the structure A = (A, V,E, I) as above is isomorphic to the graph
obtained from G by subdividing each edge precisely once. Since the treewidth of a graph
is invariant with respect to edge subdivisions, it follows that if G is of treewidth k, then
so is the structure representing it [55].

For unary relations X and R, we will write x ∈ X to mean X(x), and interpret X ⊆ V
and R ⊆ E in the usual way. Moreover, for a subset R ⊆ E, we will write {x, y} ∈ R to
mean (∃e)(e ∈ R ∧ I(x, e) ∧ I(y, e)). With these conventions in mind, we now describe
MSO sentences expressing the above problems:

• Encoding an orientation D of the graph is possible using some reference orientation
and then quantifying over a subset R of edges whose orientations are reversed. The
reference orientation can be obtained using a depth-first-search tree: as explained
in [41], one can write MSO formulas ϕ(X,u) and θ(X,u, x, y) such that if ϕ(X,u)
holds then for each edge {x, y} of G, we have either θ(X,u, x, y) or θ(X,u, y, x) but
not both. Hence, θ defines an orientation of each edge; however, this orientation
depends on two parameters X (a subset of edges) and u (a vertex) that must satisfy
formula ϕ(X,u). Such parameters always exist if G is connected. We thus introduce
another parameter R, so that the existence of a directed edge xy in the corresponding
orientation can be expressed with the following formula:

ϕorient(X,u,R, x, y) ≡ ({x, y} ∈ R)⇔ θ(X,u, y, x) .

• Acyclicity can be stated as follows: for every non-empty subset Y ⊆ V , there exists
a sink in the subgraph of G induced by Y . Stating that a vertex y ∈ Y is a sink in
the subgraph of G induced by Y is equivalent to stating that for every vertex x in
Y adjacent to y in G, vertex y is an out-neighbor of x in D. Hence:

ϕacycl(X,u,R) ≡ (∀Y ⊆ V )

(
(∃z ∈ Y )⇒

(∃y ∈ Y )
(

(∀x ∈ Y )
(
{x, y} ∈ E ⇒ ϕorient(X,u,R, x, y)

)))
.

• Extensionality can be stated as: for every two distinct vertices x and y, there exists
a vertex z which is an out-neighbor of x but not of y, or there exists a vertex z which
is an out-neighbor of y but not of x. Formally:

ϕext(X,u,R) ≡ (∀x ∈ V )(∀y ∈ V \ {x})(
(∃z ∈ V )

(
ϕorient(X,u,R, x, z) ∧ ¬ϕorient(X,u,R, y, z)

)
∨

(∃z ∈ V )
(
ϕorient(X,u,R, y, z) ∧ ¬ϕorient(X,u,R, x, z)

))
.
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These formulations imply that it can be determined in linear time whether a given graph G
of treewidth at most k is a set graph, since this property can be expressed by the following
Monadic Second Order sentence:

(∃X ⊆ E)(∃u ∈ V )(∃R ⊆ E)
(
ϕ(X,u) ∧ ϕext(X,u,R) ∧ ϕacycl(X,u,R)

)
.

To obtain the same conclusion for Problems EAOsources and EAOarcs, we must over-
come a (minor) technicality: we must show that whenever the input graph G in Problem
EAOsources or EAOarcs is of bounded treewidth, so is the structure representing the com-
plete input (a pair (G,S) in Problem EAOsources, or a pair (G,F ) in Problem EAOarcs).

For Problem EAOsources, consider the vocabulary τ1 consisting of three unary relation
symbols V , E and S and a binary relation symbol I. A graph G = (V ′, E′) together with
a subset S′ of its vertex set can be represented by a τ1-structure A1 = (A, V,E, I, S) with
the universe A := V ′ ∪ E′, interpretations of the relations V , E and I as above (in A),
and S := S′. For Problem EAOarcs, consider the vocabulary τ2 consisting of two unary
relation symbols V and E and two binary relation symbols I and F . A graph G = (V ′, E′)
together with a partial orientation F ′ of its edge set can be represented by a τ2-structure
A2 = (A, V,E, I, F ) with the universe A := V ′ ∪ E′, interpretations of the relations V , E
and I as in A, and F := F ′.

In both cases, the Gaifman graph of Ai is isomorphic to the graph obtained from G by
subdividing each edge precisely once, which implies that if G is of treewidth k, then so is
the corresponding structure. Now we can complete our description of Problem EAOsources
and Problem EAOarcs by MSO sentences:

• Stating that a vertex x ∈ S is a source is equivalent to stating that every vertex
adjacent to x in G is an out-neighbor of x in D. Formally:

ϕsources(X,u,R) ≡ (∀x ∈ S)(∀y ∈ V )(
{x, y} ∈ E ⇒ ϕorient(X,u,R, x, y)

)
.

• Stating that the orientation D extends a given partial orientation F can be done as
follows: for all edges {x, y} ∈ E, we require that y is an out-neighbor of x in D if
this is the case in F . Formally:

ϕextend(X,u,R) ≡ (∀x ∈ V )(∀y ∈ V )((
{x, y} ∈ E ∧ F (x, y)

)
⇒ ϕorient(X,u,R, x, y)

)
.

Therefore, the property that G admits an e.a.o. in which all vertices in a given set S are
sources can be expressed as:

(∃X ⊆ E)(∃u ∈ V )(∃R ⊆ E)(
ϕ(X,u) ∧ ϕext(X,u,R) ∧ ϕacycl(X,u,R) ∧ ϕsources(X,u,R)

)
,

and the property that G admits an e.a.o. extending a given partial orientation F can be
expressed as:

(∃X ⊆ E)(∃u ∈ V )(∃R ⊆ E)(
ϕ(X,u) ∧ ϕext(X,u,R) ∧ ϕacycl(X,u,R) ∧ ϕextends(X,u,R)

)
.

This completes the proof.
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4.2.4 The complexity of finding a separating code

In this section we are concerned with separating codes in digraphs, with two minor changes:
we will be referring to (open) out-neighborhoods, instead of closed in-neighborhoods:

Definition 4.2.15 Given a digraph D and C ⊆ V (D) we say that C is an open-out-
separating code if for distinct u, v ∈ V (G) it holds N+(u) ∩ C 6= N+(v) ∩ C.

It can be easily seen that a digraph D has an open-out-separating code if and only if D is
extensional.

The problem of finding the minimum size of a separating code of a given graph was
shown to be NP-complete in [31,38]. An analogous result holds for digraphs [30], even when
restricted to acyclic instances. In what follows, we will show that finding the minimum
size of an open-out-separating code is NP-complete.

Problem ooSC. Given a digraph D and an integer k, decide whether D has an open-out-
separating code C of size at most k.

The following problem was shown to be NP-complete in [29].

Problem DC. Given a bipartite graph G = (A ∪ B,E) and an integer k, decide whether
there exists a discriminating code C ⊆ A of size at most k.

Theorem 4.2.16 Problem ooSC is NP-complete.

Proof. Reduce from Problem DC. Let G = (A∪B,E) be a bipartite graph (with no edges
within A or within B), where B = {b1, . . . , bm}, m > 1. Construct the acyclic digraph
D = (V, F ) as follows:

• V = A ∪B ∪ {c0, c1, . . . , cm},

• F = {ab | a ∈ A∧ b ∈ B ∧ ab ∈ E}∪ {bici | 1 6 i 6 m}∪ {cicj | 1 6 i 6 m, 0 6 j < i}.

We claim that G has a discriminating code of size at most k if and only if D has an
open-out-separating code of size at most k +m+ 1.

For the forward implication, note that if C is a discriminating code for G, then C ∪
{c0, . . . , cm} is an open-out-separating code for D.

For the reverse implication, let C be an open-out-separating code for D. We show
that c0, . . . , cm ∈ C. First, c0 ∈ C, as otherwise N(c1) ∩ C = ∅ = N+(c0) = N+(c0) ∩ C.
Assuming now that c0, . . . , ci, 0 6 i 6 m − 2, belong to C, note that ci+1 ∈ C as well,
as otherwise N+(ci+2) ∩ C = N+(ci+1) ∩ C. Therefore, c0, . . . , cm−1 ∈ C. Additionally,
cm ∈ C, as otherwise N+(bm) ∩ C = ∅ = N+(c0) ∩ C. This concludes the proof, since
C ∩B is a discriminating code for G.

Note that if for distinct a1, a2 ∈ A, NG(a1) 6= NG(a2) holds (which can be assumed
w.l.o.g., since otherwise G has no discriminating code), then D is also extensional.
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4.3 Claw conditions and set graphs

It is not rare that classes of graphs defined in terms of forbidden induced subgraphs are
proposed as substitutes for interesting graph properties. For example, Berge’s celebrated
Strong Perfect Graph Conjecture [19] equates the notion of perfectness of a graph to
forbidding two families of induced subgraphs from it.

Such classes of graphs are also hereditary, in the sense that any induced subgraph of a
graph in the class also belongs to that class. Since recognizing set graphs is NP-complete,
we can ask the following question: What is the largest hereditary class of graphs such that
every connected member of it is a set graphs? The next section is devoted to elucidating
this question, by showing that the sought for class is the class of claw-free graphs, obtained
by excluding only the smallest connected graph which is not a set graph, the claw, K1,3,
depicted in Figure 1.1.

Claw-free graphs emerged in the 1960s, as a generalization of line graphs [14, 15]. As
mentioned in [52], they caught the attention of the graph theory community once some
basic graph-theoretic properties regarding matchings and Hamiltonicity were discovered.
Quite worth of notice, although proved true by Chudnovsky et al [33] after a four decades’
effort, Berge’s conjecture was shown rather early to hold for claw-free graphs [117]. In a
recent series of papers, Seymour and Chudnovsky also gave a structural characterization
of claw-free graphs [34]– [35].

As it turns out, claws and extensional acyclic orientations are quite intertwined. On
the one hand, there exists a largest hereditary class of graphs where being a set graph
is equivalent to being claw-free. On the other hand, the claw-freeness condition can be
generalized in two ways. First, by requiring that all claws of a graph be vertex-disjoint
together with a further connectivity condition, another subclass of set graphs will be
isolated, in Section 4.3.2. Second, in Section 4.3.2 we show that if we forbid K1,r+2,
r > 1, instead of the claw K1,3, a pseudo-extensionality property can be guaranteed.
More precisely, connected K1,r+2-free graphs admit an acyclic orientation in which every
collision involves at most r vertices.

4.3.1 Claw-free graphs

Let us say that a digraph is claw-free if its underlying undirected graph is claw-free. We
start with two preliminary lemmas.

Lemma 4.3.1 Let D be an acyclic digraph and let x, y ∈ V (D) such that x → y and
N+(x) \ {y} ⊆ N+(y). The digraph D − {xy}+ {yx} is acyclic.

Proof. Assume that in D − {xy} + {yx} the arc yx belongs to a cycle x → x′ → · · · →
y → x. Then, we get x′ ∈ N+

D (x) \ {y} ⊆ N+
D (y). In particular, x′ 6= y. Hence also in D

we have the cycle y → x′ → · · · → y.

Lemma 4.3.2 Let D be an acyclic claw-free digraph and let x, y ∈ V (D) such that
N+(x) = N+(y) and let z ∈ N+(x) be a source in D[N+(x)]. The digraph D−{xz}+{zx}
is acyclic.

Proof. Assume that in D − {xz} + {zx} the arc zx belongs to a cycle z → x → · · · →
z′ → z. If z′ → x, we have the cycle z′ → x → · · · → z′ in D. Similarly, z′ → y does
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not hold. Therefore, to avoid the claw {z, z′, x, y}, we conclude that z′ ∈ N+(x). This
contradicts the fact that z is a source in D[N+(x)].

Theorem 4.3.3 Let G be a connected claw-free graph and let r ∈ V (G). G admits an
e.a. orientation whose sink is r if and only if r is not a cut vertex of G. Moreover, an
e.a. orientation of such a graph can be found in polynomial time.

We will give two proofs for this theorem. The first starts with an intermediary acyclic
orientation, in which every collision is iteratively fixed, until obtaining an extensional
acyclic orientation. The second proof is inductive.

First Proof. Let r ∈ V (G) such that r is not a cut vertex of G. If V (G) = {r}, the
claim is clear. Otherwise, let T ′ be a spanning tree of G− r, and let T be a spanning tree
of G obtained from T ′ by adding r as a leaf to it. Let also ` : V (G) → {1, . . . , |V (G)|}
be any injective labeling function such that for every x, y ∈ V (G), y 6= x, such that x lies
on the path in T from r to y, we have `(x) < `(y). For instance, such a labeling can be
obtained by performing a breadth-first traversal of T starting at r. Obtain D by orienting
each edge xy of G as y → x if `(x) < `(y). Clearly, D is acyclic, having r as unique sink.

Observe first that in D no vertex can collide with more than one other vertex. If
this were not the case, let x, y, z ∈ V (D) such that x collides with both y and z. Then
xy, xz, yz /∈ E(G), so taking an arbitrary u ∈ N+(x) = N+(y) = N+(z) would produce a
claw {u, x, y, z} in G. Moreover, there is no collision in D between vertices x and y with
N+(x) = N+(y) = {r}. This follows from the fact that every vertex v other than r has
an out-neighbor n(v) in D such that vn(v) ∈ E(T ). Hence, if r is the unique out-neighbor
of x and y in D then r = n(x) = n(y); a contradiction with the fact that r has degree 1
in T .

Onwards, we will show that we can resolve each collision in D locally, with at most
two arc reversals. At each step, we preserve the following properties:

(i) r is the unique sink;

(ii) there is no collision between vertices x and y with N+(x) = N+(y) = {r}.

Suppose that in D we have N+(x) = N+(y), for some vertices x and y, x 6= y. We
claim that there is a z ∈ N+(x) that is a source in D[N+(x)] such that z 6= r. To see this,
we consider the following three cases:

• If |N+(x)| = 1, then let N+(x) = {z}. Then z 6= r by property (ii).

• If D[N+(x)] has at least two sources, then clearly there is one different from r.

• If |N+(x)| > 2 but D[N+(x)] has only one source z, then z 6= r since otherwise any
source in D[N+(x) \ {z}] would also be a source in D[N+(x)].

From the acyclicity and claw-freeness of D, we conclude that N+(z) ⊆ N+(x).
In the digraph D′ = D − {yz} + {zy}, which, by Lemma 4.3.2, is acyclic, we have

N+
D′(x) 6= N+

D′(y). Moreover, D′ still has r as unique sink: denoting by u any vertex in
N+
D (z), we see that u ∈ N+

D′(y), hence y is not a sink in D′. Notice that in D′, there
can be no collision between y and another vertex ỹ, since this would produce a claw
{u, x, y, ỹ} in G. So the only possibility for a collision in D′ that was not present in D
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Algorithm 1: Finding an e.a.o. of a connected claw-free graph

Input: A connected claw-free graph G with |V (G)| > 2, a vertex r ∈ V (G) that is
not a cut vertex of G

Output: An extensional acyclic orientation of G having r as sink

T ′ ← a spanning tree of G− r;
T ← a spanning tree of G obtained from T ′ by the addition of r as a leaf;
perform a breadth-first traversal of T from r;
let (v1, . . . , vn) denote the order of vertices according to the time they were first
visited by the traversal;
D ← orientation of G where each edge vivj of G is oriented as vi → vj if i > j;
while there exists a collision in D between two distinct vertices x and y do

z ← a source in D[N+(x)] different from r;
D′ ← D − {yz}+ {zy};
if there exists a collision in D′ between z and another vertex z′ then

D ← D′ − {z′y}+ {yz′};
else

D ← D′;
end

end
return D;

is between z and some other vertex, say z′. If this is the case, then zz′ /∈ E(G). Since
N+
D (z) ⊆ N+

D (x) = N+
D (y), we have N+

D′(z
′) \ {y} ⊆ N+

D′(y). Therefore, by Lemma 4.3.1,
the digraph D′′ = D′ − {z′y} + {yz′} is acyclic. In D′′ we now have N+

D′′(z) 6= N+
D′′(z

′),
and r still is its unique sink.

Suppose that in D′′ there is a collision that was not present in D′. Then it must
involve either y or z′. It cannot involve y, as this would result in a claw (similarly as
above). However, since xz′ 6∈ E(G) it also cannot involve z′: a collision between z′ and
some other vertex, say z̃, would result in a claw {u, z, z′, z̃} in G. Hence in D′′ we have
resolved the collision between x and y, without introducing any new one.

As argued above, the new orientation will satisfy property (i). Property (ii) follows
from the fact that the arc reversals do not produce any new collisions.

For the reverse implication of the claim, let D be an e.a.o. of G whose sink is r and
let C1 and C2 be two connected components of G − s. Since D is acyclic, let r1, and r2

be the sinks of D[C1], and of D[C2], respectively. Since D is extensional and r is its sink,
we have that N+(r1) = N+(r2) = {r} in D, a contradiction.

The proof also suggests a polynomial-time algorithm for finding an e.a. orientation of
a given connected claw-free graph. A pseudocode is given in Algorithm 1.

Second Proof. We reason by induction on the number of vertices. Let G be a connected
claw-free graph and let x ∈ V (G) that is not a cut vertex of G. If there exists a vertex
y ∈ N(x) which is not a cut vertex of G−{x}, then from the inductive hypothesis G−{x}
admits an orientation D having y as sink. Extending the orientation D by orienting the
edges incident to x as out-going towards x produces the desired e.a.o. of G.
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Observe that if y is a cut vertex of a connected claw-free graph G, then G − {y} has
exactly two components. Suppose now that every neighbor of x is a cut vertex for G−{x}.
Consider a minimum connected subgraph of G−x which contains all neighbors of x, which
must be a tree having as leaves neighbors of x. Let y be such a leaf, and denote by C1 and
C2 the components of G− {x, y}, where x has no neighbors in C2. Observe that y is not
a cut vertex for G− Ci − x, i = 1, 2. Applying the inductive hypothesis to G− Ci − {x},
we can obtain the e.a. orientation Di whose sink is y, i = 1, 2. Let si be the vertex of Ci
having y as unique out-neighbor in Di. From the choice of y, the fact that G is claw-free,
and s1s2 /∈ E(G), the edge s1x must be present in G, while s2x /∈ E(G). Then, obtain the
e.a.o. D of G by extending D1 and D2 and orienting the edges incident to x as out-going
towards x.

The relation of set graphs to hereditary graph classes can be now completely deter-
mined. Let us denote by S the largest hereditary class of graphs every connected member
of which is a set graph. The observation that the claw is not a set graph implies that
S is a subclass of claw-free graphs. Conversely, by Theorem 4.3.3, the class of claw-free
graphs is contained in S. Therefore, the largest hereditary class of graphs every connected
member of which is a set graph is the class of claw-free graphs. On the other hand, the
class of set graphs is not contained in any non-trivial hereditary graph class. This follows
from Theorem 4.1.6 and by observing that every graph is an induced subgraph of a graph
with a Hamiltonian path.2

The largest hereditary class where being a set graph is equivalent to being
claw-free

We begin by observing the following two consequences of Lemma 4.1.1. Every set graph
G

(1) is connected, and

(2) for every vertex v of G, the graph G− v has at most two connected components.

In what follows, we will refer to condition (2) above as the cut vertex condition.

An example of graphs in which these two conditions are also sufficient for the property
of being a set graph is the class of block graphs, that is, graphs in which every maximal
connected subgraph without cut vertices is complete.

Lemma 4.3.4 Let G be a connected block graph. Then, the following conditions are
equivalent:

(1) G is a set graph.

(2) G satisfies the cut vertex condition.

(3) G is claw-free.

2This can be seen by taking a linear order (v1, . . . vn) on the vertices of any graph G and building a graph
GHam by adding, for every consecutive two vertices vi, vi+1, 1 6 i < n, a new vertex ui adjacent to vi and
vi+1; GHam has G as induced subgraph, and contains the Hamiltonian path v1, u1, v2, u2, . . . , vn−1, un−1, vn.
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Proof. The conditions (1) ⇒ (2) and (3) ⇒ (1) follow from Lemma 4.1.1 and Theo-
rem 4.3.3, respectively.

(2) ⇒ (3): Let G be a connected block graph satisfying the cut vertex condition.
Suppose for a contradiction that G contains a claw K induced by the vertex set {a, b, c, d},
where a is the vertex of degree 3 in K. Since G satisfies the cut vertex condition, we may
assume w.l.o.g. that b and c belong to the same connected component of G−a. This implies
that there exists a b-c path avoiding a, which, together with the path (b, a, c) forms a cycle.
This implies that b and c are contained in some maximal connected subgraph of G without
cut vertices. However, since b and c are non-adjacent, this is a contradiction to the fact
every such subgraph of G is complete.

We now generalize the result of Lemma 4.3.4, by characterizing the largest hereditary
class of graphs in which the claw-freeness is not only sufficient but also a necessary condi-
tion for a connected graph to be a set graph. The resulting graph class provides a common
generalization of claw-free graphs and block graphs. Interestingly, for graphs in this class,
the connectedness together with the cut vertex condition are not only necessary but also
sufficient conditions for being a set graph.

An apple of order k > 4 is the graph obtained from a cycle of order k by adding to it
a new vertex and connecting it to precisely one vertex of the cycle. We say that a graph
G is apple-free if it does not contain any apple as an induced subgraph.

dartK2,3 co-(K3 + 2K1)

Figure 4.6: The graphs K2,3, dart, and co-(K3 + 2K1).

It is easy to see that every apple, as well as each of the three graphs depicted in
Figure 4.6 is a set graph (for example, by applying Theorem 4.1.6). The following theorem
shows that that these are the only minimal set graphs that are not claw-free.

Theorem 4.3.5 For every graph G, the following conditions are equivalent:

(1) Every induced subgraph of G that is a set graph is claw-free.

(2) Every induced subgraph of G that satisfies the cut vertex condition is claw-free.

(3) Every induced subgraph of G with a Hamiltonian path is claw-free.

(4) G is (apple, K2,3, dart, co-(K3 + 2K1))-free.

Proof. The implication (2) ⇒ (1) follows from Lemma 4.1.1.
The implication (1) ⇒ (3) follows from the fact that every graph with a Hamiltonian

path is a set graph [86].
The implication (3) ⇒ (4) is straightforward since apples, the K2,3, the dart and the

co-(K3 + 2K1) are graphs with a Hamiltonian path that are not claw-free.



Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l’Università degli Studi di Udine
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It remains to show (4) ⇒ (2). Let G be an (apple, K2,3, dart, co-(K3 + 2K1))-free
graph and let H be an induced subgraph of G satisfying the cut vertex condition. Suppose
for a contradiction that H contains a claw K induced by the vertex set {a, b, c, d}, where
a is the vertex of degree 3 in K. Let k > 2 be the minimum distance in H − a between
two leaves of K. Note that k is finite since the graph H − a has at most two connected
components. We may assume, without loss of generality, that P = (b, v1, . . . , vk−1, c) is a
path of length k connecting b and c in H − a. By the minimality of P , vertex d is not on
P . However, d has a neighbor on P since otherwise G would contain either an induced
apple (if a does not dominate P ) or a dart (otherwise). Let vj be a neighbor of d on P .
Then, by the choice of P , we have that the length of the path (d, vj , vj−1, . . . , v1, b) is at
least k, and also the length of the path (d, vj , vj+1, . . . , vk−1, c) is at least k. Consequently
j + 1 > k and k − j + 1 > k, which implies j = 1 and k = 2. However, now we see that
G contains either an induced co-(K3 + 2K1) (if a is adjacent to v1) or an induced K2,3

(otherwise), a contradiction.

Corollary 4.3.6 Let G be a connected (apple, K2,3, dart, co-(K3 + 2K1))-free graph.
Then, the following conditions are equivalent:

(1) G is a set graph.

(2) G satisfies the cut vertex condition.

(3) G is claw-free.

The result of Corollary 4.3.6 further elucidates the connection between claw-free graphs
and set graphs, and provides another class of graphs in which Problem EAO is solvable
in polynomial time. Actually, the complexity of Problem EAO on the class of connected
(apple, K2,3, dart, co-(K3 + 2K1))-free graphs is in fact linear, due to condition (2): one
can verify that the cut vertices of an input graph G satisfy the cut vertex condition by
computing, in linear time, the block-tree of G.

4.3.2 Claw disjoint graphs

Observe that set graph recognition remains NP-complete even for graphs none of whose
claws share an edge. To see this, first observe that Problem HP remains NP-complete for
graphs of maximum degree three. Then, notice that the proof of Lemma 4.2.1 readily
yields that if G is a graph with a Hamiltonian path, then S(G) admits a slim e.a.o. (the
supplementary condition that G has exactly two leaves was required to ensure slimness
as well). Finally, if G has maximum degree at most three, then in the subdivided graph
S(G) no two claws share an edge.

Bringing into play a stronger property of claw disjointness, namely the fact that no
two claws of a graph share a vertex (which we call claw disjointness, see below), we now
pinpoint a larger subfamily of set graphs, comprising also connected claw-free graphs. We
also require a particular, polynomially checkable, connectivity condition, to be introduced
as Property Π below. Nevertheless, the status of set graph recognition remains open for
claw disjoint graphs.

Definition 4.3.7 We say that a graph G is claw disjoint if for every two distinct claws
Y1 and Y2 of G, it holds that V (Y1) ∩ V (Y2) = ∅.
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Given a graph G, we denote by

• A(G) the set of vertices of G that are the center of some claw of G;

• B(G) the set of vertices of G that are a leaf in some claw of G.

Property Π. Given a connected claw disjoint graph G and a vertex s ∈ V (G), we say
that Π(G, s) holds if the following conditions hold:

i) s belongs to no claw of G;

ii) no vertex in B(G) ∪ {s} is a cut vertex of the graph G−A(G);

iii) for every a ∈ A(G), there exists a connected component of G−A(G) in which a has
at least two neighbors.

Notice that if G is claw-free then Property Π amounts to requiring that s not be a
cut vertex of G. In Theorem 4.3.10 below, we generalize Theorem 4.3.3 for any connected
claw disjoint graph G having a vertex s ∈ V (G) such that Π(G, s) holds. A specification
of the algorithm suggested by the theorem is given as Algorithm 2.

We start with two preliminary technical lemmas.

Lemma 4.3.8 Let G be a connected claw disjoint graph having a vertex s such that Π(G, s)
holds. Let a ∈ A(G) be the center of a claw K in G, and let b, c, d be the leaves of K.
Then, for every connected component X of G − a and every y ∈ X ∩ {b, c, d, s}, Π(X, y)
holds.

The next lemma is a variant of Lemma 4.3.2.

Lemma 4.3.9 Let D be an acyclic digraph and let X ⊆ V (D) be a non-empty set such
that for every two vertices x, x′ ∈ X, N+(x) = N+(x′) holds. Let also z ∈ N+(x) (where
x ∈ X) be a vertex of maximum rank among N+(x). For any Y ⊆ X, the digraph
D′ = D − {yz | y ∈ Y }+ {zy | y ∈ Y } is acyclic.

Proof. If in D′ an arc zy, for some y ∈ Y , belongs to a cycle z → y → z′ → · · · → z,
(z′ 6= z), then also in D there is a directed path from z′ to z, contradicting the maximality
of z.

Theorem 4.3.10 Every connected claw disjoint graph G having a vertex s such that
Π(G, s) holds admits an e.a. orientation having s as sink. Moreover, such an e.a.o. can
be found in polynomial time.

Proof. Suppose for a contradiction that the theorem is false, and let (G, s) be a coun-
terexample minimizing |V (G)|. Thus, G is a connected graph and s ∈ V (G) such that the
property Π(G, s) holds. Note that G contains a claw since otherwise the claim holds by
Theorem 4.3.3.

Let a be the center of some claw of G. We argue first that G − a has at most two
connected components. If this were not the case, then let X, Y , and Z be three connected
components of G−a, so that a has a neighbor in each of them, say x, y, and z, respectively.
Since Π(G, s) holds, there must be a connected component of G − a in which a has two
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neighbors. Assume w.l.o.g. that this component is Z so that both z and z′ are neighbors
of a in Z. However, the claws {a, x, y, z} and {a, x, y, z′} contradict the fact that G is claw
disjoint.

Assume now that the vertices {a, b, c, d} induce a claw in G whose center is a, and
hence that G− a has at most two components. We will consider several cases and in each
of them we will produce an e.a.o. of G.

Suppose first that G− a is connected. Observe that s 6= a and hence by Lemma 4.3.8,
Π(G−a, s) holds as well. By the minimality of G, we obtain an e.a.o. of G−a having s as
sink. To obtain an e.a.o. of G, extend this orientation by orienting any edge between a and
vertices of G−a as out-going from a. This leads to no collisions, since any a′ ∈ V (G)\{a}
colliding with a would have b, c, d among its out-neighbors, and would hence produce the
claw {a′, b, c, d}, which intersects {a, b, c, d}.

Suppose now that G − a has two connected components X and Y . We may assume
w.l.o.g. that b ∈ X and c, d ∈ Y . Observe first that there are no other edges between
vertices of X and a (except ba) from the fact that a is a cut vertex and G is claw disjoint.
We have to consider the following two cases according to whether s belongs to X or to Y :

Case 1. s ∈ X. By Lemma 4.3.8, Π(X, s) and Π(Y, c) hold. By the minimality of G
we can obtain e.a.o.s for (X, s) and (Y, c). These can be extended to an e.a.o. for G by
orienting the edge ab as a→ b and any edge between a vertex of Y and a as going towards
a. This orientation is clearly acyclic, and any possible collision that may have arisen is
between a and a vertex a′ ∈ X. Since b belongs to a claw of G, then b 6= s, and thus there
exists an f ∈ X that is an out-neighbor of b in the e.a.o. of (X, s). As there are no other
edges between a and vertices of X, this produces the claw {b, a, a′, f}, against the fact
that G is claw disjoint.

Case 2. s ∈ Y . Observe that in this case Π(X, b) and Π(Y, s) hold (again, by
Lemma 4.3.8), and hence by the minimality of G we can obtain e.a.o.s for (X, b) and
(Y, s). We can extend these to an e.a.o. D for (G, s) by orienting the edge ba as b → a
and any edge between a and vertices of Y as out-going from a. This orientation of G is
acyclic, and any collision that may appear is between a and a vertex a′ ∈ Y . To regain
extensionality, proceed as follows.

Let x be a vertex of maximum rank of D[N+(a)]. Since |N+(a)| > 2, and s is the
unique source of D, then x 6= s. By Lemma 4.3.9, we can reverse the arc ax to be x→ a,
obtaining an acyclic digraph, say D′, whose sink is still s. At this point, a and a′ no longer
collide. Note that in D′ there can be no collision between a and some other a′′, since this
would produce the claw {f, a, a′, a′′}, where f ∈ {c, d} \ {x}, against the fact that G is
claw disjoint. Moreover, there is no collision in D′ involving x since x is the unique vertex
of D′ having both a and vertices of Y as out-neighbors.

A similar approach can be used to characterize set graphs with exactly one induced claw.

Theorem 4.3.11 If a connected graph G has precisely one induced claw, whose center is
a, then G is a set graph if and only if G − a has at most two connected components. If
this is the case, an e.a. orientation of G can be found in polynomial time.

Proof. The forward implication holds by Lemma 4.1.1. For the reverse implication, notice
that there are connected graphs G having precisely one claw, but having no vertex s so that
Π(G, s) holds. However, to prove the claim, it suffices to elucidate the proof of Theorem
4.3.10 for this restricted case. As before, let the claw of G be {a, b, c, d}.
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Algorithm 2: Finding an e.a.o. of claw disjoint graphs satisfying Property Π

Input: A connected claw disjoint graph G and s ∈ V (G) such that Π(G, s) holds;
Output: An e.a. orientation of G having s as sink.

if G is claw-free then
run Algorithm 1 on (G, s);

else
let {a, b, c, d} induce a claw of G having a as center;
if G− a is connected then

recursively apply the algorithm for (G− a, s);
orient all edges incident to a as out-going from a;

end
if G− a has two connected components X and Y then

suppose c, d ∈ Y ;
if s ∈ X then

recursively find orientations for (X, s) and (Y, c);
orient a→ b;
orient all edges between vertices of Y and a as going towards a;

end
if s ∈ Y then

recursively find orientations for (X, b) and (Y, s);
orient b→ a;
orient all edges between a and vertices of Y as out-going from a;
if there is a collision between a and some a′ ∈ Y then

let x be a vertex of maximum rank of D[N+(a)];
reverse the arc ax as x→ a.

end

end

end

end

If G− a is connected, then let s be a leaf of a spanning tree of G− a (so that s is not
a cut vertex of G− a). From Theorem 4.3.3 obtain an e.a.o. for G− a, and orient every
edge incident to a as out-going from a.

If G − a has two connected components X and Y , assume w.l.o.g. that b ∈ X and
c, d ∈ Y . Once again, there are no other edges between vertices of X and a (except ba)
from the fact that a is a cut vertex and {a, b, c, d} is the unique claw of G. Observe also
that b is not a cut vertex for X, as otherwise b, together with a and two neighbors of b
belonging to different connected components of X, would induce a claw in G. Moreover,
let s be a vertex of Y that is not a cut vertex for Y . From Theorem 4.3.3 we can find
e.a.o.s for (X, b) and (Y, s). Proceed now as in Case 2 of the proof of Theorem 4.3.10.

4.3.3 K1,r+2-free graphs and r-extensionality

We consider now a generalization of the claw-freeness: the property of being K1,r+2-free,
for any fixed r > 1. For r > 1, extensionality can no longer be guaranteed for connected
K1,r+2-free graphs, but a suitable generalization of it, which we introduce in the next
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definition, will follow.

Definition 4.3.12 Given a digraph D and A ⊆ V (D), we say that A is an r-collision of D
if |A| > r and for any u, v ∈ A we have N+(u) = N+(v). We say that D is r-extensional
if no (r + 1)-collision exists.

We will actually prove a stronger result, by further weakening the condition of being
K1,r+2-free. Let us define Fr to be the graph obtained from K1,r by subdividing one edge,
and letRr be the graph obtained fromK1,r by subdividing one edge and joining its (former)
endpoints by a new edge. Our proof will be given for connected (Fr+2, Rr+2,K1,2r+1)-free
graphs, so that the result for connected K1,r+2-free graphs will be an immediate corollary.
A specification of the algorithm suggested by Theorem 4.3.13 is given as Algorithm 3.

Theorem 4.3.13 For every r > 1, every connected (Fr+2, Rr+2,K1,2r+1)-free graph ad-
mits an r-extensional acyclic orientation. Moreover, an r-extensional acyclic orientation
of such a graph can be found in polynomial time.

Proof. Let G be a connected (Fr+2, Rr+2,K1,2r+1)-free graph and let D be an acyclic
orientation of it with one sink, obtained as follows. Let T be a spanning tree of G, rooted
at s, a vertex of degree 1 in T . Let also ` : V (G) → {1, . . . , |V (G)|} be any injective
labeling function such that for every x, y ∈ V (G), y 6= x, such that x lies on the path
in T from s to y, we have `(x) < `(y). For instance, such a labeling can be obtained by
performing a breadth-first traversal of T from the root. Obtain D by orienting each edge
xy of G as y → x if `(x) < `(y). Clearly, D is acyclic, with a unique sink s.

Observe first that there can be no (2r + 1)-collision of non-sink vertices. If this were
not the case, let x1, . . . , x2r+1 ∈ V (D) such that N+(x1) = · · · = N+(x2r+1). Since
xixj /∈ E(G), for any i, j ∈ {1, . . . , 2r + 1}, taking an arbitrary u ∈ N+(x1), the set
{u, x1, . . . , x2r+1} would induce K1,2r+1 in G. Moreover, there is no collision in D contain-
ing two vertices x and y of rank 1. This follows from the fact that every vertex v other
than s has an out-neighbor n(v) in D such that vn(v) ∈ E(T ). Hence, if s is the unique
out-neighbor of x and of y in D then s = n(x) = n(y); a contradiction with the fact that
s has degree 1 in T .

Onwards, we will show that we can iteratively ‘fix’ any (r + 1)-collision of D locally,
with a constant number of arc reversals. At each step, we preserve the property that s is
the unique sink of the orientation.

Let thus A ⊆ V (D) be such that for any x, x′ ∈ A, N+(x) = N+(x′) (hence xx′ /∈
E(G), for any x, x′ ∈ A), and such that r < |A| 6 2r. Moreover, we consider an (r + 1)-
collision A whose elements have maximum rank among all vertices in (r + 1)-collisions.
(Notice that all elements of a collision have the same rank.) Also, when the rank of
the elements of A is 2, consider first the sets A such that the out-neighborhood of their
elements is not a singleton.

Fix a vertex x ∈ A. Since N+(x) 6= ∅, let z be a vertex of maximum rank among the
vertices of N+(x), and let v be an arbitrary vertex of N+(z). Observe that the digraph
obtained by reversing the arcs between z and any subset of vertices of A is acyclic, by
Lemma 4.3.9.

Partition A into A = B1 ∪ C1 so that |B1| = r and hence 1 6 |C1| 6 r, and consider
the acyclic digraph D1 = D − {y → z | y ∈ C1} + {z → y | y ∈ C1}. If in D1 z belongs
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to no (r + 1)-collision, let D′ := D1, B := B1, and C := C1. Otherwise, let Z1 be an
(r+1)-collision of D1 containing z. Partition now A = B2∪C2 so that, as before, |B2| = r,
1 6 |C2| 6 r, but C1 ⊆ B2. Analogously, consider the acyclic digraph D2 = D − {y →
z |y ∈ C2}+{z → y |y ∈ C2}. We claim that the set Z2 = {z′ ∈ V (D) |N+

D2
(z) = N+

D2
(z′)}

has cardinality at most r. This follows from the fact that Z1 ∩ Z2 = {z}, no two vertices
of Z1 ∪ Z2 are adjacent, and {v} ∪ Z1 ∪ Z2 contains no copy of K1,2r+1. In this case, let
D′ := D2, B := B2, and C := C2.

To show that we have resolved the (r + 1)-collision A, it remains to show that C is
not included in any (r+ 1)-collision of D′. Let thus C̃ := {ỹ ∈ V (D′) |N+

D′(ỹ) = N+
D′(y)},

where y ∈ C.
If |N+

D (x)| > 2 for some (and then all) x ∈ A, then there exists a vertex u ∈⋂
x∈AN

+
D′(x). Since no vertex of C̃ is adjacent (in G) to a vertex of B, the cardinal-

ity of C̃ is indeed at most r, as otherwise {u} ∪ B ∪ C̃ would contain an induced copy of
K1,2r+1.

Otherwise, N+
D (x) = {z}, for any x ∈ A. Recall now that since at any previous

intermediary step no new sinks have been introduced, s is the only sink of D. We claim
that in this case any x ∈ A has rank 2 and hence N+

D (z) = {s}. Otherwise, let w ∈ N+(v),
so that z → v → w. Since the subgraph of G induced by B ∪ {z, v, w} together with an
arbitrary vertex of C is not Fr+2, andD is acyclic, it can only be that z → w. However, this
entails that B ∪ {z, v, w} together with an arbitrary vertex of C is Rr+2, a contradiction.

Notice also that there can be no other vertex z′ of rank 1 (so that N+(z′) = {s}, since
s is the unique sink of D), as A ∪ {z, s, z′} would contain a copy of Fr+2. Therefore, A
consists of all colliding vertices of rank 2 whose out-neighborhood is a singleton, and hence
A is the last remaining (r+ 1)-collision of D. Therefore, after fixing the (r+ 1)-collision A
our procedure stops and the resulting orientation is acyclic and r-extensional. In D′, the
set C̃ is actually C∪{s}, and hence it has cardinality at most r, as otherwise {z}∪A∪{s}
would induce K1,2r+1 in G.

Corollary 4.3.14 For every r > 1, every connected K1,r+2-free graph admits an r-
extensional acyclic orientation. Moreover, an r-extensional acyclic orientation of such
a graph can be found in polynomial time.

Observe that the proof of Theorem 4.3.13 shows actually a stronger fact than the one
stated in the above corollary, namely that for every r > 1, connected K1,r+2-free graphs
admit an r-extensional acyclic orientation with a unique sink. Since any acyclic orientation
of a disconnected graph has at least as many sinks as connected components, we have the
following:

Corollary 4.3.15 For every r > 1, a K1,r+2-free graph G admits an r-extensional acyclic
orientation if and only if G has at most r connected components.
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Algorithm 3: Finding an r-extensional acyclic orientation of connected
(Fr+2, Rr+2,K1,2r+1)-free graphs

Input: A connected (Fr+2, Rr+2,K1,2r+1)-free graph G with |V (G)| > 2.
Output: An r-extensional acyclic orientation of G

let s ∈ V (G), such that s is not a cut vertex of G;
T ′ ← a spanning tree of G− s;
T ← a spanning tree of G obtained from T ′ by the addition of s as a leaf;
perform a breadth-first traversal of T from s;
let (v1, . . . , vn) denote the order of vertices according to the time they were first
visited by the traversal;
D ← orientation of G where each edge vivj of G is oriented as vi → vj if i > j;
while there exists an (r + 1)-collision A in D do

take such an A so that its vertices have maximum rank, and, if possible, the
out-neighborhood of its vertices is not a singleton;
let z be a vertex of N+(x) of maximum rank (for x ∈ A);
partition A as A = B1 ∪ C1, with |B1| = r;
let D′ ← D − {y → z | y ∈ C1}+ {z → y | y ∈ C1};
if z belongs no (r + 1)-collision in D′ then

D ← D′;
else

partition A as A = B2 ∪ C2, where |B2| = r and C1 ⊆ B2;
D ← D − {y → z | y ∈ C2}+ {z → y | y ∈ C2};

end

end
return D.
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5
Connected Claw-Free Graphs
Mirrored into Transitive Sets

Taking as the vertex set of a set graph any of the transitive closures from which it origi-
nates, its edge relation need not be defined separately since it can be implicitly read from
the membership relation among its vertices: two vertices are adjacent if and only if one is
a member of the other. As shown, transitive hereditarily finite sets do express connected
claw-free graphs.

This point of view leads to shorter proofs of two results concerning connected claw-free
graphs. The first is vertex-pancyclicity of the squares of connected claw-free graphs. Our
proof method is simple enough not to require the application of a general result equating
Hamiltonicity and vertex-pancyclicity in the square of any graph, as the original proof did.
The same framework can be employed for proving another well-known result on claw-free
graphs, namely that connected claw-free graphs of even order have a perfect matching.

This set-theoretic insight shows that these two properties hold not only for connected
claw-free graphs, but also for the more general class of connected graphs admitting an
acyclic orientation, with a unique sink, in which only two of the four possible orientations
of a claw are forbidden.

The second part of this chapter gives a formalization of these results in the proof-
checker Referee. Since Referee deals only with Zermelo-Fraenkel sets, representing a con-
nected claw-free graph by a transitive ‘claw-free’ set turned out to require the minimal
formalism. On the one hand, we avoid explicitly defining graphs, together with an en-
tire armamentarium of graph-theoretic concepts that the original proofs required. On
the other hand, we exploit Referee’s built-in set manipulating operations to reflect with a
minimum degree of encumbrance the two set-theoretic proofs.
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5.1 Simpler proofs for two properties of connected claw-free
graphs

Given a graph G, we say that a vertex, or an edge, of G is pancyclic if it belongs to a cycle
of length `, for every 3 6 ` 6 |V (G)|. If every vertex of G is pancyclic, then G is called
vertex-pancyclic. The square of a graph G, denoted G2, is the graph with vertex set V (G)
in which two vertices are adjacent if their distance in G is one or two. A major result
about squares due to Fleischner [54] states that the square of a graph is Hamiltonian if
and only if it is vertex-pancyclic. Matthews and Sumner considered connected claw-free
graphs, and showed that squares of connected claw-free graphs with at least three vertices
are Hamiltonian [81]. Fleischner’s result was then used to conclude that they are also
vertex-pancyclic.

Inspired by manipulations of hereditarily finite sets, we give below a quite simple way
to prove a slightly stronger result than vertex-pancyclicity of squares of connected claw-free
graphs without resorting to [54].

Theorem 5.1.1 If G is a connected claw-free graph with at least three vertices, then G2

is vertex-pancyclic. Moreover, if S ⊆ V (G) is the set of sources of an acyclic orientation
of G with a unique sink, then for every s ∈ S there exists an edge es of G, incident to s,
such that:

i) es is pancyclic in G2, and

ii) there exists a Hamiltonian cycle of G2 containing all edges es.

Proof. We reason by induction on n = |V (G)|. The result is immediate for n = 3, while
for n = 4 there are five connected claw-free graphs: G is either P4, or its square is K4,
and in each of these cases the claim holds. Assume now n > 5 and let G be a connected
claw-free graph, and let D be an acyclic orientation of it with a unique sink. Denote by
SG be the set of sources of D. Also, let x be a source of maximum rank r in D, and take
y ∈ N+(x), of rank r−1. Observe that there are no edges between vertices of N−(y), from
the fact that x has maximum rank in D, and the choice of y. Since G is claw-free, it follows
that |N−(y)| 6 2. Hence G − N−(y) has at least three vertices and is connected, since
otherwise D would have two sinks. Apply the inductive hypothesis to H = G − N−(y)
and to its orientation D[V (H)], and consider a cycle CH of H2 satisfying conditions i)
and ii). Denote by SH the set of sources of D[V (H)], and observe that y ∈ SH . Let thus
yz ∈ E(H) be the edge of CH incident to y and pancyclic in H2 (so that z /∈ SH , as
y ∈ SH).

We show that we can extend the cycle CH to a cycle in G2, depending on the cardinality
ofN−(y), so that every vertex ofG becomes pancyclic inG2. Furthermore, in order to show
conditions i) and ii) for G, observe that N−(y) ⊆ SG ⊆ N−(y)∪ (SH \ {y}). Accordingly,
we will show that CH can also be extended to a cycle CG for G2, so that, in particular,
every pancyclic edge es ∈ E(H) belonging to CH , incident to a source s in SH \ {y}, is
present in CG and is pancyclic in G2.

If N−(y) = {x}, we put ex = xy ∈ E(G). Observe first that xz ∈ E(G2). Next, all
vertices of H are pancyclic in G2, since they are pancyclic in H2 and CH can be extended
to a cycle CG for G2, of length |V (G)|, by replacing the edge yz with the path yxz. To see
that ex is pancyclic in G2, note first that xyzx is a 3-cycle in G2; second, yz is pancyclic



Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l’Università degli Studi di Udine
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in H2, and thus every cycle in H2 of length `, 3 6 ` 6 |V (G)| − 1, containing yz can be
extended to a cycle of length `+ 1 in G2 by replacing the edge yz with the path yxz. The
above cycle CG includes every pancyclic edge es ∈ E(H) belonging to CH , incident to a
source in SH \ {y}, thus every such edge is pancyclic also in G2. Since CG includes the
pancyclic edge ex as well, we have that conditions i) and ii) are satisfied for G.

If N−(y) = {x,w}, then from the claw-freeness of G at least one of the edges xz or
wz belongs to G, say wz. We put ex = xy and ew = wz. Observe that xw, xz ∈ E(G2).
Next, all vertices of H are pancyclic in G2, since they are pancyclic in H2 and CH can
be extended to cycles C ′G, and CG for G2, of length |V (G)| − 1, and |V (G)|, respectively,
by replacing the edge yz with the path yxz, and with yxwz, respectively. This argument
also shows that every pancyclic edge es ∈ E(H) belonging to CH , incident to a source in
SH \ {y} remains pancyclic in G2.

To see that both ex, ew ∈ E(G) are pancyclic in G2, observe first that xyzx,wyzw
are 3-cycles in G2; second, yz is pancyclic in H2, and thus every cycle of H2 of length `,
3 6 ` 6 |V (G)| − 2, containing yz can be extended to a cycle of length ` + 1 in G2 by
replacing the edge yz with one of the paths yxz, or ywz. The above cycle CG, containing
both ex, ew concludes, on the one hand, the argument that ex and ey are pancyclic in G2.
On the other hand, it shows that conditions i) and ii) hold for G as well, since CG also
includes every pancyclic edge es ∈ E(H) belonging to CH , incident to a source in SH \{y},

The framework employed above readily yields a proof for another classic result on
claw-free graphs.

Theorem 5.1.2 ( [141]) If G is a connected claw-free graph with 2n vertices, then G has
a perfect matching.

Proof. We reason by induction on n. Let G be a connected claw-free graph with 2n
vertices (n > 1) and let D be an acyclic orientation of G having a unique sink. Let r be
the maximum rank of its vertices, and let y be a vertex of rank r− 1. Observe that there
are no edges between vertices of N−(y), and since G is claw-free, |N−(y)| 6 2.

If N−(y) = {x}, then G−{x, y} is connected, otherwise D would have two sinks. From
the inductive hypothesis, G−{x, y} has a perfect matching, which together with the edge
xy constitutes a perfect matching for G.

If N−(y) = {x,w}, then, similarly, G − {x,w} is connected. Let yz be an edge of
the perfect matching of G − {x,w}, obtained from the inductive assumption. Since G is
claw-free, assume w.l.o.g. that wz ∈ E(G). Obtain a perfect matching for G from the
perfect matching for G− {x,w} by replacing the edge yz with xy and wz.

Observe that in the above proofs we have not used the claw-freeness of G to its full
extent; we had recourse only to the fact that in the acyclic orientation with a unique sink
of G no claw is oriented in the two ways shown in Figure 5.1. Therefore, we can generalize
these two results as follows.

Corollary 5.1.3 If G is a connected graph admitting an acyclic orientation with a unique
sink that has none of the two digraphs depicted in Figure 5.1 as induced subdigraph, then

• G2 is vertex-pancyclic;
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x1

x2

x3 x4

(a) orientation C1

x1

x2

x3 x4

(b) orientation C2

Figure 5.1: Two forbidden orientations of a claw that allow the generalization of Theorems
5.1.1 and 5.1.2.

• if G has an even number of vertices, then G has a perfect matching.

Observe also that the graph in Figure 5.2, once suitably oriented, can be handled by
the above corollary, whereas the Hamiltonicity of its square and its perfect matchings are
not seen either by the traditional results [81, 141, 148], or by subsequent generalizations
regarding quasi claw-free graphs [4], almost claw-free graphs [132], and S(K1,3)-free graphs
[65].

Remark 5.1.4 Stating that the membership digraph of a hereditarily finite well-founded
transitive set a satisfies the hypothesis of Corollary 5.1.3 can be done by a first-order
formula using only the relators {=,∈} and such that its prenex form has a purely universal
prefix, ∀∀∀∀:

(∀x1, x2, x3, x4 ∈ a)
(

(x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4 ∧ x2 6= x3 ∧ x2 6= x4 ∧ x3 6= x4)→

¬
(

(x2 ∈ x1 ∧ x2 ∈ x3 ∧ x2 ∈ x4)∧ orientation C1

(x1 /∈ x3 ∧ x3 /∈ x1 ∧ x1 /∈ x4 ∧ x1 /∈ x1 ∧ x3 /∈ x4 ∧ x4 /∈ x3)
)
∧

¬
(

(x1 ∈ x2 ∧ x2 ∈ x3 ∧ x2 ∈ x4)∧ orientation C2

(x1 /∈ x3 ∧ x3 /∈ x1 ∧ x1 /∈ x4 ∧ x1 /∈ x1 ∧ x3 /∈ x4 ∧ x4 /∈ x3)
))
.

5.2 Formalizing connected claw-free graphs in a set-based
proof-checker

A convenient computerized system for reasoning about the entities of our discourse is
the proof-checker Referee/ÆtnaNova [96, 133]. This system, in fact, consistently with its
foundation which is the Zermelo-Fraenkel theory, ultimately represents every entity in the
user’s domains of discourse as a set; the framework it provides offers infinite sets also, but
these are not relevant for our present purposes.
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(a) an e.a.o. D of a graph G (b) a perfect matching of G (c) a Hamiltonian cycle of G2

Figure 5.2: An extensional acyclic digraph D satisfying the hypothesis of Corollary 5.1.3;
its underlying graph has a claw.

We now report on a formalization of the two preceding proofs in Referee; in order to
keep the technicalities to a minimum, the first property will be given in its weaker form,
that of Hamiltonicity of squares of connected claw-free graphs. The complete Referee
proof-scenario is given in Appendix B.

Our endeavor is legitimatized by the following representation theorem, which is an
immediate corollary of Theorem 4.3.3 and of Mostowski’s collapsing lemma (Lemma 1.3.2).

Theorem 5.2.1 If G = (V,E) is a connected claw-free graph, then there exists a finite
transitive set xG and a bijection f : V → xG so that uv ∈ E if and only if either fu ∈ fv
or fv ∈ fu.

Occasionally, in a situation like the one described in this representation theorem, we will
refer to G as the graph underlying the set xG, and denote it as G(xG).

5.2.1 The Referee system in general

The proof-checker Referee, or just ‘Ref’ for brevity, processes proof scenarios to establish
whether or not they are formally correct. A scenario, typically written by a working
mathematician or computer scientist, consists of definitions, theorem statements, proofs
of the theorems, and ‘theories’ (see below); as shown in Figure 5.3, one can intermix
comments with these syntactical entities.

The deductive system underlying Ref is a variant of the Zermelo-Fraenkel set the-
ory: this is evident from the syntax of the language, which borrows from the set-
theoretic tradition many constructs, e.g. abstraction terms such as the set-former
{u : v ∈ X, u ∈ v} used as definiens for the union-set global operation

⋃
X; set the-

ory also reflects into the semantics of the inference rules: for example, the inclusion
{u : v ∈ x0, u ∈ v} ⊆ {u : v ∈ x0 ∪ {y0} , u ∈ v} can be proved in a single step as an ap-
plication of the inference rule named Set monot. Collectively, the inference rules embody
almost every feature of the Zermelo-Fraenkel axioms: the only axiom of set theory which
Ref maintains as an explicit assumption is, in fact, the one stating that there exist infinite
sets.
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Def unionset: [Family of all members of members of a set]⋃
X =Def {u : v ∈ X, u ∈ v}

Thm 2e: [Union of adjunction]
⋃

(X ∪ {Y}) = Y ∪
⋃

X. Proof:
Suppose not(x0, y0)⇒ Stat0 :

⋃
(x0 ∪ {y0}) 6= y0 ∪

⋃
x0

〈a〉↪→Stat0⇒ a ∈
⋃

(x0 ∪ {y0}) 6↔ a ∈ y0 ∪
⋃

x0∥∥∥∥∥∥∥∥∥∥
Arguing by contradiction, let x0, y0 be a counterexample, so that in either one of⋃

(x0 ∪ {y0}) and y0 ∪
⋃

x0 there is an a not belonging to the other set. Taking
the definition of

⋃
into account, by monotonicity we must exclude the possibility

that a ∈
⋃

x0\
⋃

(x0 ∪ {y0}); through variable-substitution, we must also discard
the possibility that a ∈

⋃
(x0 ∪ {y0})\

⋃
x0\y0.

Set monot⇒ {u : v ∈ x0, u ∈ v} ⊆ {u : v ∈ x0 ∪ {y0} , u ∈ v}
Suppose⇒ Stat1 : a ∈ {u : v ∈ x0 ∪ {y0} , u ∈ v} & a /∈ {u : v ∈ x0, u ∈ v} &

a /∈ y0

〈v0, u0, v0, u0〉↪→Stat1⇒ false; Discharge⇒ Auto
Use def(

⋃
)⇒ Stat2 : a /∈ {u : v ∈ x0 ∪ {y0} , u ∈ v} & a ∈ y0∥∥∥ The only possibility left, namely that a ∈ y0\

⋃
(x0 ∪ {y0}), is also manifestly

absurd. This contradiction leads us to the desired conclusion.
〈y0, a〉↪→Stat2⇒ false; Discharge⇒ Qed

Thm 31h: [Less-one lemma for union set]⋃
M = T\ {C} & S = T ∪ X ∪ {V} & Y = V ∨ (C = Y & Y ∈ S)→
〈∃d |

⋃
(M ∪ {X ∪ {Y}}) = S\ {d} 〉. Proof:

Suppose not(m, t, c, s, x, v, y)⇒ Stat0 : ¬〈∃d |
⋃

(m ∪ {x ∪ {y}}) = s\ {d} 〉
&
⋃

m = t\ {c} & s = t ∪ x ∪ {v} & y = v ∨ (c = y & y ∈ s)∥∥∥∥∥∥∥∥∥
For, supposing the contrary,

⋃
(m ∪ {x ∪ {y}}) would differ from each of s\ {s},

s\ {c}, and s\ {v}, the first of which equals s. Thanks to Thm 2e, we can rewrite⋃
(m ∪ {x ∪ {y}}) as x ∪ {y} ∪

⋃
m; but then the decision algorithm for a frag-

ment of set theory known as ‘multi-level syllogistic with singleton’ yields an im-
mediate contradiction.
〈s〉↪→Stat0⇒

⋃
(m ∪ {x ∪ {y}}) 6= s

〈c〉↪→Stat0⇒
⋃

(m ∪ {x ∪ {y}}) 6= s\ {c}
〈v〉↪→Stat0⇒

⋃
(m ∪ {x ∪ {y}}) 6= s\ {v}

〈m, x ∪ {y} 〉↪→T2e ⇒ Auto
EQUAL⇒ Stat1 : x ∪ {y} ∪

⋃
m 6= s\ {c} &

x ∪ {y} ∪
⋃

m 6= s\ {v} & x ∪ {y} ∪
⋃

m 6= s
(Stat0,Stat1)Discharge⇒ Qed

Figure 5.3: Tiny scenario for Ref.

Definitions often introduce abbreviating notation such as the union-set operation in
the example just made, sometimes they bring into play sophisticated recursive notions
such at the one of rank, to be seen in passing in Section 5.2.2.

Proofs are formed by two-component lines: the second component of each line is the
claim being inferred, the first component hints at the inference rule being used to derive
it. E.g., the hint Use def(

⋃
) suggests that one is expanding previous occurrences of the

symbol
⋃

inside the proof by the appropriate definition. Most often, the claim of a proof
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Theory finiteInduction
(
s0,P(S)

)
Finite(s0) & P(s0)

⇒ (finΘ)
〈∀S | S⊆ finΘ→ Finite(S) &

(
P(S)↔ S = finΘ

)
〉

End finiteInduction

Figure 5.4: A finite induction mechanism.

line is not sharply determined by the lines and the hint that precede it in the proof. Thus,
for example, it is entirely a matter of taste whether to derive

⋃
(m ∪ {x ∪ {y}}) 6= s or⋃

(m ∪ {x ∪ {y}}) 6= s\{s} as the second step in the second proof of Figure 5.3.

Proof encapsulation in Ref

Beyond this, definitions serve to ‘instantiate’, that is, to introduce the objects whose
special properties are crucial to an intended argument. Like the selection of crucial
lines, points, and circles from the infinity of geometric elements that might be consid-
ered in a Euclidean argument, definitions of this kind often carry a proof’s most vital
ideas. (J. T. Schwartz, [133, p. 9])

The proof-checker Ref has a construct named theory, aimed at proof reuse, akin
to a mechanism for parameterized specifications of the Clear specification language [22].
Besides providing theorems of which it holds the proofs, a theory has the ability to
instantiate ‘objects whose special properties are crucial to an intended argument’. Like
procedures of a programming language, Ref’s theorys have input formal parameters, in
exchange of whose actualization they supply useful information. Actual input parame-
ters must satisfy a conjunction of statements, called the assumptions of the theory. A
theory usually encapsulates the definitions of entities related to the input parameters
and it supplies, along with some consequences of the assumptions, theorems talking about
these internally defined entities, which the theory returns as output parameters.1 After
having been derived by the user once and for all inside the theory, the consequences of
the assumptions, as well as the claims involving the output parameters, are available to
be exploited repeatedly.

A simple yet significant example is the theory finiteInduction displayed in Figure 5.4,
which receives a finite set s0 along with a property P such that P(s0) holds; in exchange, it
will return a ‘minimal witness’ of P, i.e., a finite set finΘ satisfying P(finΘ) none of whose
strict subsets t satisfies P(t).

5.2.2 The Referee system in action

For clarity, we revisit here the proof of Theorem 5.1.1, simplified to show only the property
recast formally as a Ref proof-scenario, namely that squares of connected claw-free graphs
are Hamiltonian.

Theorem 5.2.2 If G is a connected claw-free graph with at least three vertices, and S ⊆
V (G) is the set of sources of an acyclic orientation of G with exactly one sink, then G2

1As a visible countersign, the formal output parameters of a theory must carry the Greek letter Θ as
a subscript.
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has a Hamiltonian cycle C such that for every s ∈ S, at least one edge of C incident to s
belongs to E(G).

Proof. Arguing as in the preceding proof, unless G has 3 or 4 vertices, we select a ‘pivotal’
pair x, y, so that |N−(y)| 6 2; moreover, G−N−(y) has at least 3 vertices and is connected,
since otherwise D would have two sinks. In applying the inductive hypothesis to H =
G − N−(y), take the orientation induced by D, so that y is a source, and consider a
Hamiltonian cycle C of H containing an edge yw ∈ E(G).

If N−(y) = {x}, notice that xw ∈ E(G2). Obtain a Hamiltonian cycle for G by
replacing the edge yw in C by the path yxw (so that xy ∈ E(G)). If N−(y) = {x, z},
due to the claw-freeness of G at least one of the edges xw or zw, say xw, belongs to G.
Moreover, zx ∈ E(G2). Obtain a Hamiltonian cycle for G by replacing the edge yw in C
with the path yzxw (so that yz, xw ∈ E(G)).

Our formal specification of the above stated theorem and of Theorem 5.1.2 will refer
to claw-free and transitive sets, instead of to claw-free graphs. Thus, as explained at the
beginning of this section, the orientation of edges can be left as implicit; moreover, the
unique-sink assumption will readily ensue from extensionality.

Down-to-earth notions for our experiment

In the first place we must define the notions of finiteness and transitivity of a set, for the
former of which we can rely on [142]. Both notions presuppose the power-set operation,
which we also specify here—its companion union-set operation has been introduced in
Section 5.2.1.

Def P: [Family of all subsets of a given set] PS =Def {x : x⊆ S}
Def Fin: [Finiteness] Finite(F) ↔Def 〈∀g ∈ P(PF)\ {∅} ,∃m | g ∩ Pm = {m} 〉
Def transitivity: [Transitive set] Trans(T) ↔Def {y ∈ T | y 6⊆ T} = ∅

Pre-existing ancillary properties about these constructs were available for reuse or readap-
tation in a shared common Ref scenario, cf. Figure 5.5.

Next come our definitions of claws and claw-free sets. In the second of these, the
assumption that S is transitive is omitted and left pending to be introduced explicitly in
the pertaining theorems.

Def claw: [Pair characterizing a claw, possibly endowed with more than 3 el’ts]
Claw(Y,F) ↔Def F ∩

⋃
F = ∅ &

〈∃x, z,w | F⊇ {x, z,w} & x 6= z & w /∈ {x, z} & {w} ∩ Y ⊇ {v ∈ F | Y /∈ v} 〉
Def clawFreeness: [Claw-freeness, for a membership digraph]

ClawFree(S) ↔Def 〈∀y ∈ S, e⊆ S |¬Claw(y, e)〉
A claw is thereby defined to be a pair y, F of sets such that:

1. F has at least three elements,

2. no element of F belongs to any other element of F ,

3. either y belongs to all elements of F or there is a w ∈ y such that y belongs to all
elements of F \ {w}.
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Thm 2a: [Union of doubletons and singletons] Z = {X,Y}→
⋃

Z = X ∪ Y
Thm 2c: [Additivity and monotonicity of monadic union]⋃

(X ∪ Y) =
⋃

X ∪
⋃

Y & (Y ⊇ X→
⋃

Y ⊇
⋃

X)
Thm 2e: [Union of adjunction]

⋃
(X ∪ {Y}) = Y ∪

⋃
X

Thm 3a: [The unionset of a transitive set is included in it] Trans(T)↔ T⊇
⋃

T
Thm 3c: [For a transitive set, elements are also subsets] Trans(T) & X ∈ T→ X⊆ T
Thm 3d: [Trapping phenomenon for trivial sets]Trans(S) & X,Z ∈ S & X /∈ Z & Z /∈ X &

S\ {X,Z} ⊆ {∅, {∅}}→ S⊆ {∅, {∅} , {{∅}} , {∅, {∅}}}
Thm 4b: [∅ belongs to any nonnull transitive set t, {∅} also does if t 6⊆ {∅}, and so on]

Trans(T) & N ∈ {∅, {∅} , {∅, {∅}}} & T 6⊆ N→
N⊆ T &

(
N ∈ T ∨ (N = {∅, {∅}} & {{∅}} ∈ T)

)
Thm 4c: [Source removal from a transitive set does not disrupt transitivity]

Trans(S) & S⊇ T & (S\T) ∩
⋃

S = ∅→ Trans(T)
Thm 24: [Monotonicity of finiteness] Y ⊇ X & Finite(Y)→ Finite(X)
Thm 31d: [Unionset of ∅ and {∅}] Y ⊆ {∅}↔

⋃
Y = ∅

Thm 31f : [Unionset of a set obtained through removal followed by adjunction]⋃
M⊇ P & Q ∪ R = P ∪ S→

⋃
(M\ {P} ∪ {Q,R}) =

⋃
M ∪ S

Thm 31h: [Less-one lemma for unionset]⋃
M = T\ {C} & S = T ∪ X ∪ {V} & Y = V ∨ (C = Y & Y ∈ S)→

〈∃d |
⋃

(M ∪ {X ∪ {Y}}) = S\ {d} 〉
Thm 32: [Finite, nonnull sets, own sources] Finite(F) & F 6= ∅→ F\

⋃
F 6= ∅

Figure 5.5: Basic laws about
⋃

, Trans and Finite.

Accordingly, a claw-free set will be one which does not include a claw. For that, it suffices
that it does not contain a claw y, F with |F | = 3, like the one shown in Figure 5.6.

On the basis of these definitions, one easily proves the monotonicity of claw-freeness,
along with two slightly less obvious properties:

F

w

y

x z

F

w

y

x z

Figure 5.6: The forbidden orientations of a claw in a claw-free set.
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Thm clawFreenessa: [Subsets of claw-free sets are claw-free]
ClawFree(S) & T⊆ S→ ClawFree(T)

Thm clawFreenessb: [In a claw-free set, any potential claw must have a bypass]
ClawFree(S) & S⊇ {Y,X,Z,W} & Y ∈ X ∩ Z & W ∈ Y & X /∈ Z ∪ {Z} & Z /∈ X→

W ∈ X ∪ Z
Thm clawFreeness0: [Pivots in a claw-free set own at most two predecessors therein]

ClawFree(S) & X ∈ S & Y ∈ X ∩ S\
⋃

(S ∩
⋃

S)→
〈∃z ∈ S | {v ∈ S | Y ∈ v} = {X, z} & Y ∈ z〉

To comment on the third of these, we switch back to our view of a set s as being a
digraph D(s) with sources s \

⋃
s. Relevant for what is to follow, we will focus on the

pivots of D(s), which we define to be the elements of (
⋃
s)\

⋃
(s∩

⋃
s); in graph-theoretic

terms, y ∈ s is a pivot of D(s) if y is an out-neighbor of a source of D(s), but is not at
the end of any directed path included in s whose length exceeds 1. The salient property
of a pivot y is that if x, z are in-neighbors of y, then neither x ∈ z nor z ∈ x holds, thanks
to the claim

Thm 31g. Y ∈ X & X ∈ Z & X,Z ∈ S→ Y ∈
⋃

(S ∩
⋃

S)

whose contrapositive ensures, when y /∈
⋃

(s ∩
⋃
s), the incomparability of x and z.

When s is transitive, the set of pivots reduces to (
⋃
s) \

⋃⋃
s; but in order to state

Thm clawFreeness0 in its most basic form, we avoid this assumption here. The claim
hence is that in a claw-free set the in-neighbors of a pivot y ∈ x ∈ s form a set {x, z},
possibly singleton. This is straightforward: should y have three in-neighbors x, z, w, the
pair y, {x, z, w} would be a claw.

A crucial auxiliary theory

Two instantiating mechanisms play a key role in our proof-pearl scenario. One relates to
the finiteness of the graphs under study here: this assumption conveniently reflects into
the induction principle discussed in Section 5.2.1.

The other theory more specifically reflects our claw-freeness and transitivity assump-
tions; it factors out a mathematical insight which is common to the two main proofs on
which we are reporting. Essentially, it says that in a transitive claw-free set s0 * {∅} we
can always select a pivot yΘ and its in-neighborhood {xΘ, zΘ}. Along with yΘ, xΘ, zΘ, this
theory returns the set tΘ = s0 \ {xΘ, zΘ} = {v ∈ s0 | yΘ /∈ v}, strictly included in s0; in
its turn, tΘ is proved to be claw-free and transitive.

For an intuition of how the quadruple xΘ, yΘ, zΘ, tΘ can be obtained, referring to the
classical notion of rank recursively definable as

rank(s) =Def

{
0 if s = ∅
max{ rank(t) + 1 : t ∈ s } otherwise,

observe that a transitive set s0 not included in {∅} must have rank r > 2, and hence must
have elements xΘ, yΘ such that yΘ ∈ xΘ and rank(yΘ) = r − 2.

Although a recursive definition such as the one of rank just seen is supported by Ref (as
a benefit originating from the assumption that set membership is a well-founded relation),
we preferred to avoid it in order to circumvent any possible complication that might ensue
from an explicit handling of numbers.
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Theory pivotsForClawFreeness(s0)
ClawFree(s0) & Trans(s0) & Finite(s0)
s0 6⊆ {∅}

⇒ (xΘ, yΘ, zΘ, tΘ)
〈∀x ∈ s0, y ∈ x\

⋃⋃
s0 | 〈∃z ∈ s0 | {v ∈ s0 | y ∈ v} = {x, z} & y ∈ z〉〉

{xΘ, yΘ, zΘ} ⊆ s0

xΘ /∈ zΘ & zΘ /∈ xΘ & yΘ ∈ xΘ ∩ zΘ\
⋃⋃

s0

yΘ ∈ tΘ\
⋃

tΘ & tΘ = s0\ {xΘ, zΘ} & tΘ = {v ∈ s0 | yΘ /∈ v}
ClawFree(tΘ) & Trans(tΘ)

End pivotsForClawFreeness

Figure 5.7: A key quadruple associated with a claw-free set.

As a surrogate for the rank notion, we conceal inside this theory the definition of the
frontier of a set s: this consists of those elements s to which a pivot of s belongs:

Def frontier: [Frontier of a set] front(S) =Def {x ∈ S | x ∩ S\
⋃

(S ∩
⋃

S) 6= ∅}.

Aided by this notion, we get xΘ and yΘ by drawing arbitrarily the former from front(s0),
the latter from xΘ\

⋃⋃
s0. This presupposes, of course, a proof that front(s0) 6= ∅, a fact

simply ensuing from the more general proposition

Thm frontier1. Finite(S ∩
⋃

S) & S ∩
⋃

S 6= ∅→ front(S) 6= ∅,

applicable to s0 thanks to the assumption s0 6⊆ {∅} of the theory at hand. To conclude
the development of this theory, one must show that tΘ = {v ∈ s0 | yΘ /∈ v} is transitive,
as follows from

Thm frontier2. Trans(S) & X ∈ front(S) & Y ∈ X\
⋃⋃

S & T = {z ∈ S | Y /∈ z}→
Trans(T) & T⊆ S & X /∈ T & Y ∈ T\

⋃
T,

in view of Thm 4c. from Figure 5.5.

Preparatory lemmas

Since an edge of a graph is represented as membership between two sets, we define a
perfect matching to be a set of disjoint doubletons {x, y} such that y ∈ x holds.

Def perfect matching: [set of disjoint membership pairs]
perfectMatching(M) ↔Def 〈∀p ∈ M,∃x ∈ p, y ∈ x,∀q ∈ M | x ∈ q ∨ y ∈ q→ {x, y} = q〉

The following theorems about perfect matchings admit straightforward proofs.

The last two of these reflect our proof strategy: Thm perfectMatching3 claims that we
can extend a matching by insertion of a doubleton of new sets, while Thm perfectMatching4

states conditions under which we can break a pair {y, w} of a matching M into two
doubletons {y, z} and {x,w} (see Figure 5.8).
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Thm perfectMatching0: [The null set is a perfect matching] perfectMatching(∅)
Thm perfectMatching2: [All subsets of a perfect matching are perfect matchings]

perfectMatching(M) & M⊇ N→ perfectMatching(N)
Thm perfectMatching3: [Bottom-up assembly of a finite perfect matching]

perfectMatching(M) & X /∈
⋃

M & Y /∈
⋃

M & Y ∈ X→
perfectMatching(M ∪ {{X,Y}})

Thm perfectMatching4: [Deviated perfect matching] perfectMatching(M) &

{Y,W} ∈ M & X /∈
⋃

M & Z /∈
⋃

M & Y ∈ Z & Y 6= X & X 6= Z & W ∈ X→
perfectMatching(M\ {{Y,W}} ∪ {{Y,Z} , {X,W}})

M

y x

Myw

zx

Figure 5.8: Two strategies for extending a perfect matching.

Next come our definitions pertaining to Hamiltonian cycles. These notions must refer
to the edges in the square of a claw-free set, which will be formalized as unstructured
doubletons. In order to define a Hamiltonian cycle, we can avoid speaking of sequences
of vertices of a graph, and refer only to subsets of edges forming a cycle. This is done
in two steps: we define Hank(H) to hold, for an H 6= ∅, if every element x ∈ e ∈ H is a
member of another element q 6= e of H. Roughly speaking, this says that every end point
of an edge of H has degree at least 2 in H; but notice that for the time being we are not
insisting that H is formed by doubletons. Next, we define Cycle(C) to hold if Hank(C)
holds and C is inclusion-minimal with this property (cf. [55, p. 288]).

Def cycle0: [Collection of edges whose endpoints have degree greater than 1]
Hank(H) ↔Def ∅ /∈ H & 〈∀e ∈ H | e⊆

⋃
(H\ {e})〉

Def cycle1: [Cycle (unless null)]
Cycle(C) ↔Def Hank(C) & 〈∀d⊆ C | Hank(d) & d 6= ∅→ d = C〉

Let us briefly digress to show that whenever C is a non-null subset of edges of a graph
G and Cycle(C) holds, the subgraph G[C] of G induced by the edges of C is a cycle in
the customary sense. We argue first that G[C] is not a forest and that it must contain a
cycle (not necessarily induced). Otherwise, let P be the longest path in G[C] and let its
successive vertices be x1, . . . , xk. Since Hank(C) holds, C must have an edge x1x

′ with
x′ 6= x2, also belonging to G. From the maximality of P we have that x′ ∈ P , contradicting
the supposed acyclicity of G[C]. If G[C] is not a cycle, then we can find a strictly included
induced cycle C ′ by picking a minimal-length closed walk of G[C]. Therefore Hank(C ′)
holds, contradicting the fact that Cycle(C) holds.

Given an undirected graph (S,E), we say that H ⊆ E is a Hamiltonian cycle of it if
Cycle(H) holds, and each vertex v of S is covered by an edge e of H, in the sense that
v ∈ e. Given a set s, we characterize the set of square edges of s by allowing only three
of the four possible membership alignments of two sets x, y whose distance in the graph
G(s) underlying s is 1 or 2 (see Figure 5.9). These three configurations suffice in a proof
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Def hamiltonian1: [Hamiltonian cycle, in graph without isolated vertices]
Hamiltonian(H, S,E) ↔Def Cycle(H) &

⋃
H = S & H⊆ E

Def hamiltonian2: [Edges in squared membership]
sqEdges(S) =Def {{x, y} : x ∈ S, y ∈ S, z ∈ S |

x ∈ y ∨ (x ∈ z & z ∈ y) ∨ (z ∈ x ∩ y & x 6= y)}
Def hamiltonian3: [Restraining condition for Hamiltonian cycles]

SqHamiltonian(H, S) ↔Def Hamiltonian
(
H, S, sqEdges(S)

)
&

〈∀x ∈ S\
⋃

S,∃y ∈ x | {x, y} ∈ H〉

of the announced theorem. To complete our setup, we need the notion of SqHamiltonian,
which describes a Hamiltonian cycle H of a set s reflecting the claim of Proposition 5.2.2:
in the first place, we require H to be Hamiltonian in the square of the underlying graph
G(s); secondly, H must cover each source of s by an edge of G(s).

y

x

y

z

x

x

z

y

x

z

y

Figure 5.9: Four orientations of a path of length 1 or 2 between two vertices x and y; the
last of these is not taken into account by our definition sqEdges.

The following theorems about Hamiltonian cycles admit straightforward proofs.

Thm hamiltonian1: [Enriched Hamiltonian cycles]
S = T ∪ {X} & X /∈ T & Y ∈ X & SqHamiltonian(H,T) &

{W,Y} ∈ H & W ∈ Y ∨ (Y ∈W & K 6= Y & {W,K} ∈ H & K ∈W)→
SqHamiltonian(H\ {{W,Y}} ∪ {{W,X} , {X,Y}} ,S)

Thm hamiltonian2: [Doubly enriched Hamiltonian cycles]
S = T ∪ {X,Z} & {X,Z} ∩ T = ∅ & X 6= Z & Y ∈ X ∩ Z &

SqHamiltonian(H,T) & {W,Y} ∈ H & W ∈ Y ∩ X→
SqHamiltonian(H\ {{W,Y}} ∪ {{W,X} , {X,Z} , {Z,Y}} ,S)

Thm hamiltonian3: [Trivial Hamiltonian cycles]
S = {X,Y,Z} & X ∈ Y & Y ∈ Z→ SqHamiltonian({{X,Y} , {Y,Z} , {Z,X}} , S)

Thm hamiltonian4. [Any nontrivial transitive set whose square is devoid of
Hamiltonian cycles must strictly comprise certain sets]

Trans(S) & S 6⊆ {∅, {∅}} & ¬〈∃h | SqHamiltonian(h, S)〉→
S 6= {∅, {∅} , {{∅}}} & S 6= {∅, {∅} , {∅, {∅}}} &

S 6= {∅, {∅} , {{∅}} , {∅, {∅}}} & S⊇ {∅, {∅}} &(
{{∅}} ∈ S ∨ {∅, {∅}} ∈ S

)
The last two of these will serve as base case for the proof we are after, namely the case when
a transitive set s has 3 or 4 elements. In particular, if s = {x, y, z} is a transitive tripleton,
then its elements are x = ∅, y = {∅}, z = {{∅}} ∨ z = {∅, {∅}}, and x, z form a square
edge; therefore {x, y}, {y, z}, {z, x} form a hank, and then clearly a cycle, because hanks
of cardinality 1 or 2 do not exist. When s has 5 elements of more, then, mimicking the
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106 5. Connected Claw-Free Graphs Mirrored into Transitive Sets

proof of Proposition 5.2.2 seen above, we will proceed differently, depending on whether
the selected pivot of s belongs to a single element of s, or to two: Thm hamiltonian2 will
serve us when s has two such predecessors, and Thm hamiltonian1 will settle the other
case.

T

H

yw

x

(a)

T

H

yw

x z

(b)

5.2.3 Specifications of Hamiltonicity proof and of the perfect matching
theorem

We will now examine in detail our formal reconstruction of Proposition 5.2.2, as readjusted
for membership digraphs and certified correct with Ref.

Assuming the contrary, let s1 be a finite transitive claw-free set with at least three
elements, i.e. s1 * {∅, {∅}}, which does not have a Hamiltonian cycle in its square (step 1).
By the finiteInduction theory, there would exist an inclusion-minimal finite transitive
non-trivial claw-free set s0 likewise lacking such a cycle (steps 2, 3).

The theory pivotsForClawFreeness can be applied to s0 (step 4): we thereby pick an
element x from the frontier of s0, and an element y of x which is pivotal relative to s0.
This y will have at most two in-neighbors (one of the two being x) in s0. We denote by z
an in-neighbor of y in s0, such that z differs from x, if possible. Observe, among others,
that neither one of x, z can belong to the other.

If the removal of x, z from s0 leads to a set t included in {∅, {∅}} (step 5), then by
Thm 3d we get s0 ⊆ {∅, {∅} , {{∅}} , {∅, {∅}}}. This leads us to a contradiction, in light of
Thm hamiltonian4 (step 7). Therefore, t is not trivial and the inductive hypothesis applies
to it (step 8): thanks to that hypothesis, we can find a Hamiltonian cycle h0 for t (step 9).

Recalling the definitions of Hamiltonian and sqHamiltonian (steps 10, 11), it follows
from y being a source of t =

⋃
h0 that there is an edge {y,w} in h0, with w ∈ y (step 12).

If x = z, the set h1 = h0\ {{y,w}} ∪ {{x, y} , {x,w}} is a Hamiltonian cycle for s0, by
Thm hamiltonian1 (step 14). This conflicts with the minimality of s0 (step 15): in fact
{x,w} is a square edge, since w ∈ y and y ∈ x both hold.

On the other hand, if x 6= z, claw-freeness implies, via Thm clawFreenessb, that ei-
ther w ∈ x or w ∈ z must hold (step 17). Assume the former (step 18), and put
h2 = h0\ {{y,w}} ∪ {{y, z} , {z, x} , {x,w}}, where {x, z} is a square edge and {x,w} and
{y, z} are genuine edges incident in the sources x, z. By Thm hamiltonian2, h2 is a Hamil-
tonian cycle for s0 (step 19), and we are again facing a contradiction (step 20). The case
w ∈ z is entirely symmetric (steps 21, 22, 23), which proves the initial claim.

The result on the existence of a perfect matching is usually referred to graphs whose set
of vertices has an even cardinality, as we have done in our Theorem 5.1.2; but here, since
numbers pop in only in this place, we omit the evenness constraint: transitive, claw-free
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Non-trivial claw-free transitive sets have Hamiltonian squares

Thm clawFreeness1.
Finite(S) & Trans(S) & ClawFree(S) & S 6⊆ {∅, {∅}}→ 〈∃h | SqHamiltonian(h, S)〉. Proof:
1 Suppose not(s1)⇒ Auto

2 APPLY 〈finΘ : s0〉 finiteInduction
(

s0 7→ s1,

P(S) 7→
(
Trans(S) & ClawFree(S) & S 6⊆ {∅, {∅}} & ¬〈∃h | SqHamiltonian(h,S)〉))⇒

Stat1 : 〈∀s | s⊆ s0→ Finite(s) &
(
Trans(s) & ClawFree(s) & s 6⊆ {∅, {∅}} &

¬〈∃h | SqHamiltonian(h, s)〉↔ s = s0

)
〉

3 〈s0〉↪→Stat1⇒ Stat2 : ¬〈∃h | SqHamiltonian(h, s0)〉 &

Finite(s0) & Trans(s0) & ClawFree(s0) & s0 6⊆ {∅, {∅}}
4 APPLY 〈xΘ : x, yΘ : y, zΘ : z, tΘ : t〉 pivotsForClawFreeness(s0 7→ s0)⇒

{v ∈ s0 | y ∈ v} = {x, z} & x, y, z ∈ s0 & y ∈ x ∩ z \
⋃⋃

s0 &

y ∈ t\
⋃

t & t = s0\ {x, z} & t = {u ∈ s0 | y /∈ u} & s0 ⊇ t &

Trans(t) & ClawFree(t) & x /∈ t & x /∈ z & z /∈ x
5 Suppose⇒ t⊆ {∅, {∅}}
6 〈s0, x, z〉↪→T3d⇒ s0 ⊆ {∅, {∅} , {{∅}} , {∅, {∅}}}
7 〈s0〉↪→Thamiltonian4⇒ false; Discharge⇒ Auto
8 〈t〉↪→Stat1⇒ Stat9 : 〈∃h | SqHamiltonian(h, t)〉
9 〈h0〉↪→Stat9⇒ SqHamiltonian(h0, t)

10 Use def
(
Hamiltonian

(
h0, t, sqEdges(t)

))
⇒ Auto

11 Use def(SqHamiltonian)⇒ Stat11 : 〈∀x ∈ t\
⋃

t,∃y ∈ x | {x, y} ∈ h0〉 &

Cycle(h0) &
⋃

h0 = t & h0 ⊆ sqEdges(t)
12 〈y,w〉↪→Stat11⇒ w ∈ y & {w, y} ∈ h0

13 Suppose⇒ x = z
14 〈s0, t, x, y, h0,w, ∅〉↪→Thamiltonian1⇒

SqHamiltonian(h0\ {{w, y}} ∪ {{w, x} , {x, y}} , s0)
15 〈h0\ {{w, y}} ∪ {{w, x} , {x, y}} 〉↪→Stat2⇒ false; Discharge⇒ x 6= z
16 〈s0, y〉↪→T3c⇒ w ∈ s0

17 〈s0, y, x, z,w〉↪→T clawFreenessb⇒ w ∈ x ∪ z
18 Suppose⇒ w ∈ x
19 〈s0, t, x, z, y, h0,w〉↪→Thamiltonian2⇒

SqHamiltonian(h0\ {{w, y}} ∪ {{w, x} , {x, z} , {z, y}} , s0)
20 〈h0\ {{w, y}} ∪ {{w, x} , {x, z} , {z, y}} 〉↪→Stat2⇒ false; Discharge⇒ Auto
21 ELEM⇒ w ∈ z
22 〈s0, t, z, x, y, h0,w〉↪→Thamiltonian2⇒

SqHamiltonian(h0\ {{w, y}} ∪ {{w, z} , {z, x} , {x, y}} , s0)
23 〈h0\ {{w, y}} ∪ {{w, z} , {z, x} , {x, y}} 〉↪→Stat2⇒ false; Discharge⇒ Qed
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sets admit a ‘near-perfect matching’ (see [71]), that is to say, a perfect matching which
does not cover at most one of its elements. In Ref:

Thm clawFreeness2: [Every claw-free transitive set has a near-perfect matching]

Finite(S) & Trans(S) & ClawFree(S)→ 〈∃m, y | perfectMatching(m) & S\ {y} =
⋃

m〉

As one sees from our previous treatment of Theorem 5.1.2, this theorem’s proof bears a
close resemblance with the proof about Hamiltonicity just detailed; hence it seems pointless
to supply again here many formal details.

5.2.4 An outward look

To take advantage of the set-theoretic foundation of Referee, we exploited set equivalents
of the graph-theoretic notions involved in our experiment: edge, source, square, etc. To
ease some proofs, we have often resorted to weak counterparts of well-established notions
such as cycle, claw-freeness, longest directed path, etc:

• In the above, we could have defined a transitive set to be claw-free if none of the
four non-isomorphic membership renderings of a claw are induced by any quadruple
of its elements; but actually, it sufficed to forbid two out of these four to get the
desired proofs. This explains why our results are easier to achieve but under some
respects more general. To see the difference, observe that the graph in Figure 5.2,
once suitably oriented, can be handled by our theorems, whereas the Hamiltonicity
of its square and its perfect matchings are not seen either by the traditional results
[81, 141, 148], or by subsequent generalizations regarding quasi claw-free graphs [4],
almost claw-free graphs [132], and S(K1,3)-free graphs [65].

• The graph ‘squares’ about which our Hamiltonicity proof speaks are actually poorer
in edges than the standard ones, since we allow only three out of the four membership
alignments, cf. Figure 5.9.

• We have addressed issues regarding graphs, which we see as pre-algorithmic and, as
such, application-oriented. Nonetheless, our results are so close to the foundations
of mathematics that we found no reason to introduce numbers, and we were able to
avoid recursion even in the determination of the pivots, as explained in Section 5.2.2.
For the time being, we succeeded even in doing without basic conceptual tools which,
as we expect, will enter into play in continuations of this work; for example, the
notion of spanning tree.

• The graphs that can be represented by sets form a broad class of graphs, which
includes, in partial overlap with connected claw-free graphs, all graphs endowed
with a Hamiltonian path. By allowing the presence of ‘atoms’ in our sets, as will
emerge from the next section, we can actually represent all graphs.

To end, let us now place the results presented so far under the more general perspective
motivating this work. We display in this section the interfaces of two representation
theorys (not developed formally with Referee, as of today), and of a theory auxiliary to
one of these two, explaining why we can work with membership as a convenient surrogate
for the edge relationship of general graphs.
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One of these, theory finGraphRepr, will implement the proof given in Section 4.2.1
that any finite graph (v0, e0) is ‘isomorphic’, via a suitable orientation of its edges and an
injection f of v0 onto a set ν, to a digraph (ν, {(x, y) : x ∈ ν, y ∈ x ∩ ν}) enjoying weak
extensionality. Sinks can, at taste, be seen as pairwise distinct atoms (or ‘urelements’ [70])
entering in the formation of the sets assigned to the internal vertices, or as sets whose
internal structure is immaterial.

Theory finGraphRepr(v0, e0)
Finite(v0) & e0 ⊆ {{x, y} : x, y ∈ v0 | x 6= y}

⇒ (fΘ, νΘ)
1–1(fΘ) & domain(fΘ) = v0 & range(fΘ) = νΘ

〈∀x ∈ v0, y ∈ v0 | {x, y} ∈ e0↔ fΘ x ∈ fΘ y ∨ fΘ y ∈ fΘ x〉
{x ∈ νΘ | x ∩ νΘ 6= ∅} ⊆ P

(
νΘ

)
End finGraphRepr

Although accessory, the weak extensionality condition (last claim in the theory’s
interface just displayed) is the clue for getting the desired f ; in fact, for any weakly
extensional digraph, acyclicity always ensures that a variant of Mostowski’s collapse is
well-defined: in order to get it, one starts by assigning a distinct set Mt to each sink t
and then proceeds by putting recursively

Mw = {Mu | (w, u) is an arc }

for all non-sink vertices w; plainly, injectivity of the function u 7→ Mu can be ensured
globally by a suitable choice of the images Mt of the sinks t. The said variant Mostowski’s
collapse for a well-founded weakly extensional digraph (even an infinite one) can be spec-
ified in Ref as a theory whose interface reads as follows:

Theory mostowskiCollapse(v0, a0)

〈∀t⊆ v0,∃m,∀x ∈ t |m ∈ t & (m, x) /∈ a0〉
〈∀w ∈ v0,w

′ ∈ v0, u ∈ v0 |
(w, u) ∈ a0 & {x ∈ v0 | (w, x) ∈ a0} = {x ∈ v0 | (w′, x) ∈ a0} → w = w′〉

⇒ (MΘ)
1–1(MΘ) & domain(MΘ) = v0

〈∀w ∈ v0, u ∈ v0 | (w, u) ∈ a0→MΘw = {MΘu : u ∈ v0 | (w, u) ∈ a0} 〉
End mostowskiCollapse

Our second representation theory, cfGraphRepr, will specialize finGraphRepr to the
case of a connected, claw-free (undirected, finite) graph—connectedness and claw-freeness
appear, respectively, as the second and the third assumption of this theory. For these
graphs, we can insist that the orientation be so imposed as to ensure extensionality in full:
“distinct vertices have different out-neighborhoods”.
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Def connectedness: [Connectedness of a graph]
Connected(V,E) ↔Def

〈∀x ∈ V, y ∈ V | x 6= y & {x, y} /∈ E→ 〈∃p⊆ E | Cycle(p ∪ {{y, x}})〉〉

Def clawFreeGraph: [Claw-freeness of a graph]

ClawFreeG(V,E) ↔Def 〈∀w ∈ V, x ∈ V, y ∈ V, z ∈ V | {w, y} , {y, x} , {y, z} ∈ E→
x = z ∨ w ∈ {z, x} ∨ {x, z} ∈ E ∨ {z,w} ∈ E ∨ {w, x} ∈ E〉

Theory cfGraphRepr(v0, e0)
Finite(v0) & e0 ⊆ {{x, y} : x, y ∈ v0 | x 6= y}
Connected(v0, e0)
ClawFreeG(v0, e0)

⇒ (fΘ, νΘ)
1–1(fΘ) & domain(fΘ) = v0 & range(fΘ) = νΘ

〈∀x ∈ v0, y ∈ v0 | {x, y} ∈ e0↔ fΘ x ∈ fΘ y ∨ fΘ y ∈ fΘ x〉
Trans(νΘ) & ClawFree(νΘ)

End cfGraphRepr

Consequently, the following will hold:

• there is a unique sink, ∅; moreover,

• the set ν underlying the image digraph is transitive. Also, rather trivially,

• ν is a claw-free set, in an even stronger sense than the definition with which we have
been working throughout this paper.

Via the theory cfGraphRepr, the above-proved existence results about perfect match-
ings and Hamiltonian cycles can be transferred from the realm of membership digraphs to
the a priori more general realm of connected claw-free graphs.
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Bernays-Schönfinkel-Ramsey
∀∗-formulae

Given a first-order language L, the formulae of L having ∀∗ as their prenex prefix form
the so-called L-BSR class. If L is a language of graphs, the usual primitive relators of the
signature of L are = and E, where E is interpreted as the adjacency relation. In the case
of sets, these relators are = and ∈, where ∈ is interpreted as the membership relation.

A graph class defined by forbidden induced subgraphs can be characterized by a ∀∗-
formula: the adjacencies between any tuple of vertices are required not to be the same as
the adjacencies between the vertices of one of the forbidden subgraphs. Having a good
understanding of the structure of graphs from such a class can guarantee, among others,
tractability of otherwise NP-hard problems.

The analogous problem of characterizing sets satisfying a fixed ∀∗-formula is certainly
rewarding. For example, Section 5.1 extended two properties of claw-free graphs to the
case of sets, characterized analogously by a precise ∀4-formula. However, in this chapter
we will consider a more general question: If one considers the collection of all ∀∗-formulae,
which are the sets that they can express? Since all hereditarily finite (hyper)sets can be
characterized by a ∀∗-formula, this question becomes intriguing, and in a truly challenging
manner, when asking for the infinite (hyper)sets that can be thus characterized.

If in the case of finite graphs the knowledge about their structure provides tractability
results, insight about the structure of infinite sets assures a passage from undecidability
to decidability. Indeed, after a research of more than 20 years, this understanding proved
crucial in the recent proof that it can be decided whether, given a ∀∗-formula ϕ, there
exists a tuple of well-founded sets that, substituted for its free variables, render ϕ true.

The main motivation of this chapter is the analogous decidability problem for hyper-
sets. We therefore focus on ∀∗-formulae ϕ which express infinite non-well-founded sets, in
the sense that, on the one hand, there are infinite hypersets which can be substituted for
the free variables of ϕ to render it true; and that, on the other hand, this cannot be the
case for hereditarily finite hypersets, or well-founded sets (be they hereditarily finite or
not).
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6.1 The decidability problem

Many algorithms have been found, over the years (cf. [23,25]), that can establish whether
a set-theoretic formula drawn from a specific fragment of the first-order set-theoretic
language—having thus the signature {=,∈}—can, or cannot, be made true by means
of a suitable assignment of set-values to its free variables. In this chapter we will consider
one such fragment, called the Bernays-Schönfinkel-Ramsey class.

Definition 6.1.1 The Bernays-Schönfinkel-Ramsey class consists of all first-order for-
mulae whose prenex quantificational prefix is purely universal (BSR- or ∀∗-formulae, for
short).

The BSR-class has a long history for inspiring deep combinatorial results, starting with
the celebrated theorem by Ramsey [126], established in order to study the spectra of its
formulae. Recent results on the BSR class include [7] and the subsequent work on the
expressivity of the BSR class, that the classification starting with that paper stimulated.

The classical decision problem for the logical BSR-class consists of the satisfiability
problem for ∀∗-formulae whose unquantified matrix is written employing one binary re-
lation symbol1 and equality (see [20]). The decision problem for the satisfiability of the
set theoretic BSR-class over well-founded sets asks for an algorithm that, given a BSR-
formula ϕ(x1, . . . , xn), decides whether there exist well-founded sets s1, . . . , sn such that
ϕ(s1, . . . , sn) is true. This research, started more than 20 years ago [112, 113], recently
culminated with a proof that such an algorithm exists [100,101].

Gaining a comprehensive understanding of what infinite structures are describable
within specific syntactic restraints appears to be an essential prerequisite for any decision
procedure for a set theoretic context. This line of attack was indeed employed for the BSR-
class, where the ∀∀ formulation of infinity of 1988-1990 [112, 113] unearthed a building
block of any well-founded and infinite set theoretic interpretation for the free variables of
a ∀∀-formula [16]. An analogous, but more involved result holds for the general case as
well, where formulations of infinity involving an arbitrary number of universally quantified
variables and free variables have to be considered.

This finding proved crucial in the aforementioned decidability result, since it guaran-
teed that any finite family F of well-founded sets can be thinned into a family F ′ which
satisfies the same BSR-formulae as F and whose structure is so devoid of redundancy and
so regular that it can be described by means of a finite digraph. Note that although F is
finite (because F consists of values to be substituted for the free variables of a formula),
its members can either be infinite, or involve infinite sets in their structure.

This technique, often brought into play for such decidability results, can be summarized
as follows. One starts by singling out those features of a finite family F that are relevant
for the satisfaction of a formula ϕ in the language of interest under an assignment

M : vars(ϕ) −→ F

of set values to the free variables of ϕ. The main subtasks into which the decision analysis
task gets subdivided, accordingly, are:

1More relational symbols would not make the problem more difficult.
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1. distill from F another set F ′, whose structure is as regular as possible, along with
an injection x 7→ x′ of F into F ′, so that any ϕ′ involving the same variables as
ϕ gets the same truth value in M (as above) and in the corresponding assignment
x 7→ M(x)′;

2. taking advantage of the regularities of F ′, represent F ′ by means of a suitable finite
representation G (typically in the form of a digraph);

3. single out special features that a given G enjoys when it actually originates from the
thinning of a finite family F ;

4. indicate how to evaluate, relative to G, any conjunction ϕ′ of constraints that involves
at most #F variables.

Of the above four items, 1 and 2 must be carried out as existence proofs (of F ′ and of
G, respectively), and cannot be regarded as algorithmic steps proper; indeed, some of the
sets belonging to F and to F ′ may have transfinite cardinality or rank and, as such, cannot
be algorithmically manipulated. Concerning, in particular, item 2, note that, due to the
fact that there are BSR-formulae satisfied only by infinite sets—as shown in [112,113] and
as it will be seen in Section 6.2—, we cannot assume that the values of the free variables
are hereditarily finite; this is why we need to resort to an indirect graph-representation.

On the other hand, if one succeeds, as hinted at at the above points 3 and 4, in
implementing rules for evaluating formulae in a representing digraph instead of in the
original assignment M, as well as for determining whether a digraph can be induced by
a finite family of sets (to wit, the values of the free variables in M), one already owns a
semi-decision algorithm. It is necessary to

5. place a computable bound on the overall size of each relevant digraph

to end up with the sought satisfiability decision test. Sometimes, more effective, goal-
driven algorithms can be derived from such generate-and-test raw prototypes.

Most often, decidability results of this kind are referred to the standard universe of
sets—the von Neumann’s cumulative hierarchy—, over which membership behaves as a
well-founded relation; but in a few cases (cf. [5, 45,97,99]), a known satisfiability decision
algorithm could be recast in terms referring to a non-well-founded universe of sets such
as Aczel’s one. In designing these technically more difficult, out-of-standard, decision al-
gorithms, invention can usually rely upon a certain analogy between the two conceptions
of the domain of sets, despite the two being opposite. Staying neutral on whether mem-
bership is well-founded or not, does not pay: without a commitment in either direction,
one generally loses a result—regarding either Zermelo-Fraenkel or an axiomatic first-order
theory germane to it—of deductive completeness relative to a restricted set-theoretic lan-
guage; while retaining, in its stead, only a minor form of decidability for that language,
much less worth of notice [98].

The main motivation of this chapter is the analogous decidability problem over hy-
persets. We are embarking here on a feasibility study on how much of the solution for
the above items 1–5 is transferrable to this non-well-founded context. If in the well-
founded case one relies heavily on the ability to do recursion on rank, in the case of
hypersets this notion seems to have no natural counter-part, at least for the means of
this problem. Therefore, a study of the infinite non-well-founded structures expressible by



Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l’Università degli Studi di Udine
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BSR-formulae—referring thus to items 1 and 2—is of utmost importance, as it allows one
to prepare, test and fine tune his toolbox in tackling this out-of-standard set context.

6.1.1 The computational complexity of deciding satisfiability

Before starting to shed light on two decidable fragments of the BSR-class, we focus on finite
set structures, and on their ability to encode other computational problems. We report
in this section on a straightforward encoding of the propositional satisfiability problem.
This result, emerging at the beginning of the 1990s, is also mentioned in [98] and in the
monograph [25, Ch. 6.1.4]. The reduction we present follows [46, 48]; this reduction is
simple enough not to make any assumption on the well-foundedness of the membership
relation, therefore entailing that deciding whether a BSR-formula can be satisfied by a
tuple of hereditarily finite set/hypersets is NP-hard.

For expository purposes, we will let the polyadic construct a = {x1, . . . , xn} stand for

(∀y)
(
y ∈ a↔

n∨
i=1

y = xi

)
.

In particular, a = ∅ stands for (∀y)(y /∈ a). Actually, the set theoretic BSR-class is
expressive enough to encode also the standard MLSS (multilevel syllogistic with singleton)
[23] unquantified language of set theory consisting of a denumerable infinity of set variables,
the ‘null set’ constant ∅, the set operators •∩•, •\•, •∪•, {•, . . . , •}, and the set predicates
• ∈ •, • = •, • ⊆ •.

Given a propositional formula in conjunctive normal form

ϕ ≡
n∧
i=1

ki∨
j=1

`i,j ,

where each literal `i,j is drawn from a collection x1, . . . , xm,¬x1, . . . ,¬xm of propositional
variables and their negations, we can consider a collection of set variables such that to each
variable xi there correspond two set variables Pi and Ni. Moreover, for each i ∈ {1, . . . , n}
and each j ∈ {1, . . . , ki}, we put

Li,j =

{
Ph if `i,j = xh,

Nh if `i,j = ¬xh.

The set encoding ϕs of ϕ is the following BSR-formula:

ϕs ≡
{{
∅, {∅}

}}
={

{P1, N1}, . . . , {Pn, Nn}, {∅, L1,1, . . . , L1,k1}, . . . , {∅, Ln,1, . . . , Ln,kn}
}
.

Assume first that ϕ is satisfiable by a truth assignment to its propositional variables
x1, . . . , xn. If xi is true, then put Pi = {∅} and Ni = ∅, otherwise, put Pi = ∅ and
Ni = {∅}. It is easy to see that this set assignment to the free variables of ϕs renders it
true.

Conversely, assume that ϕs is satisfiable. We must have that {Pi, Ni} = {∅, {∅}}, for
each i ∈ {1, . . . , n}. If Pi = {∅}, then put xi true, otherwise, put xi false. This is a
consistent truth assignment. To see that it also satisfies ϕ, observe that at least one of
Li,1, . . . , Li,ki is {∅}, for each i ∈ {1, . . . , n}. Therefore, for each clause of ϕ there exists a
true literal.
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6.1.2 A digraph-based satisfiability algorithm for ∃∗∀-sentences and for
∃∀∗-sentences over hypersets

In analogy to the well-founded case, we isolate below two decidable fragments of the
BSR-class, over hypersets. Our theorems show that any ∀-formula owning at most one
universal quantifier and an arbitrary number of free variables, and any ∀∗-formula owning
an arbitrary number of universal quantifiers, but at most one free variable, if satisfiable
by hypersets, are also satisfiable by hereditarily finite hypersets. These proofs of ‘finite
reflexion’ also provide a bound on the size of the hereditarily finite hyperset models; the
decidability algorithms they entail, which we leave as implicit, are a generate-and-test
method.

We start with the class of ∀-formulae, also considered in [98, 104] under various set-
theoretic axioms.

Theorem 6.1.2 For any quantifier-free formula ϕ(~a, y), where ~a represents a list
a0, . . . , an of distinct variables, the sentence

∃~a ∀ y ϕ(~a, y)→ ∃~a

(
n∧
i=0

ai ∈ HF ∧ ∀ y ϕ(~a, y)

)
ensues from ZF− − FA + AFA.

Proof. Consider an arbitrary ∀-prenex formula ψ(~a) = ∀ y ϕ(~a, y) and an array ~a =
〈a0, . . . ,an〉 of sets such that ψ(~a) holds. We will see below that if some component ai
of the satisfying array fails to be hereditarily finite, we can thin ~a into another array, ~̇a,
devoid of this ‘drawback’.

Put A = {a0, . . . ,an}, and let D be a finite subset of (
⋃
A) \ A such that ai 6= aj

implies ai ∩ (A ∪D) 6= aj ∩ (A ∪D). For example, one could construct D by selecting an
element dij from each non-void set of the form (ai \ aj) \ A, with i, j ∈ {0, . . . , n}.

Next consider the membership digraph GA∪D = (V,E) with vertices V = A ∪ D and
arcs E = {〈u,w〉 : u ∈ V ∧w ∈ V ∧w ∈ u}. Associate with each vertex u two sets u̇, ü so
as to satisfy the following constraints:

u̇ = { ẇ : 〈u,w〉 ∈ E} ∪ ü;

ü =

{
∅, if u ∈ A,
{z}, if u ∈ D, where z ∈ HF and z is of cardinality #z > #A+ #D + 1;

the restriction of the mapping u 7→ ü to D is injective, i.e., it chooses different z’s
for different u’s.

It is plain that such mappings u 7→ u̇ and u 7→ ü can always be obtained: AFA
(specifically, its ‘existential’ part AFA1) ensures that the former exists. It should also be
clear that the mapping u 7→ u̇ is injective, and that its images not only belong to HF, but
can even be drawn from a finite repository of hereditarily finite hypersets.

In consequence of these facts, it turns out that a literal ai = aj (resp., ai ∈ aj)
holds if and only if the corresponding literal ȧi = ȧj (resp., ȧi ∈ ȧj) holds. To see
that ψ(ȧ0, . . . , ȧn) is true, we proceed as in [99]. Observe first that each y ∈ ȧ0 ∪ · · · ∪
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ȧn \ {ȧ0, . . . , ȧn} originates from a set y′ such that the membership and equality literals
satisfied by a0, . . . ,an, y

′ match precisely the ones satisfied by ȧ0, . . . , ȧn, y; more generally,
for each triple I, J,K such that the condition

∃ y

 n∧
i=0

(ȧi ∈ y ↔ i ∈ I) ∧
n∧
j=0

(y ∈ ȧj ↔ j ∈ J) ∧
n∧
k=0

(ȧk = y ↔ k ∈ K)


is met, the analogous condition referring to a0, . . . ,an is satisfied as well. This proves our
claim.

The following theorem shows that a BSR-formula with one free variable cannot force it
to designate an infinite set, thus generalizing to Aczel’s theory of hypersets an analogous
observation made for ordinary sets in [112, p. 276].

Theorem 6.1.3 For any quantifier-free formula ϕ(a, ~y), the sentence

∃ a ∀ ~y ϕ(a, ~y)→ ∃ a
(
a ∈ HF ∧ ∀ ~y ϕ(a, ~y)

)
ensues from ZF− − FA + AFA.

Proof. Consider an arbitrary ∀∗-prenex formula ψ(a) = ∀ ~y ϕ(a, ~y) and a set a such
that ψ(a) holds. If a = Ω = {Ω}, then the claim’s proof is plain. Otherwise, consider
a membership path P = {p0, p1, p2, . . . , ∅} starting from p0 = a and ending in ∅, such
that pi+1 ∈ pi, for every i. Assume, moreover, that P is chosen such that its cardinality is
smallest possible. Denote by m be the number of universally quantified variables appearing
in ψ; additionally, if |P| − 1 6 m, let r equal |P| − 1, otherwise, take r = m.

Denoting by R the set {p0, p1, . . . , pr}, we will now see that the membership digraph

DR =
(
R, {〈u,w〉 : u ∈ R ∧ w ∈ R ∧ w ∈ u}

)
has no distinct bisimilar vertices. Consider, for a contradiction, the largest i, 0 < i 6 r,
such that pi is bisimilar to some pj , i > j > 0. Plainly, i < r, since pr has no successors in
DR, while pj has pj+1 as successor. Therefore, pi+1 ∈ pi, and by the maximality of i we
also get that pi+1 ∈ pj . But now the set P ′ = {p0, . . . , pj , pi+1, . . . , pr, . . . , ∅} is a shorter
membership path between a and ∅, which contradicts the minimality of P.

As one readily sees, the decoration of DR assigns a hereditarily finite set ȧ satisfying
ψ(ȧ) to the vertex p0. This is seen as in Theorem 6.1.2, by checking that all atomic
formulae satisfied in the newly defined interpretation correspond to atomic formulae that
were already satisfied in the original one. Moreover, note that ȧ can be drawn from a
finite collection of hereditarily finite hypersets.

An argument similar to the one just given proves that under FA no ∃∃∀∗-sentence can
force only one of the two existential variables to designate an infinite set: to state this
more accurately, the sentence

(∀ a ∈ HF)
(
∃ b∀ ~y ϕ(a, b, ~y)→ (∃ b ∈ HF)∀ ~y ϕ(a, b, ~y)

)
ensues from ZF−, for any quantifier-free formula ϕ(a, b, ~y). Assuming that a and b satisfy
b /∈ HF ∧ ∀ ~y ϕ(a,b, ~y), one can in fact derive b′ ∈ HF ∧ ∀ ~y ϕ(a,b′, ~y) for a suitable
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a b

∅

{∅}
b1 b2 b3 bi bi+1

i arcs

Figure 6.1: The picture of a = {{∅}} and of the non-well-founded set b = {b1}, which con-
tains an infinite descending membership path {b1, b2, {b3}, b3, . . . } in its transitive closure;
the length of the membership path between bi and bi+1 is i, for any i ∈ ω. None of the
finite induced subdigraphs containing the two points a and b is extensional.

b′. It suffices for that to consider—essentially as done in the proof of Theorem 6.1.3—a
membership path starting from b and ending in a subset x of the transitive closure, t(a),
of the other set. The decoration of the digraph consisting of this path extended with t(a)
will send b (now seen as a vertex) to a hereditarily finite set b′ satisfying ∀ ~y ϕ(a,b′, ~y).

While conjecturing that a result analogous to the one just outlined holds for ZF− −
FA + AFA, we see no immediate way of generalizing the above argument to this theory:
there are in fact digraphs defeating to such an argument, e.g. the one displayed in Figure
6.1.

6.2 Infinite set models

A customary way to state the existence of an infinite set is

ι(a) ≡ ∅ ∈ a ∧ (∀x ∈ a)(∃y ∈ a)(x ∈ y).

It is plain that any well-founded set a satisfying ι(a) must be infinite. However, if we do not
assume FA, then ι(a) becomes satisfiable by the hereditarily finite hyperset Ω′ = {Ω′, ∅}.

∅

Ω′

Figure 6.2: The hyperset Ω′ = {Ω′, ∅}.

In order to have a formulation of infinity for whose working FA is immaterial, it suffices
to slightly modify ι(a):

ι̃(a) ≡ ∅ ∈ a ∧ (∀x ∈ a)(∃y ∈ a)(y = {x}).

This formulation was actually the one Zermelo gave in 1908 for the Axiom of Infinity:

Inf ≡ (∃a)ι̃(a).
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0

1

2

3

ω = {i : i = {0, . . . , i− 1}}

Figure 6.3: The set ω of natural numbers.

The reason why such an infinite set can be so easily summoned up lies in the alternation
of universal and existential quantifiers (∀x ∈ a)(∃y ∈ a), which imposes a ‘local’ condition
at every element of a. The class of ∀∗∃∗-formulae not only has the ability to express
infinity, but it actually constitutes an undecidable fragment of the first-order set-theoretic
language, even over well-founded sets [111,115].

Remaining for the moment in the well-founded setting of FA, infinity is expressible by
a BSR-formula, with only two universally quantified variables and only two free variables
[112, 113]. In order to illustrate this result, together with the machinery that pushes any
sets satisfying this formula to be infinite, let us take a step back, and consider one of the
simplest infinite set, the set ω of natural numbers, given in Figure 6.3.

In order to devise an infinitely satisfiable formula having ω as model, we can start by
observing that ω satisfies2

⋃
ω ⊆ ω,

(∀x ∈ ω)(∀y ∈ ω)(x = y ∨ x ∈ y ∨ y ∈ x).

The conjunction of these two conditions describes the structure of ω, but it is not
sufficient to push ω to be infinite. In fact, this conjunction is satisfied by any natural
number defined as above. The missing infinitary ingredient can be provided by the formula
ι(a). If one defines ιω(a) to be the conjunction of:

(i) ι(a)

(ii)
⋃
a ⊆ a

(iii) (∀x ∈ a)(∀y ∈ a)(x = y ∨ x ∈ y ∨ y ∈ x),

then we still have that ιω(ω) holds, and, as desired, any well-founded set satisfying it must
be infinite.

2The use of the union set operator
⋃

is merely for readability purposes; indeed,
⋃
a ⊆ b can be rewritten

into the BSR-formula (∀x ∈ a)(∀y ∈ x)(y ∈ b).
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ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ω0 = {ω0,j : j ∈ ω}, ω0,j = {ω1,k : 0 6 k < j},
ω1 = {ω1,j : j ∈ ω}, ω1,j = {ω0,k : 0 6 k 6 j}, ∀j ∈ ω.

Figure 6.4: Well-founded sets ω0 and ω1 satisfying ιι and ι̃ι.

Trying to replace the ∀∃-subformula ι(a) with some other purpose-built BSR-formula—
which is impossible, in light of the previous section—is a good example of the difficulties
arising when trying to capture an infinite (hyper)set by means of a set theoretic formula,
and even more so by a BSR-formula: one has to play a subtle game on keeping the formula
satisfiable, while avoiding finite satisfiability. What makes this even more interesting is
that in order to exclude finite satisfiability we reason only about finite sets—since we
proceed by contradiction—, turning our proofs into a finitarily combinatorial game.

Since this game cannot succeed in capturing ω, let us try to ‘split’ the set ω into two
parts, to be represented by the two free variables of a BSR-formula. We start again from
this intended model that we want to capture, which is made up of the disjoint sets ω1, ω0

depicted in Figure 6.4. First, notice that these also satisfy analogs of the two conditions
about ω outlined above.⋃

ω0 ⊆ ω1 ∧
⋃
ω1 ⊆ ω0,

(∀x ∈ ω0)(∀y ∈ ω1)(x ∈ y ∨ y ∈ x).

Second, it also holds that ω0 6= ω1, ω0 /∈ ω1, and ω1 /∈ ω0. It was observed in [113]
that these ∀∀-formulae suffice to obtain a formulation ιι(a, b) of infinity. Indeed, let ιι(a, b)
be the conjunction of:

(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii)
⋃
a ⊆ b ∧

⋃
b ⊆ a

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x).

Even though the above condition (i) might seem to bring little information, it turns
out to be the right substitute for ι(a). On the one hand, requiring a 6= b is tantamount to
imposing that at least one of the two sets be non-empty, in analogy to the first conjunct
of ι(a). On the other hand, requiring a /∈ b∧ b /∈ a proves to be a substitute for the second
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f0,0

f0,1

f0,2

f1,0

f1,1

f0 = {f0,j : 0 6 j 6 2}, f0,0 = ∅, f0,1 = {f1,1}, f0,2 = {f1,0},
f1 = {f1,j : 0 6 j 6 1}, f1,0 = {f0,0, f0,1}, f1,1 = {f0,0, f0,2}.

Figure 6.5: Hereditarily finite sets f0 and f1 such that ιι(f0, f1) holds; they are neither
well-founded sets, nor hypersets; the directed cycle in their membership digraph is drawn
with thick lines. Vertices f1,0 and f1,1 get decorated with the same hyperset; this is also
the case for vertices f0,1 and f0,2 [114].

conjunct of ι(a). Indeed, it can be shown that conditions (ii) and (iii) enact such a rigid
structure, that if either one of a or b satisfying ιι, say a, turned out to be finite, then
it would own an element equal to b, violating thus (ii). We will precisely formalize this
argument in the following sections.

Passing now to a setting deprived of FA, are there (hereditarily finite) non-well-founded
sets satisfying ιι(a, b)? If we simply drop the requirement that the sets be well-founded
(that is, if we place ourselves under ZF−−FA), then the answer is yes. A pair of such sets
is depicted in Figure 6.5. However, they are not also hypersets since their membership
digraphs are not hyper-extensional. Therefore, the following natural questions arise:

1. Is there a BSR-formula capturing infinity under ZF− − FA?

2. If instead of simply dropping FA, we supersede FA and EA by AFA, does ιι(a, b) still
express infinity?

Question 1 was answered positively in [114], where the driving engine forcing a and b
to be infinite was carefully distilled, by the insertion into ιι(a, b) of the new conjunct

(iv) (∀x1, x2 ∈ a)(∀y1, y2 ∈ b)(x2 ∈ y2 ∈ x1 ∈ y1 → x2 ∈ y1),

clearly derivable from (iii) when FA is assumed. Even if well-foundedness is no longer
assumed, the resulting ∀∀∀∀-formula is again satisfied by the well-founded sets ω0 and
ω1, and all sets satisfying it are infinite.

As we are about to see, an even more succinct distillate from FA is

(?) (∀y1, y2 ∈ b)(y1 ⊆ y2 ∨ y2 ⊆ y1),

which in fact follows from ιι(a, b) if the above (iv) is assumed. Although a recasting
of this formula into purely universal form seems to require four universal quantifiers, in
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1. Finite (F ) ∧G ⊆ F → Finite (G)
2. Finite (∅)
3. Finite (F ) → Finite (F ∪ {X})
4. Finite (F ) ∧ Finite (G) → Finite (F ∪G)
5. Finite (F ) → Finite ({t(x) : x ∈ F})
6. Finite (A) ∧A 6= ∅ → (∃m ∈ A)(∀ y ∈ A \ {m})(m 6⊆ y )
7. Infinite (I) ↔ ¬Finite (I)

Figure 6.6: Laws regarding finiteness and infinitude.

Section 6.2.5 we succeed in making the necessary tweaks to ιι(a, b) to produce a ∀∀∀-
formula expressing infinity independent of FA, hence lowering the number of universal
quantifiers from four to three.

Regarding Question 2, we will show that, surprisingly, under AFA we can derive (?)
from conditions (i)–(iii) and a ∩ b = ∅. Moreover, even in the non-well-founded setting of
AFA, it will turn out that all sets satisfying ιι(a, b)∧ (a∩ b = ∅) are well-founded. We also
give a ∀∀∀-formula that, under AFA, is satisfied only by infinite hypersets having all pecu-
liarities of non-well-foundedness: membership cycles and infinite descending membership
chains with no repeated elements.

6.2.1 Stating infinity

What do we mean by saying that a sentence like Inf expresses infinity? In the first place,
that we have reasons to believe it to be consistent with ZF−−FA. Taking this for granted,
there are two readings of the concept in question: one internal to ZF− − FA, and one
external, i.e. referring to the models of this theory.

Internal version: This discussion presupposes that complementary predicates
Finite (·) and Infinite (·) have been defined in a way reflecting the usual meaning of their
names and so that all laws displayed in Figure 6.6 are met in ZF− − FA; i.e., one can
derive these laws without resorting to Inf or to FA. Concerning the finiteness predicate, a
definition drawn, essentially, from [142] and well-suited for our purposes goes as follows:

Finite (X) ↔Def (∀ y ∈ P(P(X)) \ {∅}) (∃m) (y ∩ P(m) = {m}).

This states that a set X is finite if and only if each nonnull family y of subsets of X owns
an element m minimal with respect to ⊆.

Thus, Inf is an internal expression of infinity if ZF− − FA derives ¬Finite (a), hence
Infinite (a), from ι̃(a). (For Inf, the strategy to achieve this is to show that a certain set a′′

of the form {t(x) : x ∈ a′}, with a′ ⊆ a, owns no maximal element relative to ⊆; but then
¬Finite (a′′) can be derived, thanks to law 6. of Figure 6.6, and so ¬Finite (a′) by law 5.,
and therefore ¬Finite (a) by law 1.).

External version: Before shifting to the semantic level, notice that the scheme
(¬Finite (a))→ a 6⊆ {X1, . . . , Xn}, with any number n of distinct variables Xi, is derivable
from the laws 1., 2., and 3.; accordingly, all statements a 6⊆ {X1, . . . , Xn} are derivable
from ι(a). It plainly follows, for every model U = (U ,∈) of ZF−− FA, that if U |= ι̃(a) for
some a in U , then such an a will satisfy infinitely many literals x ∈ a with x in U .

Likewise, for all of our formulae ϕn, n > 2—to be introduced shortly—it can be seen
that the sentence ∃x0, . . . ,∃xn−1 ϕ

n(x0, . . . , xn−1) expresses infinity in two ways. Our
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proofs will show that ZF− (or ZF−−FA, or ZF−−FA+AFA) derives from ϕn(x0, . . . , xn−1)
that no xi can own an inclusion maximal element; but then, by laws 6. and 7., we will
have

ZF− ` (∀x0, . . . ,∀xn−1)
(
ϕn(x0, . . . , xn−1)→

n−1∧
i=0

Infinite (xi)
)
.

As is then plain, for every model U = (U ,∈) of ZF−, if U |=
∃x1, . . . ,∃xn−1 ιι(x0, x1, . . . , xn−1) holds for some x0, then infinitely many literals y ∈ x0

with y in U must be true.

In Appendix A we present a formal proof, certified correct by Referee, that any sets
satisfying the predicate Finite just defined also satisfy laws 1., 4. and 6. (blatantly, laws
2. and 3. will also hold). To increase the significance of these proofs, no recourse to FA is
made therein.

6.2.2 An apparatus for starting off an infinite well-founded spiral

Having outlined the rules of the game and the main results that will be reached, let us
place ourselves in a more general context, that of a BSR-formula involving an arbitrary
number n > 2 of free variables. We also momentarily refrain from assuming FA or AFA.
Let thus ιιn(x0, . . . , xn−1) be the generalization of ιι(a, b), obtained from the conjunction
of the following:

(i) x0 6= ∅ ∧
∧n−1
i=0

(
x(i−1) mod n /∈ xi

)
(ii)

∧n−1
i=0

(⋃
xi ⊆ x(i−1) mod n

)
(iii) (∀y0 ∈ x0, . . . ,∀yn−1 ∈ xn−1)

(∨n−1
i=0 yi ∈ y(i+1) mod n

)
To see that ιιn is satisfiable by means of well-founded sets, observe that ιιn(ω0, . . . ,ωn−1)
holds, where each ωi = {ωi,j | j ∈ ω}, and

ωi,j = {ωi−1,k : k 6 j}, if i ∈ {1, . . . , n− 1},
ω0,j = {ωn−1,k : k < j},

so that, in particular, ω0,0 = ∅. A graphical representation of sets ωi, for n = 3, is
depicted in Figure 6.7.

We now prove that, under ZF, ιιn is satisfied only by infinite sets. Our first lemma
shows that ιιn(x0, . . . , xn−1) is reminiscent of Zermelo’s formulation ι(a).

Lemma 6.2.1 Independently of FA, for any sets ω0, . . . ,ωn−1 such that
ιιn(ω0, . . . ,ωn−1) is true, the following conditions hold, for any i ∈ {0, . . . , n− 1}:

• ωi 6= ∅;

• (∀y ∈ ωi)(∃z ∈ ω(i+1) mod n)(y ∈ z).
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ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ω2,0

ω2,1

ω2,2

ω0 = {ω0,j : j ∈ ω}, ω0,j = {ω2,k : 0 6 k < j},
ω1 = {ω1,j : j ∈ ω}, ω1,j = {ω0,k : 0 6 k 6 j},
ω2 = {ω2,j : j ∈ ω}, ω2,j = {ω1,k : 0 6 k 6 j}, ∀j ∈ ω.

Figure 6.7: Well-founded sets ω0,ω1,ω2 satisfying ιι3.

Proof. As a preliminary remark, observe that

y ∈ ωi always implies ω(i−1) mod n 6⊆ y ;

for, assuming the contrary, the equality ω(i−1) mod n = y would hold because y ⊆
⋃

ωi ⊆
ω(i−1) mod n; but then ω(i−1) mod n ∈ ωi would hold, contradiction.

If some ωi were empty, given that ω0 6= ∅, we can consider a k for which ωk = ∅ and
ω(k+1) mod n 6= ∅. We can pick an element y ∈ ω(k+1) mod n and we know from the above
remark that ωk 6⊆ y, contradiction.

Let now y ∈ ωi; put yi = y. For k = 0, . . . , n − 2, by repeatedly taking into account
the initial remark, we can pick an element

y(i−k−1) mod n ∈ ω(i−k−1) mod n \ y(i−k) mod n .

In view of condition (iii) of ιιn, we have that y ∈ y(i+1) mod n ∈ ωi+1 so that z can be
taken to be y(i+1) mod n.

Our next lemma shows that if one of the free variables of ιιn is substituted by an
infinite set in order to render ιιn true, then all of them must be substituted by infinite
sets.

Lemma 6.2.2 Independently of FA, for any sets ω0, . . . ,ωn−1 such that
ιιn(ω0, . . . ,ωn−1) holds, if one ωi, i ∈ {0, . . . , n−1}, is infinite, then all of ω0, . . . ,ωn−1

are infinite.

Proof. Assuming that ωi is infinite, ω(i−1) mod n must be infinite as well, because
⋃
ωi ⊆

ω(i−1) mod n ensues from condition (ii) of ιιn. Trivially, in fact, for any set x, the finiteness
of P(x) ensues from x being finite and it holds that x ⊆ P(

⋃
x); therefore, if ω(i−1) mod n

were finite, then
⋃
ωi would be finite, P(

⋃
ωi) would be finite, and ωi would be finite.

This reasoning can be iterated to show that all of ω0, . . . ,ωn−1 are infinite.
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ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ω2,0

ω2,1

ω2,2

...

... ...

Figure 6.8: A more suggestive three-dimensional representation of the membership digraph
of Figure 6.7.

If we guarantee that for at least one of the free variables of ιιn its elements are pairwise
comparable by inclusion, as suggested by condition (?), then ιιn does become infinitely
satisfiable.

Theorem 6.2.3 Independently of FA, for any sets ω0, . . . ,ωn−1 such that the following
two conditions hold

• ιιn(ω0, . . . ,ωn−1),

• (∀y1, y2 ∈ ωn−1)(y1 ⊆ y2 ∨ y2 ⊆ y1),

we have that ω0, . . . ,ωn−1 are infinite.

Proof. Assume for a contradiction that ωn−1 is finite. From the second condition of the
hypothesis, we can consider y0 to be the ⊆-maximum element of ωn−1. From Lemma 6.2.1
we have that ωn−2 ⊆ y0. Since y0 ⊆

⋃
ωn−1 ⊆ ωn−2, we get y0 = ωn−2, contradicting

condition ωn−2 /∈ ωn−1 of ιιn.

Moreover, from Lemma 6.2.2 we get that all of ω0, . . . ,ωn−1 are infinite.

6.2.3 Infinite well-founded models under ZF, ZF − FA + AFA and ZF − FA

In this section we take a stance on whether we assume FA, or its counterpart AFA. In the
former case, even if the second condition of Theorem 6.2.3 is no longer required, infinite
satisfiability can still be guaranteed; we will give a refinement of this result is terms of
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rank. In the latter case, when employing only two free variables, the hypothesis of Theorem
6.2.3 will be met, provided that a ∩ b = ∅ holds. Therefore, basically the same ‘minimal’
expression of infinitude ιι works immaterial of whether FA, or AFA, is assumed.

Theorem 6.2.4 Under ZF, sets ωi’s for which ιιn(ω0, . . . ,ωn−1) is true always share the
same rank, which is a limit ordinal. (Consequently each ωi has an infinite cardinality.)

Proof. Lemma 6.2.1 ensures that all ωi’s are non-empty. If some ωi had a successor
rank, there would exist y ∈ ωi, having rank(y) + 1 = rank(ωi). By iterating n times the
application of Lemma 6.2.1, we will construct a membership chain starting in y and ending
in a y′ belonging to the same ωk with which we have started. Since we assume that the
membership relation is well-founded, y 6= y′ holds, and hence rank(y) < rank(y′) holds as
well, a contradiction with the maximality of rank of y.

Therefore, every ωi has a limit rank; moreover, if rank(ωi) 6= rank(ωj) could hold
for some pair i, j, then rank(ωk) < rank(ωk+1) must hold for some k, and there would
be a z ∈ ωk+1 such that rank(z) > rank(ωk), which would conflict with the inclusions
z ⊆

⋃
ωk+1 ⊆ ωk.

The previous theorem shows that, under ZF, for n = 2, the ∀∀-formula ιι(a, b) obtained
by the conjunction of the following conditions is satisfied exclusively by infinite sets.

(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii)
⋃
a ⊆ b ∧

⋃
b ⊆ a

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x).

Since the translation of the condition a 6= ∅ of ιι2(a, b) would require the introduction of
a new free variable to characterize ∅, we have modified it into a 6= b, which does imply
a 6= ∅, in light of (ii) and of (i). The infinite satisfiability of ιι(a, b) also follows directly
from Theorem 6.2.3, since (∀y1, y2 ∈ b)(y1 ⊆ y2 ∨ y2 ⊆ y1) holds, due to (iii) and to FA.

We show next that, surprisingly, under ZF − FA + AFA, essentially the same formula-
tion of infinity as in the well-founded context is satisfied exclusively by infinite well-founded
sets. Let ι̃ι(a, b) be the conjunction of ιι(a, b) with a ∩ b = ∅. In Figure 6.9 we point out
a plain consequence of AFA, which we use in our first lemma.

Lemma 6.2.5 Under ZF − FA + AFA, if ω0,ω1 are sets such that ι̃ι(ω0,ω1) is true,
then there are no infinite descending membership chains in ω0 ∪ω1.

Proof. First of all, note that for all x ∈ ω0 ∪ω1, it holds that x /∈ x, since otherwise we
would have x ∈ ω0 ∩ω1, contradicting the clause ω0 ∩ω1 = ∅ of ι̃ι(ω0,ω1).

Arguing by contradiction, suppose that the elements of C = {c0, c1, . . . } ⊆ ω0 ∪ ω1

form an infinite descending membership chain c0 3 c1 3 c2 3 · · · (so that c0 6= c1).
Consider now the set

X = { y : y ∈ ω0 ∪ω1 ∧ there exist m ∈ ω and y1, y2, . . . , ym ∈ ω0 ∪ω1

such that y 3 y1 3 y2 3 · · · 3 ym and ym ∈ C }.



Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l’Università degli Studi di Udine
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X0 = {Y0} = {X1 ∪A0} X1 = {Y1} = {X0 ∪A1}

A1 A0

Y0 Y1

If A0, A1, X0, X1, are sets such that for i = 0, 1, Xi 6= ∅, Ai /∈ Xi, and

for all y ∈ Xi, Ai ⊆ y ∧ y \Ai ⊆ Xi−1 ∧ y ∩Xi = ∅

hold, then X0,X1 are those unique sets which solve the system

X0 = {Y0}, X1 = {Y1}, Y0 = X1 ∪A0, Y1 = X0 ∪A1

of equations.

Figure 6.9: A consequence of AFA.

Then, we can apply the observation in Figure 6.9, by taking X0 = X∩ω0, X1 = X∩ω1,
and Ai = (

⋃
Xi) \X for i = 0, 1.

Indeed, the Xi’s are nonnull, as c0 ∈ X0 and c1 ∈ X1 (or vice versa). Since for any
y ∈ X, we have y ∩X 6= ∅, we deduce Ai /∈ Xi, for i = 0, 1. Let now y ∈ Xi. To see that
Ai ⊆ y, consider a z ∈ Ai such that z /∈ y. From (iii), we get y ∈ z, which implies z ∈ X,
against the choice of z. Requirement y \Ai ⊆ X1−i follows from (ii), while y ∩Xi = ∅
follows from ω0 ∩ω1 = ∅. Moreover, note that X0 ∪A1 = ω0 and that X1 ∪A0 = ω1.

Therefore, X0 = {Y0}, X1 = {Y1}, where Y0 = X1 ∪ A0, Y1 = X0 ∪ A1. Hence
Y0 = ω1 and Y1 = ω0, which, given that X0 ⊆ ω0 and X1 ⊆ ω1, entails ω1 ∈ ω0 and
ω0 ∈ ω1, which contradicts (i).

Lemma 6.2.6 Under ZF − FA + AFA, if ω0,ω1 are sets such that ι̃ι(ω0,ω1) is true,
then (∀y1, y2 ∈ ω1)(y1 ⊆ y2 ∨ y2 ⊆ y1) holds.

Proof. Arguing by contradiction, assume that y1, y2 ∈ ω1 and x1, x2 ∈ ω0 are such
that x1 ∈ y1 \ y2 and x2 ∈ y2 \ y1. By (iii), we get that there is a membership cycle
x1 ∈ y1 ∈ x2 ∈ y2 ∈ x1 in ω0 ∪ ω1, and hence also an infinite descending membership
chain (with repeated elements), contradicting Lemma 6.2.5.

Theorem 6.2.7 Under ZF − FA + AFA, if ω0,ω1 are sets such that ι̃ι(ω0,ω1) is true,
then ω0 and ω1 are infinite.

Proof. The claim follows from Theorem 6.2.3 and Lemma 6.2.6.

Passing now to ZF − FA, let ιι(a, b) be the conjunction of ιι(a, b) with the following
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X0 X1

A1 A0

c0

c2
c1

c3

y
y1

y2

z

Figure 6.10: A graphical representation of the proof of Lemma 6.2.5.

(iv) (∀x1, x2 ∈ a)(∀y1, y2 ∈ b)(x2 ∈ y2 ∈ x1 ∈ y1 → x2 ∈ y1).

Within the framework proposed in Section 6.2.2, we can easily deduce the following result
of [114] about ιι.

Theorem 6.2.8 Under ZF − FA, if ω0,ω1 are sets such that ιι(ω0,ω1) holds, then ω0

and ω1 are infinite.

Proof. By Theorem 6.2.3 it suffices to show that (∀y1, y2 ∈ ω1)(y1 ⊆ y2 ∨ y2 ⊆ y1) holds.
Assuming the contrary, we can pick y1, y2 ∈ ω, and x1 ∈ y1\y2 and x2 ∈ y2\y1. Condition
(iii) of ιι implies that y2 ∈ x1. Condition (iv) of ιι entails x2 ∈ y1, which contradicts the
choice of x2.

6.2.4 An apparatus for starting off an infinite non-well-founded spiral

Bottomless wonders spring from simple rules, repeated without end.

Benoit Mandelbrot

All the formulations of infinity seen until now are satisfied by (basically the same) well-
founded sets. This was just an isolated case, since a plethora of infinite non-well-founded
sets can be expressed by BSR-formulae, even in the presence of AFA. We start with a
formula involving an arbitrary number n > 2 of free variables, and then analyze the case
n = 2 in greater detail.

Let ιιn(x0, . . . , xn−1) be obtained from the conjunction of the following:3

(i) x0 6= ∅ ∧
∧n−1
i=0

(
x(i−1) mod n /∈ xi

)
(ii′)

∧n−2
i=0

(⋃
xi ⊆ x(i−1) mod n

)
∧
⋃
xn−1 ⊆ xn−2 ∪ xn−1

(iii) (∀y0 ∈ x0, . . . ,∀yn−1 ∈ xn−1)
(∨n−1

i=0 yi ∈ y(i+1) mod n

)
3We use the shorthand ⊆ in the context a ∈ b→ b ⊆ a with the meaning (∀x)(a ∈ b→ (x ∈ b→ x ∈ a)).
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ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ω2,0

ω2,1

ω2,2

ω0 = {ω0,i : i ∈ ω}, ω0,j = {ω2,k : 0 6 k < j},
ω1 = {ω1,i : i ∈ ω}, ω1,j = {ω0,k : 0 6 k 6 j},
ω2 = {ω2,i : i ∈ ω}, ω2,j = {ω1,k : 0 6 k 6 j} ∪ {ω2,k : k > j}, ∀j ∈ ω.

Figure 6.11: Hypersets ω0,ω1,ω2 satisfying ιι3.

(iv′) (∀y1, y2 ∈ xn−1)(y1 ∈ y2 → y2 ⊆ y1)

To see that ιιn is satisfiable by means of hypersets, observe that ιιn(ω0, . . . ,ωn−1)
holds, where each ωi = {ωi,j | j ∈ ω}, and

ω0,j = {ωn−1,k : k < j},
ωi,j = {ωi−1,k : k 6 j}, if i ∈ {1, . . . , n− 2},

ωn−1,j = {ωn−2,k : k 6 j} ∪ {ωn−1,k : k > j}.

so that, in particular, ω0,0 = ∅. We omit a proof that sets ωi are hypersets, that is,
that their membership digraphs are hyper-extensional; we will prove this fact for n = 2 in
Section 6.2.5. A graphical representation of sets ωi, for n = 3, is depicted in Figure 6.11.

The main difference between ιιn and ιιn lies in the relaxation of condition
⋃
xn−1 ⊆

xn−2 into
⋃
xn−1 ⊆ xn−2 ∪ xn−1. Once we allow membership relations to hold between

elements of xn−1, we can use them to ‘propagate’ membership relations across xn−2 and
xn−1. For example, when n = 2, condition (∀x1, x2 ∈ a)(∀y1, y2 ∈ b)(x2 ∈ y2 ∈ x1 ∈ y1 →
x2 ∈ y1) of ιι(a, b) is implied by condition (iv′) if y1 ∈ y2 holds (see Figure 6.13).

We start by laying the groundwork for a proof that ιιn is infinitely satisfiable—closely
following the proof method employed in Section 6.2.2—and then show two ways in which
the conditions governing the membership relations among elements of xn−1 can be instan-
tiated. In doing this, we will repeatedly exploit the plain consequence of AFA given in
Figure 6.14.

Lemma 6.2.9 Under ZF − FA + AFA, for any sets ω0, . . . ,ωn−1 such that
ιιn(ω0, . . . ,ωn−1) is true, (∀y ∈ ωn−1)(ωn−2 * y) holds.

Proof. Arguing by contradiction, suppose this is not the case, so that the set X = {y ∈
ωn−1 |ωn−2 ⊆ y} is nonnull. Then, by (ii′) and (iv′), we have (∀y ∈ X)(y \ωn−2 ⊆ X),
and, by (i), that (∀y ∈ X)(y ∩X 6= ∅). The observation made in Figure 6.14 implies that
X = {Ωωn−2}, contradicting the last conjunct of (ii′).
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6.2. Infinite set models 129
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Figure 6.12: A more suggestive three-dimensional representation of the membership di-
graph of Figure 6.11.

x2

x1

y2

y1

Figure 6.13: Sketch of the derivation of condition (iv) of ιι.

Lemma 6.2.10 Under ZF − FA + AFA, for any sets ω0, . . . ,ωn−1 such that
ιιn(ω0, . . . ,ωn−1) is true, the following conditions hold, for any i ∈ {0, . . . , n− 1}:

• ωi 6= ∅;

• (∀y ∈ ωi)(∃z ∈ ω(i+1) mod n)(y ∈ z).

Proof. To simplify notation, throughout this proof operations on indices are assumed to
be performed modulo n. If some ωi were empty, given that ω0 6= ∅, we can consider a k
for which ωk = ∅ and ωk+1 6= ∅; let y be an element of ωk+1. If k+ 1 6= n− 1, then, from
(ii′), y ⊆ ∅ follows, implying y = ∅ = ωk, contradicting condition (i). Otherwise, we have
that ωn−2 ⊆ y ∈ ωn−1, which contradicts Lemma 6.2.9.

Suppose now that there is some k ∈ {0, . . . , n − 1} such that (∃yk ∈ ωk)(∀z ∈
ωk+1)(yk /∈ z). We claim that, for all i = 1, . . . , n − 1, we can pick an element yk−i
such that

yk−i ∈ ωk−i and yk−i /∈ yk−i+1.
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X = {ΩA} = {X ∪A}

A

ΩA

If A,X are sets such that X 6= ∅, A /∈ X, and for all y ∈ X

A ⊆ y ∧ y \A ⊆ X ∧ y ∩X 6= ∅

holds, then X is that unique set—to be designated as {ΩA} in what follows—
which solves the equation X = {X ∪A}.

Figure 6.14: A plain consequence of AFA.

If this were not the case, then for some yk−j+1 ∈ ωk−j+1, with j ∈ {1, . . . , n − 1},
it would hold that (∀y ∈ ωk−j)(y ∈ yk−j+1), or, equivalently, ωk−j ⊆ yk−j+1. The case
k−j+1 = n−1 cannot hold, by Lemma 6.2.9; hence k−j+1 6= n−1. As

⋃
ωk−j+1 ⊆ ωk−j ,

we also have yk−j+1 ⊆ ωk−j , implying yk−j+1 = ωk−j and ωk−j ∈ ωk−j+1. This violates
condition (i).

The n-tuple y0, . . . , yk, yk+1, . . . , yn−1 violates condition

(∀y0 ∈ ω0, . . . ,∀yn−1 ∈ ωn−1)
( n−1∨
i=0

yi ∈ yi+1

)
,

of ιιn, as yk /∈ yk+1 follows from the initial assumption, in consequence of yk+1 ∈ ωk+1.

Theorem 6.2.11 Under ZF − FA + AFA, for any sets ω0, . . . ,ωn−1 such that the fol-
lowing two conditions hold

• ιιn(ω0, . . . ,ωn−1),

• (∀y1, y2 ∈ ωn−1)(y1 ⊆ y2 ∨ y2 ⊆ y1),

we have that ω0, . . . ,ωn−1 are infinite.

Proof. If ωn−2 is finite, let Y ⊆ ωn−1 be a finite set such that (∀y ∈ ωn)(∃z ∈ Y )(y ∈ z).
From Lemma 6.2.10 it follows that Y is non-empty, while the second condition of the
hypothesis guarantees that we can take y0 ∈ Y to be ⊆-maximal in Y . This entails that
ωn−2 ⊆ y0, which contradicts Lemma 6.2.9.

Let now k, 0 6 k 6 n−1, be the greatest index such that ωk is infinite, but ω(k−1) mod n

is finite. Since
⋃
ωk ⊆ ω(k−1) mod n ensues from condition (ii) of ιιn, the claim readily

follows, as in the proof of Lemma 6.2.2.



Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l’Università degli Studi di Udine
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Corollary 6.2.12 Under ZF − FA + AFA, for any sets ω0, . . . ,ωn−1 such that the fol-
lowing two conditions hold

ιιn(ω0, . . . ,ωn−1),

(v) (∀y1, y2 ∈ ωn−1)(y1 = y2 ∨ y1 ∈ y2 ∨ y2 ∈ y1)

we have that ω0, . . . ,ωn−1 are infinite.

Proof. The above condition (v), together with condition (iv′) of ιιn imply (∀y1, y2 ∈
ωn−1)(y1 ⊆ y2 ∨ y2 ⊆ y1); the claim then follows, by Theorem 6.2.11.

6.2.5 Infinite non-well-founded models under ZF − FA + AFA and ZF −
FA

We focus now on capturing non-well-founded infinity with the least number of universally
quantified variables or free variables, and propose three such ∀∀∀-formulae.

The only ∀∀ formulation of infinity in a context deprived of FA is ι̃ι given in the
Section 6.2.3, which however is satisfied exclusively by well-founded sets. This raises the
question of whether an infinite and ‘genuinely’ ill-founded set can be captured with only
two universal quantifiers; should a negative answer emerge, it would suggest the likelihood
that the decision algorithm of [16], devised for ∀∀-formulae about ordinary well-founded
sets, can be recast to cope with Aczel’s sets.

As just done in Corollary 6.2.12, our first formula requires that a membership relation
be present between any two distinct elements of xn−1. Let thus ιι1(a, b) be the conjunction
of the following sub-formulae:

(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii′)
⋃
a ⊆ b ∧

⋃
b ⊆ a ∪ b ∧ (∀y ∈ b)(y /∈ y)

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x)

(iv′) (∀x ∈ a)(∀y1, y2 ∈ b)(y1 ∈ y2 → y2 ⊆ y1)

(v) (∀y1, y2 ∈ b)(y1 = y2 ∨ y1 ∈ y2 ∨ y2 ∈ y1)

Consider now three elements x ∈ a and y1, y2 ∈ b, such that y2 ∈ x ∈ y1. Condition (v)
of ιι1(a, b) imposes a membership arc to connect y1 with y2, but tells us nothing about its
orientation. As our goal is to find formulae which have no well-founded models, it comes
natural to impose y1 ∈ y2, in order to obtain the membership cycle y2 ∈ x ∈ y1 ∈ y2.
Consequently, we introduce the formula ιι2(a, b) be obtained from ιι1(a, b) by replacing
condition (v) with:

(v′) (∀x ∈ a)(∀y1, y2 ∈ b)(y1 6= y2 ∧ y2 ∈ x ∈ y1 → y1 ∈ y2)

Notice that, analogously to the well-founded case, ω0 ∩ω1 holds by (iii) and the last
conjunct of (ii′), for any sets ω0,ω1 satisfying ιι1 or ιι2.

Theorem 6.2.13 Under ZF − FA + AFA, ιι1 and ιι2 are satisfiable.
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x1

y2

y1 x1

y2

y1

Figure 6.15: Condition (iv′) of ιι1(a, b) and of ιι2(a, b) (left). Condition (v′) of ιι2(a, b)
(right).

ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ω0 = {ω0,j : j ∈ ω}, ω0,j = {ω1,k : 0 6 k < j},
ω1 = {ω1,j : j ∈ ω}, ω1,j = {ω0,k : 0 6 k 6 j} ∪ {ω1,k : k > j}, ∀j ∈ ω.

Figure 6.16: A model of ιι1 ∧ ιι2.

Proof. A shared model ω0,ω1 for ιι1, ιι2 is shown in Figure 6.16. We claim that
ιι1(ω0,ω1) and ιι2(ω0,ω1) are true. At the outset, we will prove by induction on n that
ω0,i 6= ω1,j for all i, j ∈ {0, . . . , n}, and that ωt,i 6= ωt,j for all i, j ∈ {0, . . . , n}, i 6= j, and
t ∈ {0, 1}.

For n = 0, we have that ω0,0 6= ω1,0, as ω0,0 = ∅, and ∅ ∈ ω1,0. Supposing that
the claim is true for n, we will show that it is also true for n + 1. Since ω1,n ∈ ω0,n+1,
and since ω1,n /∈ ω0,i holds for any i ∈ {0, . . . , n}, we have that ω0,n+1 6= ω0,i for
any i ∈ {0, . . . , n}. Moreover, for any i ∈ {0, . . . , n}, ω0,n+1 differs from ω1,i, since
ω1,i ∈ ω0,n+1, but ω0,n+1 /∈ ω1,i. In a similar manner, one can check that ω1,n+1 6= ω0,i

for any i ∈ {0, . . . , n+ 1}, and that ω1,n+1 6= ω1,i for any i ∈ {0, . . . , n}.
The above statement guarantees that ω0 ∩ ω1 = ∅ and that ω0 6= ω1. Conditions

(ii′)–(v), (v′) are also satisfied by the way ω0 and ω1 were constructed. Suppose now
that there exists i ∈ ω such that ω0,i = ω1. Since ω1,i ∈ ω1 but ω1,i /∈ ω0,i, we obtain
a contradiction. Hence ω1 /∈ ω0. Similarly, supposing that there exists i ∈ ω such that
ω1,i = ω0, we observe that ω0,i+1 ∈ ω0 but ω0,i+1 /∈ ω1,i, another contradiction, leading
us to the conclusion ω0 /∈ ω1.

Even though it may seem that ιι2 is just a particular case of ιι1, in the following
proposition we show that, in fact, under ZF − FA + AFA, ιι2(a, b) holds whenever ιι1(a, b)
holds. However, the converse is not true, as testified by the two hypersets ω′0,ω

′
1—given
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X0 = {Y0} = {X1 ∪A0} X1 = {Y1} = {X0 ∪X1 ∪A1}

A1 A0

Y0 Y1

If A0, A1, X0, X1, are sets such that the following conditions hold,

• for i = 0, 1, Xi 6= ∅, Ai /∈ Xi,

• for all y ∈ X0, A0 ⊆ y, y \A0 ⊆ X1, and y ∩X0 = ∅,

• for all y ∈ X1, A1 ⊆ y, y \A1 ⊆ X1 ∪X0, and y ∩X1 6= ∅,

then X0,X1 are those unique sets which solve the system

X0 = {Y0}, X1 = {Y1}, Y0 = X1 ∪A0, Y1 = X0 ∪X1 ∪A1

of equations.

Figure 6.17: Another consequence of AFA.

in Proposition 6.2.15—, which satisfy ιι2, but without satisfying ιι1. For this, let us point
out in Figure 6.17 another plain consequence of AFA, similar to the one given for ι̃ι.

Lemma 6.2.14 Under ZF − FA + AFA, if ω0,ω1 are sets such that ιι1(ω0,ω1) is true,
then ιι2(ω0,ω1) also holds.

Proof. Let c1, c3 ∈ ω1, c1 6= c3, and c2 ∈ ω0 such that c1 ∈ c2 ∈ c3, but c3 /∈ c1. From
condition (v) of ιι1 we have c1 ∈ c3, which implies that c2 ∈ c1 holds as well, from (iv′).

Consider now the subset of elements of ω0 ∪ ω1 from which there is an alternating
membership chain between ω0 to ω1 to one of c1 or c2, that is,

X = { y : y ∈ ω0 ∪ω1 ∧ there exist m ∈ ω and y1, y2, . . . , ym ∈ ω0 ∪ω1

such that y = y0 3 y1 3 y2 3 · · · 3 ym and ym ∈ {c1, c2} and

y2k ∈ ω0 and y2k+1 ∈ ω1, or y2k ∈ ω1 and y2k+1 ∈ ω0, ∀k, 0 6 k 6 (m− 1)/2 }.

Then, we can apply the observation in Figure 6.17, by taking X0 = X ∩ ω0, X1 =
X ∩ω1, and Ai = (

⋃
Xi) \X for i = 0, 1 (thus, X0 ∪A1 = ω0 and X1 ∪A0 = ω1).

Indeed, the Xi’s are nonnull, as c2 ∈ X0 and c1 ∈ X1. Since for any y ∈ X, we have
y ∩X 6= ∅, we deduce Ai /∈ Xi, for i = 0, 1. Let now y ∈ Xi. To see that Ai ⊆ y, consider
a z ∈ Ai such that z /∈ y. From (iii), we get y ∈ z, which implies z ∈ X, against the choice
of z.
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Moreover, on the one hand, for any y ∈ X0, y \ A0 ⊆ X1 follows from (ii′), while
y ∩X0 = ∅ follows from ω0 ∩ω1 = ∅ and (ii′). On the other hand, for any y ∈ X1, also
y \A1 ⊆ X0 ∪X1 follows from (ii′). Supposing now that y ∩X1 were empty, by (v) we
get that for any z ∈ X1, y ∈ z. By Lemma 6.2.10 we get that for any v ∈ X0, there exists
z ∈ ω1 so that v ∈ z. This also entails that z ∈ X1. Therefore, by (iv′), we have X0 ⊆ y,
which entails ω0 ⊆ y. This contradicts Lemma 6.2.9.

Therefore, X0 = {Y0}, X1 = {Y1}, where Y0 = X1 ∪A0, Y1 = X0 ∪X1 ∪A1. Hence
Y0 = ω1, which, given that X0 ⊆ ω0, entails ω1 ∈ ω0, in contradiction with (i).

Proposition 6.2.15 Under ZF − FA + AFA, there exist hypersets ω′0 and ω′1 such that
ιι2(ω′0,ω

′
1) ∧ ¬ιι1(ω′0,ω

′
1)) holds.

Proof. To obtain such a model ω′0, ω
′
1 of ιι2 ∧¬ιι1, it will suffice to replace, in the model

ω0,ω1 of ιι2, vertex ω1,0 by five new vertices connected to one another as shown in Figure
6.18 (and connecting each of them with the rest of the vertices in the same way ω1,0 was
connected with). The proof of Theorem 6.2.13 can be closely followed to show that these
sets are indeed hypersets.

It can easily be seen that ιι2(ω′0, ω
′
1) is true. However, ιι1(ω′0, ω

′′
1) does not hold, since

ω3
1,0,ω

4
1,0 ∈ ω′′0 but ω3

1,0 6= ω4
1,0, ω3

1,0 /∈ ω4
1,0, and ω4

1,0 /∈ ω3
1,0, in conflict with condition

(v) of ιι1(ω′0, ω
′
1).

ω0
1,0

ω1
1,0ω2

1,0

ω3
1,0ω4

1,0

Figure 6.18: Five new vertices replacing ω1,0 in the model of ιι2 ∧ ¬ιι1.

Theorem 6.2.16 Under ZF − FA + AFA, if ω0,ω1 are sets such that either ιι1(ω0,ω1)
or ιι2(ω0,ω1) is true, then ω0 and ω1 are infinite.

Proof. We will show that the second condition of the hypothesis of Theorem 6.2.11 holds
in both cases. If ιι2(ω0,ω1) is true, then assume for a contradiction that y1, y2 ∈ ω1

and x1, x2 ∈ ω0 are such that x1 ∈ y1 \ y2 and x2 ∈ y2 \ y1. By (iii), we get y2 ∈ x1,
which by (v′) implies y1 ∈ y2, and thus y2 ⊆ y1, by (iv′). If ιι1(ω0,ω1) is true, the claim
readily follows from conditions (iv′) and (v) (and also from the above argument, in light
of Lemma 6.2.14).

Having established that any sets ω0,ω1 satisfying ιι1 or ιι2 are infinite, we are con-
cerned with characterizing their models. The following proposition, similar to a statement
in the proof of [114, Proposition 6], characterizes in more detail the structure of ιι1 and
ιι2.
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Proposition 6.2.17 Assuming that ω0 and ω1 satisfy ιι2, if X is a finite nonnull subset
of ω0 ∪ω1, then there is an element cX ∈ X such that one of the following two properties
hold:

• cX ∈ ω0 and X ∩ω1 ⊆ cX ,

• cX ∈ ω1 and X ∩ω0 ⊆ cX .

Proof. We will prove the claim by induction on the cardinality of X. If X is a singleton
the claim is clear, since ω0 ∩ω1 = ∅. Otherwise, if X ∩ω0 = ∅, then every element in X
can be taken as cX . Otherwise, pick a∗ ∈ X ∩ω0 and let X ′ = X \ {a∗}.

By the induction hypothesis applied to X ′, there is a cX′ ∈ X ′ satisfying our claim.
If cX′ ∈ ω0 and X ′ ∩ ω1 ⊆ cX′ , then, since ω0 ∩ ω1 = ∅, we have X ∩ ω1 = X ′ ∩ ω1.
Hence X ∩ω1 ⊆ cX′ and we can take cX to be cX′ . On the other hand, if cX′ ∈ ω1 and
X ′ ∩ω0 ⊆ cX′ , we have two cases: a∗ ∈ cX′ and a∗ /∈ cX′ .

In the former case, it suffices to take cX = cX′ . In the latter, since (∀x ∈ ω0)(∀y ∈
ω1)(x ∈ y ∨ y ∈ x), cX′ ∈ a∗. If ω1 ∩X ⊆ a∗, then it suffices to let cX = a∗. Otherwise
there must be a b∗ ∈ ω1 ∩ X such that b∗ /∈ a∗. Hence, as before, we have a∗ ∈ b∗.
Since b∗ 6= cX′ , from condition (v′) we have b∗ ∈ cX′ , and from condition (iv′) we get
X ′ ∩ω0 ⊆ b∗; so we can take cX = b∗.

Actually, this rich information about the structure of any model of ιι2 is enough to
provide a second proof of the fact that ιι2 (and hence, by Lemma 6.2.14, that also ιι1) is
infinitely satisfiable.

Second Proof of Theorem 6.2.16. Assume that ω0,ω1 satisfy ιι2 and that ω0 ∩ω1

is finite. From Proposition 6.2.17 applied to X = ω0 ∩ω1, we can find cX ∈ X satisfying
one of the two claims of that proposition. In the first case, due to (ii′), we have cX = ω1,
contradicting (i). In the second case, ω0 ⊆ cX contradicts Lemma 6.2.9.

To see that that all models of ιι2 are non-well-founded, let ω0 and ω1 satisfy ιι1
or ιι2. By Lemma 6.2.10, we can take y1, y2 ∈ ω1 and x ∈ ω0 such that y2 ∈ x ∈
y1. If ιι2(ω0,ω1) holds, then y1 ∈ y2 follows, which produces a membership cycle in
both TrCl(ω0) and TrCl(ω1) (transitive closures which, incidentally, due to (ii) and to
Lemma 6.2.10, coincide).

Moreover, in both models ω0,ω1 proposed for ιι1 or for ιι2 there is an infinite de-
scending membership chain in ω1 with no repeated elements. In Proposition 6.2.20 we
show that this property holds for any model of either ιι1 or ιι2, in blatant violation of FA.
The following is a preparatory lemma.

Lemma 6.2.18 If ω0 and ω1 satisfy ιι2, then for all y ∈ ω1, y ∩ω1 6= ∅.

Proof. Let y1 ∈ ω1. By Lemma 6.2.10, we can find y2 ∈ ω0 and y3 ∈ ω1 such that
y1 ∈ y2 ∈ y3. This implies, by condition (v′), that y3 ∈ y1, and hence y1 ∩ω1 6= ∅.

In the following proposition we resort to a useful variant of the transitive closure
operation: the relativized transitive closure operation, depending on a parameter b, which
sends every set s into the set TrClb(s) formed by those s′ which can reach s through
membership without ever leaving b. The following definition readjusts the earlier definition
of transitive closure to our current needs:
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Definition 6.2.19 Given sets b and s, we define TrClb(s) to be the set formed by those s′

for which there is a finite-length path

s = s0 3 · · · 3 sn+1 = s′ .∈ · · · ∈

b b

Proposition 6.2.20 If ω0 and ω1 satisfy ιι1 or ιι2 then ω1 contains an infinite descend-
ing membership chain with no repeated elements.

Proof. As ω1 is infinite (from Theorem 6.2.16), Lemma 6.2.18 implies that the set Z =
{z ∈ ω1 | z ∈ TrClω1({z})} is nonnull. Moreover, we can find a z0 ∈ Z such that for all
z ∈ Z \ {z0}, TrClω1({z0}) * TrClω1({z}). From condition (iv′) and the choice of z0, we
have that (∀y ∈ TrClω1({z0}))(y ∩ω0 = z0 ∩ω0). Additionally, (∀y ∈ TrClω1({z0})(∅ 6=
y ∩ ω1 ⊆ TrClω1({z0})), and hence z0 = Ωz0∩ω0 entailing z0 ∈ z0. This violates the
condition (∀y ∈ ω1)(y /∈ y).

For the remainder of this section, we refrain again from assuming FA or AFA. The
following formula oι—the conjunction of the subsequent four conditions—is a variation of
ιι2, so that the inclusion appearing in condition (iv′) is reversed; accordingly, (ii′) has to be
changed into (ii′′). These changes also guarantee that no further condition governing the
membership relations among elements of b has to be required. Just like for ιι, the working
of oι is immaterial of FA, or of AFA; however, this is now obtained with only three universal
quantifiers, instead of the four of ιι. Moreover, oι is satisfied only by non-well-founded
sets, since (∀y ∈ b)(y ∈ y) follows from the last conjunct of (ii′′) and from (iii).

(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii′′)
⋃

(a \ b) ⊆ b ∧
⋃
b ⊆ a ∧ b ⊆ a

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x)

(iv′′) (∀y1, y2 ∈ b)(y1 ∈ y2 → y1 ⊆ y2)

A hyperset model of oι is depicted in Figure 6.19; the proof of Theorem 6.2.13 can be
closely followed to show that these sets are indeed hypersets. Our first lemma is closely
analogous to Lemma 6.2.1.

Lemma 6.2.21 If ω0,ω1 are sets such that oι(ω0,ω1) is true, then (∀x ∈ ω0 \ω1)(∃y ∈
ω1)(x ∈ y).

Proof. Assume for a contradiction that (∀y ∈ ω1)(x0 /∈ y) holds for some x0 ∈ ω0 \ω1.
By (iii), we have that (∀y ∈ ω1)(y ∈ x0). Thus, since ω1 ⊆ x0 ⊆

⋃
(ω0 \ω1) ⊆ ω1 by

(ii′), we have x0 = ω1, contradicting ω1 /∈ ω0.

Lemma 6.2.22 If ω0,ω1 are sets such that oι(ω0,ω1) is true, then (∀y1, y2 ∈ ω1)(y1 ⊆
y2 ∨ y2 ⊆ y1).

Proof. Immediate from the conjunct ω1 ⊆ ω0 of (ii′′), (iii) and (iv′′).
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ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ω0 = {ω1,j : i ∈ ω}, ω0,j = {ω1,k : 0 6 k < j},
ω1 = {ω0,j : i ∈ ω} ∪ω0, ω1,j = {ω0,k : 0 6 k 6 j} ∪ {ω1,k : k 6 j}, ∀j ∈ ω.

Figure 6.19: Hypersets ω0 and ω1 such that oι(ω0,ω1) holds.

Lemma 6.2.23 If ω0,ω1 are sets such that oι(ω0,ω1) is true, and ω1 is finite, then
(∃y ∈ ω1)(ω1 ⊆ y).

Proof. Suppose that this were not the case, and consider y0 ∈ ω1 such that y0 ∩ω1 is
⊆-maximal. Let y1 ∈ ω1 \ y0. From (ii′′) and (iii) we get y0 ∈ y1, which implies, by (iv′′),
that y0 ⊆ y1. Likewise we have y1 ∈ y1, which contradicts the maximality of y0.

Theorem 6.2.24 Under ZF − FA, if ω0,ω1 are sets such that oι(ω0,ω1) is true, then
ω0 and ω1 are infinite.

Proof. Notice first that ω1 6= ∅, since otherwise, by (ii′′), either ω0 = ∅ or ω0 = {∅}
would hold. This contradicts (i). Now, assume for a contradiction that ω1 is finite. By
Lemma 6.2.22, let y0 stand for the ⊆-maximum element of ω1. From Lemma 6.2.21, we
have that ω0 \ω1 ⊆ y0. From Lemma 6.2.23, let y1 ∈ ω1 such that ω1 ⊆ y1. From the
maximality of y0 we have ω1 ⊆ y1 ⊆ y0, and hence ω0 ⊆ y0. Moreover, y0 ⊆

⋃
ω1 ⊆ ω0,

entailing y0 = ω0, contradicting ω0 /∈ ω1. Note that the infinitude of ω1 also implies the
infinitude of ω0, since

⋃
ω1 ⊆ ω0.

6.3 Expressiveness of the set theoretic BSR class

6.3.1 A satisfiability-preserving translation from a logical context

We argue now that the set theoretic BSR class is strictly more expressive than the logical
one. It is well-known since [126] that one can analyze the full spectrum of interpretations
modeling an L-BSR-sentence when L is an uninterpreted language with equality. That
is, given an L-BSR sentence Φ, one can determine the set SΦ of all positive integers
M such that Φ owns a model whose underlying domain has cardinality M . Ramsey’s
analysis implies that if SΦ comprises an adequately large number RΦ, then SΦ will include
all integers greater than RΦ. Our expectation, in view of the richness of a set-solution
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of a ∀∗-formula such as ι̃ι(a, b), is that SΦ can be fully described, for any given L-BSR
Φ, by a single set theoretic BSR-sentence. With this goal in mind, for the time being
we simply discuss how to perform a satisfiability-preserving translation of BSR-sentences
from an uninterpreted, purely logical context into one referring to sets. As one notices in
this exploratory phase, for a straightforward translation of this kind one can best rely on
Aczel’s hypersets.

Let us make the inessential simplifying assumption that the signature consists of a
dyadic relator % and equality, in short that L = L%; and refer by U = (U ,∈) to a model
of ZF− − FA + AFA. To convert any L%-BSR-sentence Φ into a BSR-sentence Φ̇ of the
language L∈ interpreted in U , proceed as follows. If

Φ ≡ ∃x1 · · · ∃xn ∀ y1 · · · ∀ ym ϕ(x1, . . . , xn, y1, . . . , ym) ,

then put

Φ̇ ≡ ∃ d (∃x1 ∈ d) · · · (∃xn ∈ d) (∀ y1 ∈ d) · · · (∀ ym ∈ d)

ϕ%∈(x1, . . . , xn, y1, . . . , ym) ,

where ϕ%∈ results from ϕ through uniform replacement of % by ∈.

We will now see that Φ and Φ̇ are equi-satisfiable. On the one hand, in fact, it is plain
that for any tuple d, s1, . . . , sn of sets such that the membership relations s1 ∈ d, . . . , sn ∈
d hold in U and

U |= (∀ y1 ∈ d) · · · (∀ ym ∈ d) ϕ%∈(s1, . . . , sn, y1, . . . , ym) ,

the interpreting structure M = (d, %M) with

%M = { 〈u, v〉 : u ∈ d ∧ v ∈ d ∧ u ∈ v },

enforces

M |= ∀ y1 · · · ∀ ym ϕ( s1, . . . , sn, y1, . . . , ym ) .

(To avoid that d can be void, in case n = 0 we tab Φ with a dummy existential variable
before translating it).

On the other hand, consider an interpreting structure M = (D, %M) and an n-tuple
d1, . . . ,dn of elements of D such that

M |= ∀ y1 · · · ∀ ym ϕ( d1, . . . ,dn, y1, . . . , ym ) .

Since the restriction of M to the domain {d1, . . . ,dn} gives us a model of
∀ y1, . . . ,∀ ym ϕ( d1, . . . ,dn, y1, . . . , ym ), we will assume that D = {d1, . . . ,dn}.

Associate with each u in D two sets u̇, ü subject to the following constraints:

u̇ = { ẇ : 〈w, u〉 ∈ %M} ∪ ü;

ü = {z}, where z is of cardinality #z > #D, and z ∈ HF;

the mapping u 7→ ü is injective over D, i.e., we choose different z’s for different u’s.
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Much as in the proof of Theorem 6.1.2, it should be clear that the mapping u 7→ u̇
is injective and that its images are hereditarily finite hypersets. In consequence of this
injectivity and of how the u̇’s have been constructed, it turns out that

U |= (∀ y1 ∈ d) · · · (∀ ym ∈ d) ϕ%∈(ḋ1, . . . , ḋn, y1, . . . , ym),

where d = { ḋ1, . . . , ḋn }. We conclude thus our proof of equi-satisfiability:

Lemma 6.3.1 A BSR-sentence ∃~x Ψ(~x) of L% is satisfiable if and only if for a suitable
array ~t of hereditarily finite hypersets, Ψ%

∈(~t ) is true in any model U of ZF− − FA + AFA.

Example 6.3.2 Consider the L%-BSR-sentence

Φ ≡ ∃x0∃x1∀y1∀y2

(
x0 6= x1

∧1
i=0 xi % x1−i ∧ ((x0 % y1 ∧ y1 % y2 )→ x0 % y2 )

)
.

The corresponding L∈-BSR-sentence Φ̇ defined above is:

Φ̇ ≡ ∃d ∃x0 ∈ d ∃x1 ∈ d ∀y1 ∈ d ∀y2 ∈ d
(
x0 6= x1

∧1
i=0 xi ∈ x1−i∧

((x0 ∈ y1 ∧ y1 ∈ y2 )→ x0 ∈ y2 )
)
.

As Φ̇ is satisfied by the HF-sets d,x0,x1 such that d = {x0,x1}, x0 = {x0,x1},
x1 = {∅,x0}, we conclude that Φ is satisfiable as well.

Theorem 6.3.3 The class L∈-BSR is strictly more expressive than the class L%-BSR.

Proof. On the one hand, the mapping Φ 7→ Φ̇ is a satisfiability preserving translation of
L%-BSR into L∈-BSR.

On the other hand, as seen in this chapter, there is an L∈-BSR-sentence ∃a ∃b ι̃ι(a, b)
such that the domain of any model U of ZF−−FA+AFA + ∃a ∃b ι̃ι(a, b) must have an a for
which {x ∈ U |x ∈ a} is infinite. This possibility cannot be offered by L%-BSR because, as
observed above, an n′-element structure with n′ 6 n always suffices to model a satisfiable
L%-BSR-sentence that involves n existentially quantified variables.

Our ending remark is relevant to the determination of all sizes of models of a given
L%-BSR-sentence. One can impose that the original formula Φ be satisfied in a domain
endowed with at least M elements by simply enriching Φ̇ to the effect that #d >M :

Φ̇ ≡ ∃ d (∃x1 ∈ d) · · · (∃xn+M ∈ d) (∀ y1 ∈ d) · · · (∀ ym ∈ d)(∧
n<i<j6n+M xi 6= xj ∧ ϕ%∈(x1, . . . , xn, y1, . . . , ym)

)
.

Note also that, thanks to the extensionality of set membership, all occurrences of ‘=’
can be eliminated from Φ̇ without leaving the L∈-BSR class: this ensues from the basic
combinatorial fact (cf., e.g., [100]), that for every N +1-tuple ~x of sets there is an N -tuple
~d of sets such that no two different components of ~x have the same elements inside ~d.
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6.3.2 Considerations on parsimonious sets and finite representability

I dare insinuate the following solution to this ancient problem: The Library is limitless

and periodic. If an eternal voyager were to traverse it in any direction, he would find,

after many centuries, that the same volumes are repeated in the same disorder (which,

repeated, would constitute an order: Order itself). My solitude rejoices in this elegant

hope. [21, pp. 87–88]

Looking for a model of a set-theoretic formula ϕ is looking for a needle in a haystack,
because the assignments of sets to the free variables of ϕ form a proper class: a class, in
Cantor’s metaphor, which is ‘too big’ to be a set. Chances to achieve success presuppose
necessarily, on our part, an ability to contract the search space to a set of reasonable
size—ideally, a finite set; or, if we cannot do that, a recursively enumerable infinite set.

In an effort to associate with every potential model of ϕ a finite representation belong-
ing to a finite or denumerable inventory (a finite digraph, a hereditarily finite hyperset,
or the like), we must be able in the first place to single out assignments which carry little
or no redundancy. What one shall regard as redundancy depends, of course, on which
fragment of the first-order language about sets one is analyzing: in our case this is the
collection of all BSR-formulae, which are expressive enough—as we have seen—to specify
spirals interlacing two or more infinite hypersets, but, presumably, do not have all sophis-
tication required to enter into the detailed structure of an infinite set beyond the boundary
of finite representability.

Definition 6.3.4 provided here below originates from an attempt to reduce significantly
the amount of redundancy present in the family F of set values to be associated with the
variables of ϕ. We expect that further techniques to eliminate redundancy will emerge
from forthcoming research; this is why we do not dare to speak of irreducible models as
yet, but only of ‘succinct’ models.

We now know candidate ϕ which promise to be challenging for our prospective sat-
isfiability algorithm; therefore we can contrast this definition of succinct family with the
simplest model we have been able to devise for our ιι1, ιι2. One more model has been dis-
cussed in Proposition 6.2.15, but definitely it cannot be judged succinct. For expository
purposes, we also favor formulae ιι1, ιι2 over oι, since their models have been shown to
have both ‘signs’ of non-well-foundedness: finite membership cycles and infinite descend-
ing membership chain with no repeated elements. Nevertheless, the framework we propose
onwards applies to all formulae given in this chapter.

Definition 6.3.4 (Succinct family) Let D = (V,E) be a hyper-extensional digraph; let
moreover F ⊆ V , and let H = (V ′, E′) be a vertex-induced subdigraph of D such that
F ⊆ V ′. If H is hyper-extensional, then we say that H represents (F,D).

If for any digraph H that represents (F,D), we can find a digraph H ′ which represents
(F,H) and is isomorphic to D, then we say that (F,D) is a succinct family.

In the ongoing we will exploit the notation iiω for the membership digraph of the
hyperset {ω0,ω1}, where ω0,ω1, depicted in Figure 6.16, is the shared model of ιι1 and
ιι2. In what follows we will show that ({ω0,ω1}, iiω) is a succinct family. To see this, let
us first consider an example.

Let H be the vertex-induced subdigraph of iiω whose vertices are V (H) =
TrCl({ω0,ω1}) \ {ω0,1}. Digraph H is hyper-extensional, as the removal of ω0,1 from
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V (H) could cause a collision only between ω1,0 and ω1,1. This is not the case, though;
in fact ω1,1 ∈ ω1,0, but no element of ω1,1 is bisimilar to ω1,0. Furthermore, it is easy
to see that H is not isomorphic to iiω. However, the removal of ω1,0 from the set of the
vertices of H leads us to an H ′ representing (F,H), isomorphic to iiω.

This example shows why we cannot adopt, in our non-well-founded context, a simplifi-
cation to the definition of succinctness which would be viable in the classical well-founded
universe of sets, namely: “We say that (F,D) is a succinct family if any digraph H that
represents (F,D) is isomorphic to D”.

Besides this annoyance, we have also an unpleasant paradox: unless it has either
finite cardinality or a well-founded transitive closure, a succinct family (F,D) admits
representing digraphs Hi (i ∈ ω) where odd-indexed graphs H2·i+1 are not isomorphic
to the even-indexed H2·i’s; although the (F,Hi) form a chain of strict inclusions, each
(F,H2·i+1), very much like any (F,H2·i), is a succinct family.

The following preparatory lemma states some properties of any H that represents
({ω0,ω1}, iiω), that will be used in the subsequent theorem to extract from H a digraph
isomorphic to iiω.

Lemma 6.3.5 In any H that represents ({ω0,ω1}, iiω):

(1) both sets V1−b(H) = V (H)∩ωb (b = 0, 1), where V (H) is the overall set of vertices,
are infinite;

(2) if lb = min{k ∈ ω : ωb,k ∈ V (H)} for b ∈ {0, 1}, then l0 6 l1.

Proof. Begin by observing that V (H) is infinite. If this were not the case, let, for b ∈
{0, 1}, kb = max{k ∈ ω : ωb,k ∈ V (H)}. If k0 > k1, then ω0,k0 is bisimilar to ω0;
otherwise ω1,k1 is bisimilar to ω1, contradicting the fact that H is hyper-extensional.

(1) Suppose that Vb(H) is finite, and let kb = max{k ∈ ω : ωb,k ∈ Vb(H)}. As V (H) is
infinite, there exists ω1−b,t1 and ω1−b,t2 in V1−b(H), with t1 > t2 > kb. We have reached
a contradiction, as ω1−b,t1 and ω1−b,t2 are bisimilar.

(2) If l0 > l1, then ∅ does not appear in the decoration of the vertices in V (H), hence all
the vertices are bisimilar (and bisimilar to Ω = {Ω}).

Theorem 6.3.6 ({ω0,ω1}, iiω) is a succinct family.

Proof. Let H represent ({ω0,ω1}, iiω) without being isomorphic to iiω. We will obtain a
digraph H ′ isomorphic to iiω and representing ({ω0,ω1}, H) as the outcome of a (possibly
infinite) series of ‘mending’ steps of the following kind:

As long as V0(H) has a gap t1, t2 for which t1 +1 < t2 and t1, t2 are consecutive
in the sense that {ω0,t : ω0,t ∈ V (H) | k1 < t < k2} = ∅, observe that the
corresponding subset D = {ω1,t : ω1,t ∈ V (H) | k1 6 t < k2} of V1(H) is
nonull. Keep only one of the vertices d ∈ D, while removing from V (H) all of
D \ {d}.

Plainly, the digraph H ′ which results at the end of the above mending process is
isomorphic to iiω.
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But infinity can be ‘tamed’ in the well-founded case, in the sense that if we invert
the arcs of the membership digraph of a succinct family of infinite sets meeting a BSR
specification, interpreting each sink as a distinct urelement, only finitely many hypersets
will appear in the decoration (cf. [100, Conclusions]). Our next proposition shows that the
situation with the hypersets that satisfy our novel formulae is radically different: despite
forming a succinct family, our ‘twins’ have the peculiarity that infinitely many hypersets
will occur in the decoration even after we invert membership.

Lemma 6.3.7 If one regards ω0 and ω1 as distinct urelements, the digraph iiω
−1, whose

arcs are the ones of iiω but with opposite orientation, is hyper-extensional.

Proof. At the outset, observe that ω0 6= ωb,i and ω1 6= ωb,i, for all b ∈ {0, 1} and i ∈ ω,
as ω0 are ω1 are urelements, while ωb,i contains either ω0 or ω1. Next, suppose that
there are i, j ∈ ω such that ω0,i = ω1,j . But ω0 ∈ ω0,i, while no element in ω1,j can be
equal to ω0. Hence, ωb,i = ω1−b,j , for all b ∈ {0, 1} and i, j ∈ ω.

We will now prove by induction on n > 1 that ω1,i 6= ω1,j for all i, j ∈ {0, . . . , n}, i 6= j.
For n = 1, ω1,0 ∈ ω1,1, but ω1,0 /∈ ω1,0, as all elements of ω1,0 are different from ω1,0.
For n > 1, suppose that there is an index i < n such that ω1,n = ω1,i. We easily reach
a contradiction, as ω1,i ∈ ω1,n, but, from the induction hypothesis, all elements of ω1,i

differ from ω1,i. Likewise, it can easily be seen that ω0,i 6= ω0,j for all i, j ∈ ω, i 6= j.

This lemma is another clue that the collection of satisfiable BSR formulae may require,
for hyperset theory—if decidable at all in that context—, a significantly more challenging
decision algorithm than for the standard Zermelo-Fraenkel set theory.

Nevertheless, we ‘dare insinuate’ a framework based on isomorphisms for describing
finitely the membership digraph iiω, and, possibly, any other succinct family. To illustrate
the point on our running example, call seed of iiω the set {ω0,0,ω1,0}. Consider then
the subdigraph iiω\1 = iiω[TrCl({ω0,ω1}) \ {ω0,0,ω1,0}], isomorphic to iiω. In the
isomorphism, the vertices ω0,1 and ω1,1 correspond to the vertices of the seed, and hence
they constitute the seed of the reduced digraph. If we repeat this process of elimination for
all i ∈ ω, every vertex of iiω will become isomorphic, at a certain step i ∈ ω, to one of the
vertices of the original seed. Therefore, in order to represent iiω finitely, we simply have
to indicate its (finite) seed, the arcs between the vertices of the seed, and the behavior
of the seed with respect to the other vertices (i.e., a finite symbolic representation of the
set of arcs between the vertices of the seed and the other vertices of the digraph). This
framework is independent of whether the infinite digraph we want to represent contains
cycles or not. Indeed, all formulae in this chapter are finitely represented in the same
manner.

6.3.3 Bizarre infinitude

Under the beneficent influence of the Company, our customs are saturated with chance.

The buyer of a dozen amphoras of Damascus wine will not be surprised if one of them

contains a talisman or a viper. The scribe who writes a contract almost never fails

to introduce some erroneous information. I myself, in this hasty declaration, have

falsified some splendor, some atrocity. Perhaps, also, some mysterious monotony

[· · · ] [21, pp. 71]
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We now briefly discuss two ways in which the models of the BSR-formulae considered
in this chapter can differ from the ‘standard’ ones given earlier.

Definition 6.3.8 Given a set s, we say that s is η-incremental if the following property
holds, for all x, y ∈ s:

if r = min{rank(x), rank(y)} satisfies r = %+ η (for some ordinal %),
then x<(r−η) = y<(r−η).

Proposition 6.3.9 Any sets satisfying ιιn(x0, x1, . . . , xn−1) are (n(n − 2))-incremental,
for any n > 2.

Proof. Consider the case n = 2 and let (ω0,ω1) be such that ιι2(ω0,ω1) is true. Without
loss of generality, let x, y ∈ ω1 be such that, for r = rank(x) 6 rank(y), but x<r 6= y<r.
Assume, again w.l.o.g., that there exists z ∈ x<r such that z /∈ y<r. From condition (iii),
we get y ∈ z, which contradicts that fact that rank(z) < r 6 rank(y).

ωn−1ωn−2ωn−3ωn−4ω0

y

xzr−1zr−2zr−3

zr−(n−1)

zr−nzr−n−1zr−n−2zr−n−3

zr−n−(n−1)

zr−(n−4)n−3

zr−(n−3)nzr−(n−3)n−1zr−(n−3)n−2zr−(n−3)n−3

zr−(n−3)n−(n−1)
zr−(n−2)n = z%

z

Figure 6.20: A pictorial representation of the proof of Proposition 6.3.9.

Let now n > 2 and let (ω0,ω1, . . . ,ωn−1) be such that ιιn(ω0,ω1, . . . ,ωn−1) is true.
Without loss of generality, let x, y ∈ ωn+1 be such that, for r = rank(x) 6 rank(y), there
exists an ordinal % with r = % + n(n − 2), but x<(r−n(n−2)) 6= y<(r−n(n−2)). Again, take
w.l.o.g. z ∈ ωn−2 such that z ∈ x<(r−n(n−2)), but z /∈ y<(r−n(n−2)).
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Since r = % + n(n − 2), and, for all i ∈ {0, . . . , n − 1},
⋃
ωi+1 ⊆ ωi holds by (ii),

there exist elements zr−j ∈
⋃n−1
i=0 ωi, 1 6 j 6 (n − 2)n, such that each zr−j has rank

r − j and such that x 3 zr−1, and zr−j 3 zr−(j+1), for every 1 6 j < (n− 2)n. Since this
membership chain ‘wraps around’ the n columns ω0, . . . , ωn−1, to reach a contradiction
we can consider its diagonal, that is, elements zr−in−(n−i−1) ∈ ωi (0 6 i 6 n− 3), of rank
r − in− (n− i− 1) (see Figure 6.20). The n-tuple

zr−(n−1), zr−n−(n−2), . . . , zr−(n−4)n−3, zr−(n−3)n−2, z, y

does not satisfy condition

(∀ y0 ∈ x0, . . . , yn−1 ∈ xn−1)

(
n+1∨
i=0

yi ∈ yi+1

)
of ιιn: zr−in−(n−i−1) /∈ zr−(i+1)n−(n−i−2), for all 0 6 i 6 n − 4, zr−(n−3)n−2 /∈ z, as
rank(z) < r − n(n − 2) 6 r − (n − 3)n − 2 = rank(zr−(n−3)n−2) (for n > 2), z /∈ y, and
y /∈ zr−(n−1) as rank(zr−(n−1)) < r 6 rank(y).

When trying to obtain non-succinct models for ιιn, with n > 2, one can take the
“standard” spiral model denoted (ω0, . . . ,ωn−1) of ιιn and enrich it with spurious ele-
ments, which can be later peeled off to reveal the original spiral. As any sets satisfying
ιιn(x0, x1, . . . , xn−1) are n(n − 2)-incremental, the extra elements that can be added to
the spiral cannot be very different from the ones already there. Given an element x of the
spiral of successor rank r > n(n−2), we can add an element x̃ of the same rank r, such that
x<(r−n(n−2)) = x̃<(r−n(n−2)), but there exists an element d ∈ x, r−n(n−2) 6 rank(d) < r,
such that d /∈ x̃. In this sense, the number n of free variables of ιιn is a parameter of how
many superfluous elements can be added to the spiral, and of how ‘close’ they lie to the
original ones. At the extreme end, when n = 2, there are no two elements of the same
rank in one column of the spiral, hence no extra elements can be added.

For example, for n = 4, take the model (ω0,ω1,ω2,ω3) of ιι4 and enrich it into
(ω̃0, ω̃1, ω̃2, ω̃3), by adding the extra element ω̃1,1 ∈ ω1 such that

• ω̃1,1 = {ω0,1} 6= {ω1,0,ω1,1} = ω1,1,

• for all k > 1, ω̃0,1 ∈ ω2,k.

To see that this enriched family is a model of ιι4, observe that conditions (i) and
(ii) readily hold. Moreover, any possible 4-tuple violating condition (iii) must contain
ω0,0 ∈ ω̃0 and ω̃1,1 ∈ ω̃1. However, any ω2,j ∈ ω̃2 either owns ω̃1,1 as element (for
j > 1), or it belongs to every ω3,k ∈ ω3 (for j = 0).

This enriched family is a model of ιι4, but it is not a succinct one, as removing the
vertex corresponding to ω̃1,1 from the membership digraph of TrCl(ω̃0 ∪ ω̃1 ∪ ω̃2 ∪ ω̃3),
one finds the membership digraph of the original succinct TrCl(ω0 ∪ω1 ∪ω2 ∪ω3).

Under AFA, the degree of freedom among the models of BSR-formula is markedly more
visible. Recall that the proof of Proposition 6.2.15 introduced one such non-succinct spiral
ω′0,ω

′
1 in which there were multiple elements of ω′1 having precisely the same elements in

ω0. Even more generally, it can be proved that by replacing a vertex of ω1 in the standard
model ω0,ω1 of ιι2 with the membership digraph of any hereditarily finite well-founded
set, the resulting digraph continues to be hyper-extensional and to satisfy ιι2.
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Summary of results

ZF

BSR-formula Model

ιι(a, b) ≡
(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii)
⋃
a ⊆ b ∧

⋃
b ⊆ a

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x)

• prenex prefix: ∀∀
• appeared in [112,113]

ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ιιn(x0, . . . , xn−1) ≡
(i) x0 6= ∅ ∧

∧n−1
i=0

(
xi−1 /∈ xi

)
(ii)

∧n−1
i=0

(⋃
xi ⊆ xi−1

)
(iii) (∀y0 ∈ x0, . . . , yn−1 ∈ xn−1)

(∨n−1
i=0 yi ∈ yi+1

)
• prenex prefix: ∀n

• appeared in [100]

ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ω2,0

ω2,1

ω2,2

ZF − FA + AFA

ι̃ι(a, b) ≡
(i′) a 6= b ∧ a /∈ b ∧ b /∈ a ∧ a ∩ b = ∅
(ii)

⋃
a ⊆ b ∧

⋃
b ⊆ a

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x)

• prenex prefix: ∀∀
• appeared in [105]

• all models are well-founded

ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ιι1(a, b) ≡
(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii′)
⋃
a ⊆ b ∧

⋃
b ⊆ a ∪ b ∧ (∀y ∈ b)(y /∈ y)

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x)

(iv′) (∀x ∈ a)(∀y1, y2 ∈ b)(y1 ∈ y2 → y2 ⊆ y1)

(v) (∀y1, y2 ∈ b)(y1 = y2 ∨ y1 ∈ y2 ∨ y2 ∈ y1)

• prenex prefix: ∀∀∀
• appeared in [102]

• all models have ∈-cycles and infinite descending
∈-chains

• ιι1 implies ιι2

ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2
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ZF − FA + AFA (continued)

ιι2(a, b) ≡
(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii′)
⋃
a ⊆ b ∧

⋃
b ⊆ a ∪ b ∧ (∀y ∈ b)(y /∈ y)

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x)

(iv′) (∀x ∈ a)(∀y1, y2 ∈ b)(y1 ∈ y2 → y2 ⊆ y1)

(v′) (∀x ∈ a)(∀y1, y2 ∈ b)(y1 6= y2 ∧ y2 ∈ x ∈ y1 →
y1 ∈ y2)

• prenex prefix: ∀∀∀
• appeared in [102,103]

• all models have ∈-cycles and infinite descending
∈-chains

ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ιιn(x0, . . . , xn−1) ≡
(i) x0 6= ∅ ∧

∧n−1
i=0

(
xi−1 /∈ xi

)
(ii′)

∧n−2
i=0

(⋃
xi ⊆ xi−1

)
∧
⋃
xn−1 ⊆ xn−2 ∪ xn−1

(iii) (∀y0 ∈ x0, . . . , yn−1 ∈ xn−1)
(∨n−1

i=0 yi ∈ yi+1

)
(iv′) (∀y1, y2 ∈ xn−1)(y1 ∈ y2 → y2 ⊆ y1)

(v) (∀y1, y2 ∈ xn−1)(y1 = y2 ∨ y1 ∈ y2 ∨ y2 ∈ y1)

• prenex prefix: ∀n

• appeared in [102] ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

ω2,0

ω2,1

ω2,2

ZF − FA

ιι(a, b) ≡
(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii)
⋃
a ⊆ b ∧

⋃
b ⊆ a

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x)

(iv) (∀x1, x2 ∈ a)(∀y1, y2 ∈ b)(x2 ∈ y2 ∈ x1 ∈ y1 →
x2 ∈ y1).

• prenex prefix: ∀∀∀∀
• appeared in [114] ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

oι(a, b) ≡
(i) a 6= b ∧ a /∈ b ∧ b /∈ a

(ii′′)
⋃

(a \ b) ⊆ b ∧
⋃
b ⊆ a ∧ b ⊆ a

(iii) (∀x ∈ a)(∀y ∈ b)(x ∈ y ∨ y ∈ x)

(iv′′) (∀y1, y2 ∈ b)(y1 ∈ y2 → y1 ⊆ y2)

• prenex prefix: ∀∀∀
• appeared in [105]

• all models are non-well-founded ω0,0

ω0,1

ω0,2

ω1,0

ω1,1

ω1,2

In the above, all operations on indices are modulo n.
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The topics dealt with in this thesis, under the premise “sets as graphs”, lie at the inter-
section of theoretical computer science, discrete mathematics and computational logic.

In Chapter 1 we have set up the main definitions together with the graph theoretic
interpretation of a set. In Chapter 2, we first gave recurrence relations for the number of
transitive sets with n elements, by borrowing methods from the count of acyclic digraphs.
We counted weakly extensional acyclic digraphs, by sources, by vertices of maximum rank,
and by arcs. Combinatorial enumeration of hyper-extensional acyclic digraphs remains
an open problem. However, we proposed a canonical linear order on hereditarily finite
hypersets, which extends Ackermann’s order on standard, well-founded sets. This was
done by characterizing Ackermann’s order in terms of a partition refinement procedure.
Finally, we tackled the problem of random generation of sets, by employing a Markov
chain algorithm designed for acyclic digraphs. These developments encourage a deeper
transfer of results and techniques between (acyclic) digraphs and sets. For example, a
direct ranking/unranking procedure for sets, analogous to the Prüfer code of a tree, and
its recent extension to acyclic digraphs [137], lies within reach. The notion of extensionality
of a digraph can also be expressed in terms of a novel variant of an identifying code in
a digraph (as done in Section 4.1.4); accordingly, many code-related questions can be
asked for extensional (acyclic) digraphs (see e.g. the extensive bibliography of Antoine
Lobstein [80]).

One further direction for research relates sets to descriptive complexity theory. The
existence of a logic capturing the complexity class P on finite graphs is an open problem,
and a negative answer to it would imply, by Fagin’s theorem, that P 6= NP. One class
where P is captured by a logic is the class of hyper-extensional digraphs (thus so is its
subclass of extensional acyclic digraphs) [79]. Some questions immediately pop up: Can
P be captured on weakly extensional acyclic digraphs with a bounded number of sinks?
What about r-extensional acyclic digraphs, for a fixed r?

In Chapter 3 we studied classes of sets well-quasi-ordered by a digraph immersion
relation, called strong immersion. We introduced the property of slimness, which basically
requires that every membership be necessary to ensure extensionality. Our main result is
that slim channeled digraphs with a bounded number of sources are well-quasi-ordered by
strong immersion, a claim which also comprises slim hypersets. The relation between sets
and digraph immersions that are well-quasi-orders is far from completely understood. One
direction for future research could be a study of the more general class of sets in which
every element is critical for having extensionality. One can also consider other types of
immersions, starting, for example, from an adequate generalization to digraphs of the
notion of minor for undirected graphs.

In Chapter 4 we introduced set graphs, that is, graphs which admit an extensional
acyclic orientation. One motivation for the study of set graphs lies in the graph-theoretic
expressive power of sets. We showed that deciding whether a graph is a set graph is
an NP-complete problem. This is also the case for the analogous problem of finding a
hyper-extensional orientation of a graph. Moreover, their counting variants belong to the
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complexity class #P-complete.
These complexity results show that it is unlikely that a ‘good’ characterization of

them exists. Instead, one can look for the largest hereditary class of graphs such that
every connected member of it is a set graph. It turned out that this class is obtained by
forbidding only the smallest connected graph which is not a set graph, the claw, K1,3.
Moreover, the recognition problem is expressible in monadic second order logic, and is
thus solvable in linear time on graphs of bounded tree-width.

The connection between set graphs and claw-freeness is all but superficial. On the one
hand, we identified a largest hereditary class of graphs where being a set graph is equivalent
to being claw-free. On the other hand, the claw-freeness condition can be generalized in
two ways. First, by requiring that all claws of a graph be vertex-disjoint, together with a
further polynomially-checkable connectivity condition, another subclass of set graphs was
identified. Secondly, we showed that if we forbid K1,r+2, r > 1, instead of the claw K1,3,
r-extensionality can be guaranteed.

The set interpretation of a graph led to a shorter proof of the fact that squares of
connected claw-free graphs are vertex-pancyclic, on which we reported in Chapter 5. Our
short proof directly shows this, without resorting to the general result that being Hamil-
tonian is equivalent, for squares of graphs, to being vertex-pancyclic. This framework
isolated a mathematical insight that seems to be common in reasoning about claw-free
graphs; indeed, almost for free we also got a proof of another classical result regarding the
existence of perfect matchings in connected claw-free graphs. We took advantage of the
set-theoretic flavor of these proofs to formalize them in an automated proof checker based
on sets, Referee. This endeavor turned out to require moderate formal effort: on the one
hand, we avoided explicitly defining graphs, together with an entire armamentarium of
graph-theoretic concepts; on the other hand, we exploited Referee’s built-in set manipu-
lating methods to closely reflect the two proofs. These formal proofs are presented in full
in Appendix B.

There are many directions for future work on set graphs. For example, the complexity
of set graph recognition must be further elucidated. It is relevant to study whether the
problem becomes polynomial on certain restricted inputs or if other connections between
set graphs and graphs having a fixed template of graphs as forbidden induced subgraphs
exist. What about an approximation algorithm [147] for any of its optimization variants
(asking e.g. for a weakly extensional acyclic orientation with a minimum number of sinks,
or for an r-extensional acyclic orientation with minimum r)? Moreover, if we bind certain
parameters of the input graphs, does the problem become fixed-parameter tractable [55]
(as was the case with treewidth)? In this regard, how does set graph recognition relate to
the clique-width of a graph?

Given the correspondence between the acyclic orientations and the chromatic number
of a graph, and in light of one of our results stating that every graph admits a weakly
extensional acyclic orientation, we can analogously introduce a notion of ‘set chromatic
number’ of a graph, and study, for example, ‘set perfect graphs’.

Finally, in Chapter 6, we tackled the decidability, over hypersets, of the set-theoretic
Bernays-Schönfinkel-Ramsey class consisting of all first-order formulae whose prenex form
has a purely universal prefix. Our contribution to this problem lies in a study of the
infinite sets expressible by ∀∗-formulae and in ways to represent finitely such models. On
the one hand, we showed that the simplest possible ∀∀-formula expressing infinite sets
under the assumption that membership is well-founded, also expresses infinite hypersets if
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this assumption is dropped. On the other hand, we proposed novel ∀∀∀-formulae satisfied
exclusively by infinite non-well-founded hypersets. Nevertheless, the decidability problem
of the BSR-class over hypersets remains open. One direction for further research concerns
a restriction of this problem to ∀∀-formulae, course of action also followed for well-founded
sets [16]. If no infinite and ‘genuinely’ non-well-founded hypersets can be expressed by
a ∀∀-formula, which seems to be the case, then the decidability of ∀∀-formulae, over
hypersets, should readily ensue from the above-cited result for well-founded sets [16].
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A
Finiteness: a Proof-Scenario

Checked by Referee

∥∥∥∥∥∥∥∥∥∥
In this appendix a few basic laws of the finiteness property are developed formally
with the assistance of the proof-checker Ref. To increase the significance of the
proofs that follow, we avoid exploiting von Neumann’s Foundation Axiom on the
one hand and, on the other hand, we avoid exploiting Ref’s built-in ability to
handle a predicate Finite tightly akin to our present Fin.

Def P: [Family of all subsets of a given set] PX =Def {x : x⊆ X}

Thm 23: [Monotonicity of powerset] S⊇ X→ PX ∪ {∅,X} ⊆ PS. Proof:
Suppose not(s0, x0)⇒ Auto

Set monot⇒ {x : x⊆ x0} ⊆ {x : x⊆ s0}
Use def(P)⇒ Stat1 : ∅ /∈ {x : x⊆ s0} ∨ x0 /∈ {x : x⊆ s0}

〈∅, x0〉↪→Stat1⇒ false; Discharge⇒ Qed

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Traditionally, finiteness is defined through the notion of cardinality of a set: a
set is finite if its cardinality precedes the first infinite ordinal. As a shortcut,
to begin developing an acceptable formal treatment of finiteness without much
preparatory work, we adopt here the following definition (reminiscent of Tarski’s
1924 paper “Sur les ensembles fini”): a set F is finite if every non-null family
of subsets of F owns an inclusion-minimal element. This notion can be specified
very succinctly in terms of the powerset operator.

Def Fin: [Finiteness property]
Fin(X) ↔Def 〈∀g ∈ P(PX)\ {∅} ,∃m | g ∩ Pm = {m} 〉

Thm 24: [Monotonicity of finiteness] Y ⊇ X & Fin(Y)→ Fin(X). Proof:
Suppose not(y0, x0)⇒ Auto
〈y0, x0〉↪→T23 (?)⇒ Py0 ⊇ Px0

Use def(Fin)⇒ Stat1 : ¬〈∀g ∈ P(Px0)\ {∅} ,∃m | g ∩ Pm = {m} 〉 &

〈∀g′ ∈ P(Py0)\ {∅} ,∃m | g′ ∩ Pm = {m} 〉
〈Py0,Px0〉↪→T23 (?)⇒ P(Py0)⊇ P(Px0)
〈g0, g0〉↪→Stat1(Stat1?)⇒ ¬〈∃m | g0 ∩ Pm = {m} 〉 & 〈∃m | g0 ∩ Pm = {m} 〉

Discharge⇒ Qed
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Thm 26a: [Finiteness of the union of two finite sets]
Fin(X) & Fin(Y)→ Fin(X ∪ Y). Proof:

Suppose not(x0, y0)⇒ Auto∥∥∥∥∥∥
Arguing by contradiction, suppose that finite sets x0 and y0 exist whose union is
not finite. Then a non-null set g0 formed by subsets of x0 ∪ y0 exists which has
no minimal element with respect to inclusion.

Use def(Fin)⇒ Stat1 : ¬〈∀g ∈ P
(
P(x0 ∪ y0)

)
\ {∅} ,∃m | g ∩ Pm = {m} 〉 &

Stat2 : 〈∀g′ ∈ P(Px0)\ {∅} ,∃m | g′ ∩ Pm = {m} 〉 &

Stat3 : 〈∀gq ∈ P(Py0)\ {∅} ,∃m | gq ∩ Pm = {m} 〉
〈g0〉↪→Stat1⇒ Stat4 : ¬〈∃m | g0 ∩ Pm = {m} 〉 & g0 ∈ P

(
P(x0 ∪ y0)

)
&

Stat4a : g0 6= ∅∥∥∥∥ Indicate by g1 the set of all intersections x0 ∩ v with v ranging over g0. Since g0

is non-null, g1 is non-null either.

Loc def ⇒ Stat5 : g1 = {x0 ∩ v : v ∈ g0}
〈a〉↪→Stat4a(Stat4?)⇒ a ∈ g0

Suppose⇒ Stat6 : x0 ∩ a /∈ {x0 ∩ v : v ∈ g0}
〈a〉↪→Stat6(Stat4?)⇒ false; Discharge⇒ Stat7 : x0 ∩ a ∈ g1∥∥∥∥ Therefore, since we have supposed x0 to be finite and since g1 is formed by subsets

of x0, g1 must have a minimal element m1.

Suppose⇒ g1 /∈ P(Px0)
Use def(P)⇒ Stat8 : g1 /∈ {y : y ⊆ {z : z⊆ x0}}
〈g1〉↪→Stat8(Stat8?)⇒ Stat9 : g1 6⊆ {z : z⊆ x0}
〈x1〉↪→Stat9(Stat5,Stat9?)⇒ Stat10 : x1 ∈ {x0 ∩ v : v ∈ g0} &

x1 /∈ {z : z⊆ x0}
〈v1, x0 ∩ v1〉↪→Stat10(Stat10?)⇒ false; Discharge⇒ Auto
〈g1〉↪→Stat2(Stat7?)⇒ Stat11 : 〈∃m | g1 ∩ Pm = {m} 〉
〈m1〉↪→Stat11(Stat11?)⇒ g1 ∩ Pm1 = {m1}∥∥∥∥∥∥

Indicate by g2 the set of all intersections y0 ∩ v, with v ranging over those elements
of g0 whose intersection with x0 is m1. Since g0 must have at least one such
element, g2 is not null.

Loc def ⇒ Stat12 : g2 = {y0 ∩ v : v ∈ g0 | x0 ∩ v = m1}
Suppose⇒ Stat13 : {y0 ∩ v : v ∈ g0 | x0 ∩ v = m1} = ∅

ELEM⇒ Stat14 : m1 ∈ {x0 ∩ v : v ∈ g0}
〈v0〉↪→Stat14⇒ Auto

〈v0〉↪→Stat13(Stat14?)⇒ false; Discharge⇒ Auto∥∥∥∥ Therefore, as we have supposed y0 to be finite, and taking into account that g2

consists of subsets of y0, g2 must have a minimal element m2.

Suppose⇒ Stat15 : g2 /∈ P(Py0)
Use def(P)⇒ Stat16 : g2 /∈ {y : y ⊆ {z : z⊆ y0}}
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〈g2〉↪→Stat16(Stat16?)⇒ Stat17 : g2 6⊆ {z : z⊆ y0}
〈x2〉↪→Stat17(Stat12,Stat17?)⇒ Stat18 : x2 ∈ {y0 ∩ v : v ∈ g0 | x0 ∩ v = m1} &

x2 /∈ {z : z⊆ y0}
〈v2, y0 ∩ v2〉↪→Stat18(Stat18?)⇒ false; Discharge⇒ Auto
〈g2〉↪→Stat3(Stat11?)⇒ Stat19 : 〈∃m | g2 ∩ Pm = {m} 〉
〈m2〉↪→Stat19(Stat19?)⇒ g2 ∩ Pm2 = {m2}

∥∥∥∥∥∥∥
We will prove that m1 ∪ m2 is minimal in g0, which contradicts our initial as-
sumption. We begin by observing that m1 ∪ m2 belongs to g0, as it coincides
with an element w0 of g0 which has intersection m1 with x0 and intersection m2

with y0.

(Stat12?)ELEM⇒ Stat20 : m2 ∈ {y0 ∩ v : v ∈ g0 | x0 ∩ v = m1}
〈w0〉↪→Stat20(Stat20,Stat4?)⇒ m2 = y0 ∩ w0 & w0 ∈ g0 & x0 ∩ w0 = m1 &

g0 ∈ P
(
P(x0 ∪ y0)

)
Use def(P)⇒ Stat21 : g0 ∈ {y : y ⊆ {z : z⊆ x0 ∪ y0}}
〈y1〉↪→Stat21(Stat20?)⇒ Stat22 : w0 ∈ {z : z⊆ x0 ∪ y0}
〈z1〉↪→Stat22(Stat20?)⇒ w0 = m1 ∪ m2∥∥∥∥∥∥

Since w0 is not minimal in g0, indicate by w1 a strict subset of its that belongs
to g0; accordingly, it will turn out that either x0 ∩ w1 is a strict subset of x0 ∩ w0

or y0 ∩ w1 is a strict subset of y0 ∩ w0.

〈w0,w0〉↪→T23 (Stat20?)⇒ w0 ∈ g0 ∩ Pw0

〈w0〉↪→Stat4(Stat22?)⇒ Stat23 : g0 ∩ Pw0 6⊆ {w0}
Use def(Pw0)⇒ Auto
〈w1〉↪→Stat23(Stat23?)⇒ Stat24 : w1 ∈ {y : y ⊆ w0} & w1 6= w0 & w1 ∈ g0

〈y2〉↪→Stat24(Stat20?)⇒ w1 ⊆ w0 & x0 ∩ w1 6= m1 ∨ y0 ∩ w1 6= m2∥∥∥∥ Consider first the case x0 ∩ w1 6= x0 ∩ w0. One easily sees that such an element
violating the minimality of m1 = x0 ∩ w0 in g1 would lead us to a contradiction.

Suppose⇒ x0 ∩ w1 6= m1

Suppose⇒ x0 ∩ w1 /∈ g1

EQUAL 〈Stat5〉⇒ Stat25 : x0 ∩ w1 /∈ {x0 ∩ v : v ∈ g0}
〈w1〉↪→Stat25(Stat24,Stat24?)⇒ false; Discharge⇒ Auto
Use def(Pm1)⇒ Auto
(Stat11?)ELEM⇒ Stat26 : x0 ∩ w1 /∈ {z : z⊆ m1}
〈x0 ∩ w1〉↪→Stat26(Stat20?)⇒ false

Discharge⇒ Stat27 : x0 ∩ w1 = m1 & y0 ∩ w1 6= m2

∥∥∥∥∥∥∥
Consider next the case y0 ∩ w1 6= y0 ∩ w0 whereas x0 ∩ w1 = x0 ∩ w0. In this case
the minimality of m2 = y0 ∩ w0 in g2 would be violated; now there is no way out
of the conflict and we get the conclusion we were after with our argument by
contradiction.

Suppose⇒ y0 ∩ w1 /∈ g2

EQUAL 〈Stat12〉⇒ Stat28 : y0 ∩ w1 /∈ {y0 ∩ v : v ∈ g0 | x0 ∩ v = m1}
〈w1〉↪→Stat28(Stat24,Stat27?)⇒ false; Discharge⇒ Auto
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Use def(Pm2)⇒ Auto
(Stat19?)ELEM⇒ Stat29 : y0 ∩ w1 /∈ {z : z⊆ m2}

〈y0 ∩ w1〉↪→Stat29(Stat20?)⇒ false; Discharge⇒ Qed

Thm 33: [Every finite non-null set totally ordered by inclusion owns a maximum]
Fin(F) & F 6= ∅ & 〈∀x ∈ F, y ∈ F | x⊆ y ∨ y ⊆ x〉→ 〈∃m ∈ F,∀x ∈ F | x⊆ m〉. Proof:

Suppose not(f)⇒ Stat0 : 〈∀x ∈ f, y ∈ f | x⊆ y ∨ y ⊆ x〉 & Fin(f) & f 6= ∅ &

¬〈∃m ∈ f,∀x ∈ f | x⊆ m〉

∥∥∥∥∥∥∥
Arguing by contradiction, suppose that f is a counterexample to our claim.
Thanks to the finiteness of f, from among all non-null subsets of f which are
totally ordered by inclusion but devoid of maximum (one such set being f itself),
we can choose a minimal one, f0.

Loc def ⇒ Stat1 : g =
{

f ′ ⊆ f | f ′ 6= ∅ & 〈∀x ∈ f ′, y ∈ f ′ | x⊆ y ∨ y ⊆ x〉 &

¬〈∃m ∈ f ′,∀x ∈ f ′ | x⊆ m〉
}

Suppose⇒ g /∈ P(Pf)\ {∅}
Suppose⇒ ∅= g

(Stat1?)ELEM⇒ Stat2 : f /∈
{

f ′ ⊆ f | f ′ 6= ∅ &

〈∀x ∈ f ′, y ∈ f ′ | x⊆ y ∨ y ⊆ x〉 & ¬〈∃m ∈ f ′,∀x ∈ f ′ | x⊆ m〉
}

〈f〉↪→Stat2(?)⇒ false; Discharge⇒ Auto
Use def(P)⇒ Stat3 : g /∈ {g′ : g′ ⊆ {f ′ : f ′ ⊆ f}}
Set monot⇒

{
f ′ : f ′ ⊆ f | f ′ 6= ∅ & 〈∀x ∈ f ′, y ∈ f ′ | x⊆ y ∨ y ⊆ x〉 &

¬〈∃m ∈ f ′,∀x ∈ f ′ | x⊆ m〉
}
⊆ {f ′ : f ′ ⊆ f}

〈g〉↪→Stat3(Stat1?)⇒ false; Discharge⇒ Auto
Use def(Fin)⇒ Stat4 : 〈∀g ∈ P(Pf)\ {∅} ,∃m | g ∩ Pm = {m} 〉 & g ∈ P(Pf)\ {∅}
〈g, f0〉↪→Stat4(Stat4?)⇒ Stat5 : g ∩ Pf0 = {f0}

∥∥∥∥Obviously f0 is not a singleton; hence, arbitrarily picking a0 from f0, we will have
that f1 = f0\ {a0} is non-null and totally ordered by inclusion.

(Stat1,Stat5?)ELEM⇒ Stat6 :
f0 ∈

{
f ′ ⊆ f | f ′ 6= ∅ & 〈∀x ∈ f ′, y ∈ f ′ | x⊆ y ∨ y ⊆ x〉 & ¬〈∃m ∈ f ′,∀x ∈ f ′ | x⊆ m〉

}
〈 〉↪→Stat6(Stat6?)⇒ Stat7 : 〈∀x ∈ f0, y ∈ f0 | x⊆ y ∨ y ⊆ x〉 & Stat8 : f0 6= ∅ &

Stat9 : ¬〈∃m ∈ f0,∀x ∈ f0 | x⊆ m〉 & f0 ⊆ f
〈a0, a0〉↪→Stat8(Stat7?)⇒ Stat10 : ¬〈∀x ∈ f0 | x⊆ a0〉 & a0 ∈ f0
〈a2〉↪→Stat10(Stat5?)⇒ Stat11 : a2 ∈ f0 & a2 6⊆ a0 &

f0\ {a0} 6= ∅ & f0\ {a0} 6= f0 & f0\ {a0} /∈ g ∩ Pf0
Suppose⇒ f0\ {a0} /∈ Pf0

Use def(P)⇒ Stat12 : f0\ {a0} /∈ {f ′ : f ′ ⊆ f0}
〈f0\ {a0} 〉↪→Stat12(Stat12?)⇒ false; Discharge⇒ Auto
(Stat1?)ELEM⇒ Stat13 : f0\ {a0} /∈

{
f ′ ⊆ f | f ′ 6= ∅ &

〈∀x ∈ f ′, y ∈ f ′ | x⊆ y ∨ y ⊆ x〉 & ¬〈∃m ∈ f ′,∀x ∈ f ′ | x⊆ m〉
}

Set monot⇒ 〈∀x ∈ f0, y ∈ f0 | x⊆ y ∨ y ⊆ x〉→
〈∀x ∈ f0\ {a0} , y ∈ f0\ {a0} | x⊆ y ∨ y ⊆ x〉
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∥∥∥∥∥∥
But then, considering that a1 owns a maximum and that a0, a1 can be compared
by inclusion, the one of the two which includes the other must be the maximum
of f0: this gives us the desired contradiction.

〈f0\ {a0} 〉↪→Stat13(Stat7?)⇒ Stat14 : 〈∃m ∈ f0\ {a0} ,∀x ∈ f0\ {a0} | x⊆ m〉
〈a1〉↪→Stat14(Stat14?)⇒ Stat15 : 〈∀x ∈ f0\ {a0} | x⊆ a1〉 & a1 ∈ f0\ {a0}
〈a0, a1〉↪→Stat7(Stat10,Stat15?)⇒ a0 ⊆ a1 ∨ a1 ⊆ a0

Suppose⇒ Stat16 : a1 ⊆ a0

〈a2〉↪→Stat15(Stat11,Stat16?)⇒ false; Discharge⇒ Stat17 : a0 ⊆ a1

〈a1〉↪→Stat9(Stat15,Stat15?)⇒ Stat18 : ¬〈∀x ∈ f0 | x⊆ a1〉 &

〈∀x ∈ f0\ {a0} | x⊆ a1〉
〈a3, a3〉↪→Stat18(Stat17?)⇒ false; Discharge⇒ Qed

Thm 34: [Every finite non-null set owns a maximal element with respect to inclusion]
Fin(F) & F 6= ∅→ 〈∃m ∈ F,∀x ∈ F |m⊆ x→ m = x〉. Proof:

Suppose not(f)⇒ Stat0 : f 6= ∅ & Fin(f) & Stat1 : ¬〈∃m ∈ f,∀x ∈ f |m⊆ x→ m = x〉∥∥∥∥∥∥∥∥
Arguing by contradiction, suppose that f is a counterexample to our claim.
Thanks to the finiteness of f, from among all strict subsets y of f whose com-
plements relative to f are totally ordered by inclusion (one such set being any
f\ {a} with a ∈ f), we can choose a minimal one, y0.

Loc def ⇒ Stat2 : g =
{

y ⊆ f | y 6= f & 〈∀u ∈ f\y, v ∈ f\y | u⊆ v ∨ v ⊆ u〉
}

Suppose⇒ g /∈ P(Pf)\ {∅}
Suppose⇒ ∅= g
〈a〉↪→Stat0(Stat2?)⇒ Stat3 :

f\ {a} /∈
{

y ⊆ f | y 6= f & 〈∀u ∈ f\y, v ∈ f\y | u⊆ v ∨ v ⊆ u〉
}

& a ∈ f
〈f\ {a} 〉↪→Stat3(Stat3?)⇒ Stat4 :
¬〈∀u ∈ f\(f\ {a}), v ∈ f\(f\ {a}) | u⊆ v ∨ v ⊆ u〉

〈u, v〉↪→Stat4(Stat3?)⇒ false; Discharge⇒ Auto
Use def(P)⇒ Stat5 : g /∈ {g′ : g′ ⊆ {y : y ⊆ f}}
Set monot⇒

{
y : y ⊆ f | y 6= f & 〈∀u ∈ f\y, v ∈ f\y | u⊆ v ∨ v ⊆ u〉

}
⊆

{y : y ⊆ f}
〈g〉↪→Stat5(Stat2?)⇒ false; Discharge⇒ Auto
Use def(Fin)⇒ Stat6 : 〈∀g ∈ P(Pf)\ {∅} ,∃m | g ∩ Pm = {m} 〉 & g ∈ P(Pf)\ {∅}
〈g, y0〉↪→Stat6(Stat6?)⇒ Stat7 : g ∩ Py0 = {y0}∥∥∥∥∥∥∥∥

Since f\y0 is a subset of f, it is finite; since it is totally ordered by inclusion, f\y0

must (thanks to our preceding lemma) own a maximum; moreover, since such
maximum m0 cannot be maximal in f, there must exist an m1 ∈ f an m1 which
strictly includes m0.

(Stat2,Stat7?)ELEM⇒ Stat8 :
y0 ∈

{
y ⊆ f | y 6= f & 〈∀u ∈ f\y, v ∈ f\y | u⊆ v ∨ v ⊆ u〉

}
〈 〉↪→Stat8(Stat8?)⇒ Stat9 :

〈∀u ∈ f\y0, v ∈ f\y0 | u⊆ v ∨ v ⊆ u〉 & y0 ⊆ f & y0 6= f
〈f, f\y0〉↪→T24 (Stat0,Stat0?)⇒ Fin(f\y0)
〈f\y0〉↪→T33 (Stat9?)⇒ Stat10 : 〈∃m ∈ f\y0,∀x ∈ f\y0 | x⊆ m〉
〈m0〉↪→Stat10(Stat10?)⇒ Stat11 : 〈∀x ∈ f\y0 | x⊆ m0〉 & m0 ∈ f\y0
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〈m0〉↪→Stat1(Stat11?)⇒ Stat12 : ¬〈∀x ∈ f |m0 ⊆ x→ m0 = x〉
〈m1〉↪→Stat12(Stat12?)⇒ m1 ∈ f & m0 ⊆ m1 & m0 6= m1∥∥∥∥∥∥∥∥

Obviously m1 belongs to y0, and therefore f\(y0\ {m1}) = f\y0 ∪ {m1} turns out
to be totally ordered by inclusion. Consequently, y0\ {m1} is a strict subset y0 of
f whose complement relative to f is totally ordered by inclusion, which contradicts
the supposed minimality of y0.

Suppose⇒ Stat13 : y0\ {m1} /∈ {z : z⊆ y0}
〈y0\ {m1} 〉↪→Stat13(Stat13?)⇒ false; Discharge⇒ Auto
Use def(Py0)⇒ Auto
〈m1〉↪→Stat11(Stat2?)⇒ Stat14 :

y0\ {m1} /∈
{

y ⊆ f | y 6= f & 〈∀u ∈ f\y, v ∈ f\y | u⊆ v ∨ v ⊆ u〉
}

&

f\(y0\ {m1}) = f\y0 ∪ {m1} & f\(y0\ {m1}) = f\y0 ∪ {m1}
〈y0\ {m1} 〉↪→Stat14(Stat9?)⇒

¬〈∀u ∈ f\(y0\ {m1}), v ∈ f\(y0\ {m1}) | u⊆ v ∨ v ⊆ u〉
EQUAL 〈Stat14〉⇒ Stat15 :

¬〈∀u ∈ f\y0 ∪ {m1} , v ∈ f\y0 ∪ {m1} | u⊆ v ∨ v ⊆ u〉
〈u0, v0〉↪→Stat15(Stat15?)⇒ Stat16 :

u0, v0 ∈ f\y0 ∪ {m1} & u0 6⊆ v0 & v0 6⊆ u0

〈u0, v0〉↪→Stat9(Stat16?)⇒ u0 = m1 ∨ v0 = m1

〈u0〉↪→Stat11(Stat12?)⇒ u0 = m1

〈v0〉↪→Stat11(Stat12?)⇒ false; Discharge⇒ Qed
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Proof-Scenario Checked by Referee

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

This scenario contains the formal proofs, checked by J. T. Schwartz’s proof-verifier
Referee, of two classical results on connected claw-free graphs; namely, that any
such graph:
• owns a perfect matching if its number of vertices is even,

• has a Hamiltonian cycle in its square if it owns three or more vertices.
The original proofs (cf. [141, 148] and [81]) referred to undirected graphs,

the ones to be presented refer to a special class of digraphs whose vertices are
hereditarily finite sets and whose edges reflect the membership relation. Ours is
a legitimate change of perspective in the light of [86], as we will briefly explain
at the end.

To make our formal development self-contained, we proceed from the bare
set-theoretic foundation built into Ref (cf. [133]). The lemmas exploited without
proof in what follows are indeed very few, and their full proofs are available
in [133].

B.1 Basic laws on the union-set global operation

Def unionset: [Members of members of a set]
⋃

X =Def {u : v ∈ X, u ∈ v}

∥∥∥∥ The proof of the following claim, that the union set of a set s is the set-theoretic
‘least upper bound’ of all its elements, can be found in [133, p. 387].

Thm 2: [l.u.b.] (X ∈ S→ X⊆
⋃

S) & (〈∀y ∈ S | y ⊆ X〉→
⋃

S⊆ X).
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Theory imageOfDoubleton
(
f(X), x0, x1

)
End imageOfDoubleton

Enter theory imageOfDoubleton

Thm imageOfDoubleton: [Image of an ‘elementary set’]
{f(v) : v ∈ ∅} = ∅ & {f(v) : v ∈ {x0}} = {f(x0)} &

{f(v) : v ∈ {x0, x1}} = {f(x0), f(x1)} . Proof:
Suppose not()⇒ Auto∥∥∥∥∥∥∥∥∥∥∥∥

Ref has the built-in ability to reduce {f(v) : v ∈ ∅} to ∅ and {f(v) : v ∈ {x0}}
to {f(x0)}; hence we are left with only the doubleton to consider. Let c belong
to one of {f(v) : v ∈ {x0, x1}} and {f(x0), f(x1)} but not to the other. After
excluding, through variable-substitution, the case c /∈ {f(v) : v ∈ {x0, x1}},
we easily exclude both possibilities c = f(x0) and c = f(x1), through variable-
substitution and equality propagation.

SIMPLF⇒ Stat1 : {f(v) : v ∈ {x0, x1}} 6= {f(x0), f(x1)}
〈c〉↪→Stat1⇒ c ∈ {f(v) : v ∈ {x0, x1}} 6= c ∈ {f(x0), f(x1)}
Suppose⇒ Stat2 : c /∈ {f(v) : v ∈ {x0, x1}}
〈x0〉↪→Stat2⇒ Auto
〈x1〉↪→Stat2⇒ Auto

Discharge⇒ Stat3 : c ∈ {f(v) : v ∈ {x0, x1}} & c /∈ {f(x0), f(x1)}
〈x′〉↪→Stat3⇒ x′ ∈ {x0, x1} & f(x′) 6= f(x0) & f(x′) 6= f(x1)
Suppose⇒ x′= x0

EQUAL⇒ false; Discharge⇒ x′= x1

EQUAL⇒ false; Discharge⇒ Qed

Enter theory Set theory
Display imageOfDoubleton

Theory imageOfDoubleton
(
f(X), x0, x1

)
{f(v) : v ∈ ∅} = ∅ & {f(v) : v ∈ {x0}} = {f(x0)} &

{f(v) : v ∈ {x0, x1}} = {f(x0), f(x1)}
End imageOfDoubleton

Thm 2a: [
⋃

of double-/single-tons] Z = {X,Y}→
⋃

Z = X ∪ Y. Proof:
Suppose not(z0, x0, y0)⇒ Auto∥∥∥∥Under the assumption that z0 = {x0, y0} &

⋃
z0 6= x0 ∪ y0 can hold, two citations

of Theorem 2 enable us to get x0 ⊆
⋃

z0 and y0 ⊆
⋃

z0 from z0 = {x0, y0}.

〈x0, z0〉↪→T2 ⇒ Auto
〈y0, z0〉↪→T2 ⇒ Auto∥∥∥∥∥A third citation of the same Theorem 2 enables us to derive from

⋃
z0 6= x0 ∪ y0

that some element of z0 = {x0, y0} is not included in x0 ∪ y0, which is manifestly
absurd.

〈x0 ∪ y0, z0〉↪→T2⇒ Stat1 : ¬〈∀y ∈ z0 | y ⊆ x0 ∪ y0〉
〈v〉↪→Stat1⇒ v ∈ {x0, y0} & v 6⊆ x0 ∪ y0
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(Stat1?)Discharge⇒ Qed

Thm 2b: [Union of union]
⋃⋃

X =
⋃
{
⋃

y : y ∈ X} . Proof:
Suppose not(x0)⇒ Auto

Use def(
⋃

)⇒ {z : y ∈ {u : v ∈ x0, u ∈ v} , z ∈ y} 6=
{s : r ∈ {

⋃
y : y ∈ x0} , s ∈ r}

SIMPLF⇒ Stat1 : {z : v ∈ x0, u ∈ v, z ∈ u} 6= {s : y ∈ x0, s ∈
⋃

y}
〈z0〉↪→Stat1⇒ Stat2 : z0 ∈ {z : v ∈ x0, u ∈ v, z ∈ u} 6=

z0 ∈ {s : y ∈ x0, s ∈
⋃

y}
Suppose⇒ Stat3 : z0 ∈ {z : v ∈ x0, u ∈ v, z ∈ u} &

z0 /∈ {s : y ∈ x0, s ∈
⋃

y}
Use def(

⋃
v0)⇒ Auto

〈v0, u0, z, v0, z0〉↪→Stat3(Stat2?)⇒
Stat4 : z0 /∈ {z : u ∈ v0, z ∈ u} & v0 ∈ x0 & u0 ∈ v0 & z0 ∈ u0

〈u0, z0〉↪→Stat4(Stat4?)⇒ false
Discharge⇒ Stat5 : z0 ∈ {s : y ∈ x0, s ∈

⋃
y}

Use def(
⋃

y0)⇒ Auto
〈y0, s0〉↪→Stat5(Stat5?)⇒ Stat6 : z0 ∈ {s : u ∈ y0, s ∈ u} & y0 ∈ x0

〈u1, s1〉↪→Stat6(Stat5,Stat2?)⇒
Stat7 : z0 /∈ {z : v ∈ x0, u ∈ v, z ∈ u} & z0 ∈ u1 & u1 ∈ y0

〈y0, u1, z0〉↪→Stat7(Stat6?)⇒ false; Discharge⇒ Qed

Thm 2c: [Additivity and monotonicity of monadic union]⋃
(X ∪ Y) =

⋃
X ∪

⋃
Y & (Y ⊇ X→

⋃
Y ⊇

⋃
X). Proof:

Suppose not(x0, y0)⇒ Auto
Suppose⇒

⋃
(x0 ∪ y0) 6=

⋃
x0 ∪

⋃
y0

〈 {x0, y0} 〉↪→T2b ⇒
⋃⋃
{x0, y0} =

⋃
{
⋃

v : v ∈ {x0, y0}}
APPLY 〈 〉 imageOfDoubleton

(
f(X) 7→

⋃
X, x0 7→ x0, x1 7→ y0

)
⇒

{
⋃

v : v ∈ {x0, y0}} = {
⋃

x0,
⋃

y0}
〈 {x0, y0} , x0, y0〉↪→T2a ⇒

⋃
{x0, y0} = x0 ∪ y0

〈 {⋃x0,
⋃

y0} ,
⋃

x0,
⋃

y0〉↪→T2a ⇒
⋃
{
⋃

x0,
⋃

y0} =
⋃

x0 ∪
⋃

y0

EQUAL⇒ false
Discharge⇒

⋃
(x0 ∪ y0) =

⋃
x0 ∪

⋃
y0 & y0 = x0 ∪ y0 &

⋃
y0 6⊇

⋃
x0

EQUAL⇒
⋃

y0 =
⋃

x0 ∪
⋃

y0

Discharge⇒ Qed

Thm 2e: [Union of adjunction]
⋃

(X ∪ {Y}) = Y ∪
⋃

X. Proof:
Suppose not(x0, y0)⇒ Stat0 :

⋃
(x0 ∪ {y0}) 6= y0 ∪

⋃
x0

〈a〉↪→Stat0⇒ a ∈
⋃

(x0 ∪ {y0}) 6= a ∈ y0 ∪
⋃

x0∥∥∥∥∥∥∥∥∥∥
Arguing by contradiction, let x0, y0 be a counterexample, so that in either one of⋃

(x0 ∪ {y0}) and y0 ∪
⋃

x0 there is an a not belonging to the other set. Taking
the definition of

⋃
into account, by monotonicity we must exclude the possibility

that a ∈
⋃

x0\
⋃

(x0 ∪ {y0}); through variable-substitution, we must also discard
the possibility that a ∈

⋃
(x0 ∪ {y0})\

⋃
x0\y0.

Set monot⇒ {u : v ∈ x0, u ∈ v} ⊆ {u : v ∈ x0 ∪ {y0} , u ∈ v}
Suppose⇒ Stat1 : a ∈ {u : v ∈ x0 ∪ {y0} , u ∈ v} &
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160 B. Connected Claw-Free Graphs: a Proof-Scenario Checked by Referee

a /∈ {u : v ∈ x0, u ∈ v} & a /∈ y0

〈v0, u0, v0, u0〉↪→Stat1⇒ false; Discharge⇒ Auto
Use def(

⋃
)⇒ Stat2 : a /∈ {u : v ∈ x0 ∪ {y0} , u ∈ v} & a ∈ y0∥∥∥ The only possibility left, namely that a ∈ y0\

⋃
(x0 ∪ {y0}), is also manifestly

absurd. This contradiction leads us to the desired conclusion.

〈y0, a〉↪→Stat2⇒ false; Discharge⇒ Qed

B.2 Transitive sets

Def transitivity: [Transitive set] Trans(T) ↔Def {y ∈ T | y 6⊆ T} = ∅

Thm 3a: [Transitive sets include their unionsets] Trans(T)↔ T⊇
⋃

T.
Suppose not(t)⇒ Auto

Use def(
⋃

t)⇒ Auto
Use def

(
Trans(t)

)
⇒ Auto

Suppose⇒ Stat1 : t 6⊇
⋃

t & Trans(t)
〈c〉↪→Stat1(?)⇒ Stat2 : c ∈ {u : v ∈ t, u ∈ v} &

{y ∈ t | y 6⊆ t} = ∅ & c /∈ t
〈v, u, v〉↪→Stat2(Stat2?)⇒ false; Discharge⇒ t⊇

⋃
t & ¬Trans(t)

Use def(Trans)⇒ Stat3 : {y ∈ t | y 6⊆ t} 6= ∅ & t⊇ {u : v ∈ t, u ∈ v}
Loc def ⇒ a = arb(d\t)
〈d〉↪→Stat3(Stat3)⇒

Stat4 : a /∈ {u : v ∈ t, u ∈ v} & d ∈ t & a ∈ d & a /∈ t
〈d, a〉↪→Stat4(Stat4?)⇒ false; Discharge⇒ Qed

Thm 3b: [Incomparable elements x, z of a transitive set t]
Trans(T) & X,Z ∈ T & X /∈ Z & Z /∈ X→ X⊆ T\ {X,Z} . Proof:
Suppose not(t, x, z)⇒ Auto
〈t〉↪→T3a ⇒ Stat1 : t = t ∪ {z} ∪ {x} &

⋃
t 6⊇ x ∪ (z ∪

⋃
t)

〈t ∪ {z} , x〉↪→T2e ⇒ Auto
〈t, z〉↪→T2e ⇒ Auto

EQUAL 〈Stat1〉⇒ false; Discharge⇒ Qed

Thm 3c: [For a transitive set, elements are also subsets]
Trans(T) & X ∈ T→ X⊆ T. Proof:
Suppose not(t, x)⇒ Auto
〈t, x, x〉↪→T3b ⇒ Auto

Discharge⇒ Qed

Thm 3d: [Trapping phenomenon for trivial sets]
Trans(S) & X,Z ∈ S & X /∈ Z & Z /∈ X & S\ {X,Z} ⊆ {∅, {∅}}→

S⊆ {∅, {∅} , {{∅}} , {∅, {∅}}} . Proof:
Suppose not(s, x, z)⇒ Auto
〈s, x, z〉↪→T3b ⇒ x⊆ {∅, {∅}}
〈s, z, x〉↪→T3b ⇒ z⊆ {∅, {∅}}

Discharge⇒ Qed
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∥∥∥Any strict subset of a transitive set t, owns a subset in t which does not belong
to it.

Thm 4a: [Peddicord’s lemma] Trans(T) & Y ⊆ T &

Y 6= T & A = arb(T\Y) → A⊆ Y & A ∈ T\Y. Proof:
Suppose not(t, y, a)⇒ Auto
〈t, a〉↪→T3c ⇒ a⊆ t

Discharge⇒ Qed

Thm 4b: [∅ belongs to any transitive t 6= ∅, so does {∅} if t 6⊆ {∅}, etc.]
Trans(T) & N ∈ {∅, {∅} , {∅, {∅}}} & T 6⊆ N→

N⊆ T &
(
N ∈ T ∨ (N = {∅, {∅}} & {{∅}} ∈ T)

)
. Proof:

Suppose not(t, n)⇒ Auto∥∥∥∥∥∥
The ‘(?)’ context restriction in the following three steps serves to hide the se-
mantics of arb: which, to the limited extent necessary here, has been captured
by the preceding Peddicord’s lemma.

〈t, ∅,arb(t\∅) 〉↪→T4a(?)⇒ ∅ ∈ t
〈t, {∅} ,arb(t\ {∅}) 〉↪→T4a(?)⇒ {∅} ∈ t

〈t, {∅, {∅}} ,arb(t\ {∅, {∅}}) 〉↪→T4a(?)⇒ false; Discharge⇒ Qed

Thm 4c: [Source removal does not disrupt transitivity]
Trans(S) & S⊇ T & (S\T) ∩

⋃
S = ∅→ Trans(T). Proof:

Suppose not(s, t)⇒ Auto
Use def(Trans)⇒ Stat1 : {y ∈ t | y 6⊆ t} 6= ∅ & {y ∈ s | y 6⊆ s} = ∅∥∥∥∥∥∥∥∥∥∥

Assuming that s is transitive, that t equals s deprived of some sources and that
t is not transitive, there must be an element y of t which is not a subset of t, so
that a z ∈ y exists which does not belong to t. Due to the transitivity of s, y is
included in s and hence z belongs to s; hence, under the assumption that s\t and⋃

s are disjoint, z does not belong to
⋃

s.

〈y, y〉↪→Stat1⇒ Stat2 : y 6⊆ t & y ∈ s & y ⊆ s
Use def(

⋃
s)⇒ Auto

〈z〉↪→Stat2⇒ Stat3 : z /∈ {u : v ∈ s, u ∈ v} & z ∈ y

‖However, this is untenable.

〈y, z〉↪→Stat3⇒ false; Discharge⇒ Qed

B.3 Basic laws on the finitude property∥∥∥∥∥∥∥∥∥∥
To begin developing an acceptable treatment of finiteness without much prepara-
tory work, we adopt here the definition (reminiscent of Tarski’s 1924 paper “Sur
les ensembles fini”): a set F is finite if every non-null family of subsets of F owns
an inclusion-minimal element. This notion is readily specified in terms of the
power-set operator, as follows:

Def P: [Family of all subsets of a given set] PS =Def {x : x⊆ S}

Def Fin: [Finitude] Finite(F) ↔Def 〈∀g ∈ P(PF)\ {∅} ,∃m | g ∩ Pm = {m} 〉
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∥∥∥∥∥∥
The lemma on the monotonicity of finitude and the Theory of finite induction
displayed below are proved in full—together with various other laws on finiteness
which we will not need here—in [133, pp. 405–407].

Thm 24: [Monotonicity of finitude] Y ⊇ X & Finite(Y)→ Finite(X).

Theory finiteInduction
(
s0,P(S)

)
Finite(s0) & P(s0)

⇒ (finΘ)
〈∀S | S⊆ finΘ→ Finite(S) &

(
P(S)↔ S = finΘ

)
〉

End finiteInduction

B.4 Some combinatorics of the union-set operation

Thm 31d: [Unionset of ∅ and {∅}] Y ⊆ {∅}↔
⋃

Y = ∅. Proof:
Suppose not(x0)⇒ Auto

Use def(
⋃

x0)⇒ Auto
Suppose⇒ x0 ⊆ {∅}

ELEM⇒ Stat1 : {z : y ∈ x0, z ∈ y} 6= ∅
〈y0, z1〉↪→Stat1⇒ false

Discharge⇒ Stat2 : x0 6⊆ {∅} & {z : y ∈ x0, z ∈ y} = ∅
〈y1, y1,arb(y1) 〉↪→Stat2⇒ false; Discharge⇒ Qed

Thm 31e: [Unionset of a set obtained through single removal]⋃
(X\ {Y})⊇

⋃
X\Y &

⋃
X⊇

⋃
(X\ {Y}). Proof:

Suppose not(x, y)⇒ Auto
〈x\ {y} , x〉↪→T2c(?)⇒ Stat1 :

⋃
(x\ {y}) 6⊇

⋃
x\y

〈c〉↪→Stat1(Stat1?)⇒ Stat2 : c ∈
⋃

x\y & c /∈
⋃

(x\ {y})
Use def(

⋃
)⇒ Stat3 : c ∈ {u : v ∈ x, u ∈ v} &

c /∈ {u : v ∈ x\ {y} , u ∈ v} & c /∈ y
〈v0, u0, v0, u0〉↪→Stat3(Stat3?)⇒ false; Discharge⇒ Qed

Thm 31f : [Unionset, after a removal followed by two adjunctions]⋃
M⊇ P & Q ∪ R = P ∪ S→

⋃
(M\ {P} ∪ {Q,R}) =

⋃
M ∪ S. Proof:

Suppose not(m, p, q, r, s)⇒ Auto
TELEM⇒ m\ {p} ∪ {q} ∪ {r} = m\ {p} ∪ {q, r}
EQUAL⇒

⋃
(m\ {p} ∪ {q} ∪ {r}) =

⋃
(m\ {p} ∪ {q, r})

〈m\ {p} , q〉↪→T2e ⇒ Auto
〈m\ {p} ∪ {q} , r〉↪→T2e(?)⇒

⋃
(m\ {p} ∪ {q, r}) =

⋃
(m\ {p}) ∪ (p∪s)

〈m, p〉↪→T31e(?)⇒ false; Discharge⇒ Qed

Thm 31g: [Incomparability of pre-pivotal elements]
Y ∈ X & X ∈ Z & X,Z ∈ S→ Y ∈

⋃
(S ∩

⋃
S). Proof:

Suppose not(y, x, z, s)⇒ y ∈ x & x ∈ z & x, z ∈ s & y /∈
⋃

(s ∩
⋃

s)
Use def(

⋃
)⇒ Stat1 : y /∈ {v : u ∈ s ∩

⋃
s, v ∈ u}

Use def(
⋃

s)⇒ Auto
〈x, y〉↪→Stat1(?)⇒ Stat2 : x /∈ {t : w ∈ s, t ∈ w}
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〈z, x〉↪→Stat2(?)⇒ false; Discharge⇒ Qed

∥∥∥∥ Preparatory to a technique to which we will resort for extending perfect match-
ings, we introduce the following trivial combinatorial lemma:

Thm 31h: [Less-one lemma for unionset]⋃
M = T\ {C} & S = T ∪ X ∪ {V} &

(
Y = V ∨ (C = Y & Y ∈ S)

)
→

〈∃d |
⋃

(M ∪ {X ∪ {Y}}) = S\ {d} 〉. Proof:
Suppose not(m, t, c, s, x, v, y)⇒ Stat0 : ¬〈∃d |

⋃
(m ∪ {x ∪ {y}}) = s\ {d} 〉&⋃

m = t\ {c} & s = t ∪ x ∪ {v} &
(
y = v ∨ (c = y & y ∈ s)

)∥∥∥∥∥∥∥∥∥
For, supposing the contrary,

⋃
(m ∪ {x ∪ {y}}) would differ from each of s\ {s},

s\ {c}, and s\ {v}, the first of which equals s. Thanks to Theorem 2e, we can
rewrite

⋃
(m ∪ {x ∪ {y}}) as x ∪ {y} ∪

⋃
m; but then the decision algorithm for

a fragment of set theory known as ‘multi-level syllogistic with singleton’ yields
an immediate contradiction.
〈s〉↪→Stat0⇒

⋃
(m ∪ {x ∪ {y}}) 6= s

〈c〉↪→Stat0⇒
⋃

(m ∪ {x ∪ {y}}) 6= s\ {c}
〈v〉↪→Stat0⇒

⋃
(m ∪ {x ∪ {y}}) 6= s\ {v}

〈m, x ∪ {y} 〉↪→T2e ⇒ Auto
EQUAL⇒ Stat1 : x ∪ {y} ∪

⋃
m 6= s\ {c} &

x ∪ {y} ∪
⋃

m 6= s\ {v} & x ∪ {y} ∪
⋃

m 6= s
(Stat0,Stat1)Discharge⇒ Qed

Thm 32: [Finite, non-null sets own sources]
(
Finite(F) & F 6= ∅, → (F\

⋃
F 6= ∅)

)
. Proof:

Suppose not(f1)⇒ Auto

∥∥∥∥Arguing by contradiction, suppose that there are counterexamples to the claim.
Then, exploiting finite induction, we can pick a minimal counterexample, f0.

APPLY 〈finΘ : f0〉 finiteInduction
(
s0 7→ f1,P(S) 7→ (S 6= ∅ & S\

⋃
S = ∅)

)
⇒

Stat0 : 〈∀s | s⊆ f0→ Finite(s) & (s 6= ∅ & s\
⋃

s = ∅↔ s = f0)〉
Loc def ⇒ a = arb(f0)
〈f0〉↪→Stat0⇒ Stat1 : Finite(f0) & a ∈ f0 & f0\

⋃
f0 = ∅

∥∥∥∥∥∥∥∥
Momentarily supposing that f0 = {a}, one gets

⋃
f0 6⊆ a, because

⋃
f0 ⊆ a would

imply f0\
⋃

f0 ⊇ {a}\a and hence would imply the emptiness of {a}\a, whence
the manifest absurdity a ∈ a follows. But, on the other hand,

⋃
{a} ⊆ a trivially

holds; therefore we must exclude that f0 is a singleton {a}.
Suppose⇒ f0 = {a} &

⋃
f0 6⊆ a

EQUAL⇒
⋃
{a} 6⊆ a

Use def(
⋃

)⇒ {u : v ∈ {a} , u ∈ v} 6⊆ a
SIMPLF⇒ false; Discharge⇒ Auto

∥∥∥∥∥∥
Due to our minimality assumption, the strict non-null subset f0\ {arb(f0)} of
f0 cannot be a counterexample to the claim; therefore it has sources and hence
f0\
⋃

(f0\ {arb(f0)}) 6= ∅.
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Figure B.1: The forbidden orientations of a claw in a claw-free set.

〈f0\ {a} , a〉↪→T2e (?)⇒
⋃

(f0\ {a} ∪ {a}) =
⋃

(f0\ {a}) ∪ a & f0\ {a} ∪ {a} = f0
〈f0\ {a} 〉↪→Stat0(?)⇒ f0\

⋃
(f0\ {a}) 6= ∅∥∥∥∥∥∥

Since arb(f0) does not intersect f0, the inequality just found conflicts with the
equality f0\

(⋃
(f0\ {arb(f0)}) ∪ arb(f0)

)
= ∅ which one gets from Theorem 2e

through equality propagation.

EQUAL⇒ f0\
(⋃

(f0\ {a}) ∪ a
)

= ∅ & a = arb(f0)
Discharge⇒ Qed

B.5 Claw-free, transitive sets and their pivots∥∥∥∥∥∥
A claw is defined to be a pair Y,F such that (1) F has at least three elements,
(2) no element of F belongs to any other element of F, (3) either Y belongs to all
elements of F or there is a W in Y such that Y belongs to all elements of F\ {W}.

Def claw: [Pair forming a claw, perhaps endowed with more than 3 el’ts]

Claw(Y,F) ↔Def F ∩
⋃

F = ∅ & 〈∃x, z,w | F⊇ {x, z,w} &

x 6= z & w /∈ {x, z} & {w} ∩ Y ⊇ {v ∈ F | Y /∈ v} 〉∥∥∥∥∥∥
To really interest us, a claw-free set must be transitive: we omit this requirement
in the definition given here below, but we will make it explicit in the major
theorems pertaining to claw-freeness.

Def clawFreeness: [Claw-freeness in a membership digraph]
ClawFree(S) ↔Def 〈∀y ∈ S, e⊆ S |¬Claw(y, e)〉

Thm clawFreenessa: [Subsets of claw-free sets are claw-free]
ClawFree(S) & T⊆ S→ ClawFree(T). Proof:
Suppose not(s, t)⇒ Auto

Use def(ClawFree)⇒ Stat1 : ¬〈∀y ∈ t, e⊆ t |¬Claw(y, e)〉 &

〈∀y ∈ s, e⊆ s |¬Claw(y, e)〉
〈y, e, y, e〉↪→Stat1(?)⇒ false; Discharge⇒ Qed

Thm clawFreenessb: [Any potential claw must have a bypass]
ClawFree(S) & S⊇ {Y,X,Z,W} & Y ∈ X ∩ Z &

W ∈ Y & X /∈ Z ∪ {Z} & Z /∈ X→W ∈ X ∪ Z. Proof:
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Suppose not(s, y, x, z,w)⇒ Auto
Use def(ClawFree)⇒ Stat0 : 〈∀y ∈ s, e⊆ s |¬Claw(y, e)〉 &

x /∈ w & z /∈ w & x /∈ z & w /∈ x & w /∈ z &

z /∈ x & x 6= z & w ∈ y & y ∈ x ∩ z
Loc def ⇒ Stat1 : e = {x, z,w}
Use def

(
Claw(y, e)

)
⇒ Auto

〈y, e〉↪→Stat0(Stat1?)⇒ ¬
(

e ∩
⋃

e = ∅ & 〈∃x, z,w | e⊇ {x, z,w} &

x 6= z & w /∈ {x, z} & {w} ∩ y ⊇ {v ∈ e | y /∈ v} 〉
)

EQUAL⇒
⋃

e =
⋃
{x, z,w}

Suppose⇒ Stat2 : e ∩
⋃

e 6= ∅
Use def(

⋃
e)⇒ Auto

〈c〉↪→Stat2(?)⇒ Stat3 : c ∈ {u : v ∈ e, u ∈ v} & c ∈ e
〈v0, u0〉↪→Stat3(Stat1,Stat1?)⇒ Stat4 : v0, c ∈ {x, z,w} & c ∈ v0

(Stat0,Stat4?)Discharge⇒ Stat5 : 〈∃x, z,w | e⊇ {x, z,w} & x 6= z &

w /∈ {x, z} & {w} ∩ y ⊇ {v ∈ e | y /∈ v} 〉
〈x, z,w〉↪→Stat5(Stat0?)⇒ Stat6 : {w} ∩ y 6⊇ {v ∈ e | y /∈ v}
〈d〉↪→Stat6(Stat6?)⇒ Stat7 : d ∈ {v ∈ e | y /∈ v} & d /∈ {w} ∩ y
〈 〉↪→Stat7(Stat1,Stat1?)⇒ Stat8 : d ∈ {x, z,w} & y /∈ d

(Stat0,Stat8,Stat7?)Discharge⇒ Qed

Theory pivotsForClawFreeness(s0)
ClawFree(s0) & Finite(s0) & Trans(s0)
s0 6⊆ {∅}

End pivotsForClawFreeness

Enter theory pivotsForClawFreeness

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

By way of first approximation, we want to select from each finite transitive set
s not included in {∅} a ‘pivotal pair’ consisting of an element x of maximum
rank in s and an element y of maximum rank in x. To avoid introducing the
recursive notion of rank of a set, we slightly generalize the idea: for any set s
(not necessarily finite or transitive) we define the frontier of s to consist of those
elements x of s which own elements y belonging to s such that the length of no
membership chain issuing from y, ending in s, and contained in s ever exceeds 2.
Any element y which is thus related to an element x of the frontier of s will be
called a pivot of s.

Def frontier: [Frontier of a set] front(S) =Def {x ∈ S | x ∩ S\
⋃

(S ∩
⋃

S) 6= ∅}

Thm frontier1: [Non-trivial finite sets have a non-null frontier]
Finite(S ∩

⋃
S) & S ∩

⋃
S 6= ∅→ front(S) 6= ∅. Proof:

Suppose not(s)⇒ Auto
〈s ∩ ⋃s〉↪→T32 ⇒ Stat1 : s ∩

⋃
s\
⋃

(s ∩
⋃

s) 6= ∅
Use def(

⋃
s)⇒ Auto

〈y〉↪→Stat1⇒ Stat2 : y ∈ {u : v ∈ s, u ∈ v} & y ∈ s & y /∈
⋃

(s ∩
⋃

s)
Use def

(
front(s)

)
⇒ Auto
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〈x, u〉↪→Stat2⇒
Stat3 : x /∈ {x1 ∈ s | x1 ∩ s\

⋃
(s ∩

⋃
s) 6= ∅} & x ∈ s & y ∈ x

〈x〉↪→Stat3⇒ false; Discharge⇒ Qed

∥∥∥∥∥∥
Our next claim is that if we choose a pivot element y of a transitive set s from
an element of the frontier of s, then removal of all predecessors of y from s leads
to a transitive set t such that y is a source of t.

Thm frontier2: [Transitivity-preserving reduction of a transitive set]
Trans(S) & X ∈ front(S) & Y ∈ X\

⋃⋃
S & T = {z ∈ S | Y /∈ z}→

Trans(T) & T⊆ S & X /∈ T & Y ∈ T\
⋃

T. Proof:
Suppose not(s, x, y, t)⇒ Auto∥∥∥∥∥Arguing by contradiction, let s, x, y, t be a counterexample to the claim. Taking
the definition of t into account to exploit monotonicity, we readily get t⊆ s and
x ∈ t.

Set monot⇒ {z ∈ s | y /∈ z} ⊆ {z : z ∈ s}
Suppose⇒ Stat0 : x ∈ {z ∈ s | y /∈ z}
〈 〉↪→Stat0⇒ false; Discharge⇒ x /∈ t∥∥∥∥Now taking the definition of front into account, we can simplify our initial as-

sumption to the following:

Use def(front)⇒ Stat1 : x ∈ {x′ ∈ s | x′ ∩ s\
⋃

(s ∩
⋃

s) 6= ∅}
〈 〉↪→Stat1⇒ Trans(s) & x ∈ s & x ∩ s\

⋃
(s ∩

⋃
s) 6= ∅ & y ∈ x\

⋃⋃
s &

t = {z ∈ s | y /∈ z} & Trans(s) & ¬
(
Trans(t) & y ∈ t\

⋃
t
)

∥∥∥∥∥∥
Since s is transitive, if t were not transitive then by Theorem 4c s\t would have
an element z not being a source of s. But then y would belong to z ∈

⋃
s, which

conflicts with y being a pivot.

Suppose⇒ ¬Trans(t)
〈s, t〉↪→T4c ⇒ Stat2 : (s\t) ∩

⋃
s 6= ∅

Use def(
⋃

s)⇒ Auto
〈z〉↪→Stat2⇒ Stat3 : z ∈ {u′ : w′ ∈ s, u′ ∈ w′} &

z /∈ {z′ ∈ s | y /∈ z′} & z ∈ s
〈v, a, z〉↪→Stat3(Stat3?)⇒ y ∈ z & z ∈ v & v ∈ s
Use def

(⋃⋃
s
)
⇒ Auto

EQUAL 〈Stat1〉⇒ y /∈ {u : w ∈ {u′ : w′ ∈ s, u′ ∈ w′} , u ∈ w}
SIMPLF⇒ Stat4 : y /∈ {u : w′ ∈ s,w ∈ w′, u ∈ w}

〈v, z, y〉↪→Stat4(Stat1?)⇒ false; Discharge⇒ y ∈
⋃

t ∨ y /∈ t∥∥∥∥Now knowing that Trans(t), we must consider the other possibility, namely that
y /∈ t\

⋃
t. However, after expanding t and

⋃
t according to their definitions, . . .

Use def(
⋃

t)⇒ Auto
Use def

(
Trans(s)

)
⇒ Auto

EQUAL⇒ Stat5 : {y ∈ s | y 6⊆ s} = ∅ &(
y ∈ {u : v ∈ {z ∈ s | y /∈ z} , u ∈ v} ∨ y /∈ {z ∈ s | y /∈ z}

)
‖ . . . we see that neither one of the possibilities y ∈

⋃
t, y /∈ t is tenable.
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〈x〉↪→Stat5(Stat1?)⇒ y ∈ s
SIMPLF⇒ Stat6 : y ∈ {u : v ∈ s, u ∈ v | y /∈ v} ∨ y /∈ {z ∈ s | y /∈ z}

〈w, u, y〉↪→Stat6(Stat5?)⇒ false; Discharge⇒ Qed

Def clawFreenessfrontEl: [Frontier el’t of a claw-free transitive non-trivial set]
xΘ =Def arb(front(s0))

Def clawFreenesspivotEl: [Pivotal el’t of a claw-free transitive non-trivial set]
yΘ =Def arb(xΘ\

⋃⋃
s0)

Thm clawFreenessc: [xΘ truly belongs to the frontier of s0]
xΘ ∈ front(s0) & xΘ\

⋃⋃
s0 6= ∅ & xΘ ∈ s0. Proof:

Suppose not()⇒ Auto
Assump⇒ Stat0 : ClawFree(s0) & Finite(s0 ∩

⋃
s0) & Trans(s0) &

s0 6⊆ {∅}
〈s0〉↪→T3a ⇒ s0 ∩

⋃
s0 =

⋃
s0

〈s0〉↪→T31d ⇒ s0 ∩
⋃

s0 6= ∅
〈s0〉↪→T frontier1 ⇒ Stat1 : front(s0) 6= ∅
Use def

(
front(s0)

)
⇒ Auto

Use def(xΘ)⇒ Stat2 : xΘ ∈ {x ∈ s0 | x ∩ s0\
⋃

(s0 ∩
⋃

s0) 6= ∅} &

xΘ ∈ front(s0)
〈 〉↪→Stat2(Stat2?)⇒ xΘ ∈ s0 & xΘ\

⋃
(s0 ∩

⋃
s0) 6= ∅

EQUAL⇒ false; Discharge⇒ Qed∥∥∥∥ Pivotal elements, in a transitive claw-free set such as the one treated in this
Theory, own at most two predecessors.

Thm clawFreeness0: [Pivots own at most two predecessors]
Y ∈ X\

⋃⋃
s0 & X ∈ s0→ 〈∃z ∈ s0 | {v ∈ s0 | Y ∈ v} = {X, z} & Y ∈ z〉.

Suppose not(y, x)⇒ Stat1 :¬〈∃z ∈ s0 | {v ∈ s0 | y ∈ v} = {x, z} & y ∈ z〉
& x ∈ s0 & y ∈ x\

⋃⋃
s0∥∥∥∥ Suppose that y, x constitute a counter-example, so that y has, in addition to x,

at least two predecessors z and w in s0.

Suppose⇒ Stat2 : x /∈ {v ∈ s0 | y ∈ v}
〈x〉↪→Stat2(?)⇒ false; Discharge⇒ Auto
〈x〉↪→Stat1(?)⇒ Stat3 : {v ∈ s0 | y ∈ v} 6= {x}
〈z〉↪→Stat3(?)⇒ Stat4 : z ∈ {v ∈ s0 | y ∈ v} & x 6= z
〈 〉↪→Stat4(Stat4?)⇒ Stat5 : z ∈ s0 & y ∈ z
〈z〉↪→Stat1(?)⇒ Stat6 : {v ∈ s0 | y ∈ v} 6= {z, x}
〈w〉↪→Stat6(?)⇒ Stat7 : w ∈ {v ∈ s0 | y ∈ v} & w /∈ {x, z}
〈 〉↪→Stat7(Stat7?)⇒ Stat8 : w ∈ s0 & y ∈ w
Loc def ⇒ e = {x, z,w}
Suppose⇒ Stat9 : {v ∈ e | y /∈ v} 6= ∅
〈v〉↪→Stat9(?)⇒ false; Discharge⇒ Auto∥∥∥∥ The transitivity of s0, since y ∈ x and x ∈ s0, implies that y ∈ s0; therefore, in

view of the claw-freeness of s0, y and e = {x, z,w} do not form a claw.

Assump⇒ ClawFree(s0) & Trans(s0)
Use def(ClawFree)⇒ Stat10 : 〈∀y ∈ s0, e⊆ s0 |¬Claw(y, e)〉
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〈s0, x〉↪→T3c (?)⇒ y ∈ s0

〈y, e〉↪→Stat10(?)⇒ ¬Claw(y, e)∥∥∥∥ It readily follows from the definition of claw that {x, z,w} and
⋃
{x, z,w} intersect;

therefore, we can pick an element a common to the two.

Use def(Claw)⇒ Stat11 :¬〈∃x, z,w | e⊇ {x, z,w} & x 6= z & w /∈ {x, z}
& {w} ∩ y ⊇ {v ∈ e | y /∈ v} 〉 ∨ e ∩

⋃
e 6= ∅

〈x, z,w〉↪→Stat11(Stat4?)⇒ e ∩
⋃

e 6= ∅
EQUAL 〈Stat8〉⇒ Stat12 : {x, z,w} ∩

⋃
{x, z,w} 6= ∅

〈a〉↪→Stat12(Stat12?)⇒ Stat13 : a ∈ {x, z,w} & a ∈
⋃
{x, z,w}∥∥∥∥∥∥

But then y ∈ a, a⊆
⋃⋃
{x, z,w}, and

⋃⋃
{x, z,w} ⊆

⋃⋃
s0 must hold, implying

that y ∈
⋃⋃

s0; but we have started with the assumption that y /∈
⋃⋃

s0. This
contradiction proves the claim.

〈 {x, z,w} , s0〉↪→T2c (Stat1,Stat5,Stat8,Stat13?)⇒ y ∈ a
&
⋃

s0 ⊇
⋃
{x, z,w}

〈⋃ {x, z,w} ,⋃s0〉↪→T2c (Stat13?)⇒
⋃⋃

s0 ⊇
⋃

(
⋃
{x, z,w})

〈a,⋃ {x, z,w} 〉↪→T2 (Stat13?)⇒ Stat15 : y ∈
⋃⋃

s0

(Stat1,Stat15?)Discharge⇒ Qed

Thm clawFreenessd: [Shape of the frontier at a pivotal pair]
〈∃z | {v ∈ s0 | yΘ ∈ v} = {xΘ, z} & yΘ ∈ z〉. Proof:
Suppose not()⇒ Auto
〈 〉↪→T clawFreenessc ⇒ Stat1 : xΘ\

⋃⋃
s0 6= ∅ & xΘ ∈ s0

Use def(yΘ)⇒ yΘ ∈ xΘ\
⋃⋃

s0

〈yΘ, xΘ〉↪→T clawFreeness0 ⇒
Stat2 : 〈∃z ∈ s0 | {v ∈ s0 | yΘ ∈ v} = {xΘ, z} & yΘ ∈ z〉 &

¬〈∃z | {v ∈ s0 | yΘ ∈ v} = {xΘ, z} & yΘ ∈ z〉
〈z0, z0〉↪→Stat2⇒ false; Discharge⇒ Qed

‖Via Skolemization, we give a name to the third item in a pivotal tripleton:

APPLY 〈v1Θ : zΘ〉 Skolem⇒
Thm clawFreenesse. {v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ} & yΘ ∈ zΘ.

Thm clawFreenessf : [Tripleton pivot in claw-free, transitive set]
{v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ} & {xΘ, yΘ, zΘ} ⊆ s0 &

yΘ ∈ xΘ ∩ zΘ\
⋃⋃

s0 & xΘ /∈ zΘ & zΘ /∈ xΘ. Proof:
Suppose not()⇒ Auto
〈 〉↪→T clawFreenessc ⇒ Stat3 : xΘ\

⋃⋃
s0 6= ∅

Use def(yΘ)⇒ yΘ /∈
⋃⋃

s0 & yΘ ∈ xΘ

〈 〉↪→T clawFreenesse ⇒ Stat1 : xΘ ∈ {v : v ∈ s0 | yΘ ∈ v} &

zΘ ∈ {v ∈ s0 | yΘ ∈ v} &

{v : v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ} & yΘ ∈ zΘ

〈v0, v1〉↪→Stat1⇒ xΘ ∈ s0 & zΘ ∈ s0

Assump⇒ Trans(s0)
〈s0, zΘ〉↪→T3c ⇒ yΘ ∈ s0
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〈s0〉↪→T3a ⇒ s0 ∩
⋃

s0 =
⋃

s0

EQUAL⇒ yΘ /∈
⋃

(s0 ∩
⋃

s0)
〈yΘ, xΘ, zΘ, s0〉↪→T31g ⇒ xΘ /∈ zΘ

〈yΘ, zΘ, xΘ, s0〉↪→T31g ⇒ false; Discharge⇒ Qed

Def clawFreenessrmv: [Removing el’ts above pivot] tΘ =Def {v ∈ s0 | yΘ /∈ v}

∥∥∥∥ The removal of the predecessors of a pivot from a claw-free, transitive non-trivial
set such as the one treated by this theory does not disrupt transitivity.

Thm clawFreenessg: [Removing el’ts above pivot preserves transitivity]
Trans(tΘ) & ClawFree(tΘ) & tΘ ⊆ s0 & xΘ /∈ tΘ & yΘ ∈ tΘ\

⋃
tΘ &

tΘ = s0\ {xΘ, zΘ} . Proof:
Suppose not()⇒ Auto

Use def(tΘ)⇒ Stat1 : tΘ = {v ∈ s0 | yΘ /∈ v}
Set monot⇒ {v ∈ s0 | yΘ /∈ v} ⊆ {v : v ∈ s0}
Assump⇒ Trans(s0) & ClawFree(s0)
〈s0, tΘ〉↪→T clawFreenessa(Stat1?)⇒ ClawFree(tΘ)
〈 〉↪→T clawFreenessc ⇒ xΘ ∈ front(s0)
〈 〉↪→T clawFreenessf ⇒ Stat2 : {v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ} &

yΘ ∈ xΘ\
⋃⋃

s0 & yΘ /∈
⋃⋃

s0

〈s0, xΘ, yΘ, tΘ〉↪→T frontier2(?)⇒ Stat3 : tΘ 6= s0\ {xΘ, zΘ} &

Trans(tΘ) & tΘ ⊆ s0 & xΘ /∈ tΘ & yΘ ∈ tΘ\
⋃

tΘ

〈e〉↪→Stat3(Stat3?)⇒ e ∈ tΘ 6= e ∈ s0\ {xΘ, zΘ}
Suppose⇒ Stat4 : e ∈ {v ∈ s0 | yΘ /∈ v} & e /∈ s0\ {xΘ, zΘ}
〈 〉↪→Stat4(Stat2?)⇒ Stat5 : e ∈ {v ∈ s0 | yΘ ∈ v} & e ∈ s0 & yΘ /∈ e
〈 〉↪→Stat5(Stat5?)⇒ false; Discharge⇒

Stat6 : e /∈ {v ∈ s0 | yΘ ∈ v} & e /∈ {v ∈ s0 | yΘ /∈ v} & e ∈ s0

〈e, e〉↪→Stat6(Stat6?)⇒ false; Discharge⇒ Qed

Enter theory Set theory
Display pivotsForClawFreeness

Theory pivotsForClawFreeness(s0)
ClawFree(s0) & Finite(s0) & Trans(s0)
s0 6⊆ {∅}

⇒ (xΘ, yΘ, zΘ, tΘ)
{v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ} & {xΘ, yΘ, zΘ} ⊆ s0 & yΘ ∈ xΘ ∩ zΘ\

⋃⋃
s0 &

xΘ /∈ zΘ & zΘ /∈ xΘ

tΘ = {v ∈ s0 | yΘ /∈ v}
ClawFree(tΘ) & Trans(tΘ) & tΘ ⊆ s0 & xΘ /∈ tΘ & yΘ ∈ tΘ\

⋃
tΘ &

tΘ = s0\ {xΘ, zΘ}
End pivotsForClawFreeness
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B.6 Hanks, cycles, and Hamiltonian cycles∥∥∥∥∥∥∥∥
The following notion approximately models the concept of a graph where every
vertex has at least two incident edges. However, we neither require that (1) edges
be doubletons, nor that (2) the set H of edges and the one of vertices—which is
understood to be

⋃
H—be disjoint.

Def cycle0: [Collection of edges whose endpoints have degree greater than 1]
Hank(H) ↔Def ∅ /∈ H & 〈∀e ∈ H | e⊆

⋃
(H\ {e})〉

Def cycle1: [Cycle (unless null)]
Cycle(C) ↔Def Hank(C) & 〈∀d⊆ C | Hank(d) & d 6= ∅→ d = C〉

Thm hank0: [Alternative characterization of a hank]
Hank(H)↔

(
∅ /∈ H & 〈∀e ∈ H, x ∈ e,∃q ∈ H | q 6= e & x ∈ q〉

)
. Proof:

Suppose not(h)⇒ Auto
Suppose⇒ Stat1 : ¬〈∀e ∈ h, x ∈ e,∃q ∈ h | q 6= e & x ∈ q〉 &

〈∀e ∈ h | e⊆
⋃

(h\ {e})〉
Use def

(⋃
(h\ {e0})

)
⇒ Auto

〈e0, x0, e0〉↪→Stat1⇒ Stat2 : x0 ∈ {v : u ∈ h\ {e0} , v ∈ u} &

¬〈∃q ∈ h | q 6= e0 & x0 ∈ q〉 & e0 ∈ h & x0 ∈ e0

〈q0, v0, q0〉↪→Stat2⇒ false; Discharge⇒ Auto
Use def(Hank)⇒ Stat3 : ¬〈∀e ∈ h | e⊆

⋃
(h\ {e})〉 &

〈∀e ∈ h, x ∈ e,∃q ∈ h | q 6= e & x ∈ q〉
〈e1〉↪→Stat3⇒ Stat4 : e1 6⊆

⋃
(h\ {e1}) &

〈∀e ∈ h, x ∈ e,∃q ∈ h | q 6= e & x ∈ q〉 & e1 ∈ h
Use def

(⋃
(h\ {e1})

)
⇒ Auto

〈x1, e1, x1〉↪→Stat4⇒ Stat5 : 〈∃q ∈ h | q 6= e1 & x1 ∈ q〉 &

x1 /∈ {v : u ∈ h\ {e1} , v ∈ u} & x1 ∈ e1

〈q1, q1, x1〉↪→Stat5⇒ false; Discharge⇒ Qed

Thm hank1: [No singleton-or-doubleton of non-null sets is a cycle]
H⊆ {X,U} & Hank(H)→ H = ∅. Proof:
Suppose not(h0, x0, u0)⇒ Stat0 : h0 6= ∅ & h0 ⊆ {x0, u0} & Hank(h0)∥∥∥∥∥∥∥∥∥∥∥∥∥∥

For, assuming that h0 is a hank, non-null, and a subset of a doubleton {x0, u0},
we will reach a contradiction arguing as follows. If a is one of the (at
most two) elements of h0, since ∅ 6= a & a⊆

⋃
(h0\ {a}) ensues from the defi-

nition of hank,
⋃

(h0\ {a}) must be non-null; hence h0 = {a, b}, where b 6= a.
But then

⋃
(h0\ {a}) =

⋃
{b} and

⋃
(h0\ {b}) =

⋃
{a}, i.e.,

⋃
(h0\ {a}) = b and⋃

(h0\ {b}) = a; therefore a⊆ b and b⊆ a ensue from the definition of hank,
leading us to the identity a = b, which contradicts an earlier inequality.

〈a〉↪→Stat0(Stat0?)⇒ Stat1 : a ∈ h0

Use def(Hank)⇒ Stat2 : 〈∀e ∈ h0 | e⊆
⋃

(h0\ {e})〉 & ∅ /∈ h0

〈a〉↪→Stat2⇒ a⊆
⋃

(h0\ {a})
〈h0\ {a} 〉↪→T31d ⇒ Stat3 : h0 6= {a}
〈b〉↪→Stat3⇒ Stat4 : b ∈ h0 & b 6= a
〈b〉↪→Stat2⇒ b⊆

⋃
(h0\ {b})
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〈 {a} , a, a〉↪→T2a ⇒
⋃
{a} = a

〈 {b} , b, b〉↪→T2a ⇒
⋃
{b} = b

(Stat0,Stat1,Stat4?)ELEM⇒ h0\ {a} = {b} & h0\ {b} = {a}
EQUAL⇒ false; Discharge⇒ Qed∥∥∥∥ The following is the basic case of a general theorem scheme where the length of
the chain can be any number > 2.

Thm hank2: [A membership chain and an extra edge form a hank]
X ∈ Y & Y ∈ Z→ Hank({{X,Y} , {Y,Z} , {Z,X}}). Proof:
Suppose not(x0, y0, z0)⇒ Auto

Use def(Hank)⇒ Stat0 : ¬〈∀e ∈ {{x0, y0} , {y0, z0} , {z0, x0}} |
e⊆

⋃
({{x0, y0} , {y0, z0} , {z0, x0}}\ {e})〉 & x0 ∈ y0 & y0 ∈ z0

〈e0〉↪→Stat0⇒ e0 ∈ {{x0, y0} , {y0, z0} , {z0, x0}} &

e0 6⊆
⋃

({{x0, y0} , {y0, z0} , {z0, x0}}\ {e0})
Suppose⇒ e0 = {x0, y0} &

{{x0, y0} , {y0, z0} , {z0, x0}}\ {e0} = {{y0, z0} , {z0, x0}}
〈 {{y0, z0} , {z0, x0}} , {y0, z0} , {z0, x0} 〉↪→T2a ⇒⋃

{{y0, z0} , {z0, x0}} = {y0, z0, x0}
EQUAL⇒ {x0, y0} 6⊆ {y0, z0, x0}; Discharge⇒ Auto
Suppose⇒ e0 = {y0, z0} &

{{x0, y0} , {y0, z0} , {z0, x0}}\ {e0} = {{x0, y0} , {z0, x0}}
〈 {{x0, y0} , {z0, x0}} , {x0, y0} , {z0, x0} 〉↪→T2a ⇒⋃

{{x0, y0} , {z0, x0}} = {x0, y0, z0}
EQUAL⇒ {y0, z0} 6⊆ {x0, y0, z0}; Discharge⇒ Auto
〈 {{x0, y0} , {y0, z0}} , {x0, y0} , {y0, z0} 〉↪→T2a ⇒⋃

{{x0, y0} , {y0, z0}} = {x0, y0, z0} & e0 = {z0, x0} &

{{x0, y0} , {y0, z0} , {z0, x0}}\ {e0} = {{x0, y0} , {y0, z0}}
EQUAL⇒ {z0, x0} 6⊆ {x0, y0, z0}; Discharge⇒ Qed∥∥∥∥∥∥
The following is the basic case of a general theorem scheme where the length of
the path can be any number > 1: Replacing an edge by a path with the same
endpoints does not disrupt a hank.

Thm hank3: [Hank enrichment]
(
Hank(H) & {W,Y} ∈ H & W 6= Y &

X /∈
⋃

H & H′= H\ {{W,Y}}∪{{W,X} , {X,Y}}
)
→ Hank(H′). Proof:

Suppose not(h0,w0, y0, x1, h1)⇒ Stat0 :
(
Hank(h0) & {w0, y0} ∈ h0 &

w0 6= y0 & x1 /∈
⋃

h0 & h1 = h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}}
)

&

¬Hank(h1)∥∥∥∥∥∥
Suppose that the premisses are met by h0,w0, y0, x1, and h1. In order to prove
Hank(h1), we assume it to be false, so that the definition of hank implies the
existence of an e1 ∈ h1 and a z1 ∈ e1 such that z1 /∈

⋃
(h1\ {e1}).

Use def(Hank)⇒ Stat1 : ¬〈∀e ∈ h1 | e⊆
⋃

(h1\ {e})〉 &

Stat2 : 〈∀e ∈ h0 | e⊆
⋃

(h0\ {e})〉
〈e1, e1〉↪→Stat1⇒ Stat3 : e1 6⊆

⋃
(h1\ {e1}) & e1 ∈ h1 &(

e1 ∈ h0→ e1 ⊆
⋃

(h0\ {e1})
)

Use def
(⋃

(h1\ {e1})
)
⇒ Auto

〈z1〉↪→Stat3(Stat3?)⇒ Stat4 : z1 /∈ {v : u ∈ h1\ {e1} , v ∈ u} & z1 ∈ e1
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‖ Since x1 belongs to the distinct edges {w0, x1} , {x1, y0} of h1, clearly z1 6= x1.

Suppose⇒ z1 = x1

〈 {w0, x1} , x1〉↪→Stat4⇒ {w0, x1} = e1

〈 {x1, y0} , x1〉↪→Stat4⇒ false; Discharge⇒ Auto

‖Moreover, e1 cannot be one of the edges of h1\h0.

Suppose⇒ e1 ∈ {{w0, x1} , {x1, y0}}
Use def

(⋃
(h0\ {{w0, y0}})

)
⇒ Auto

〈 {w0, y0} 〉↪→Stat2⇒ Stat5 : z1 ∈ {v : u ∈ h0\ {{w0, y0}} , v ∈ u}
〈e′, z′〉↪→Stat5⇒ e′ ∈ h0\ {{w0, y0}} & z1 ∈ e′

Use def(
⋃

h0)⇒ Auto
〈e′, z1〉↪→Stat4⇒ x1 ∈ e′ & Stat6 : x1 /∈ {v : u ∈ h0, v ∈ u}

〈e′, x1〉↪→Stat6⇒ false; Discharge⇒ Auto
Use def

(⋃
(h0\ {e1})

)
⇒ Auto∥∥∥∥∥∥∥∥∥∥

We know, at this point, that e1 ∈ h0\ {{w0, y0}}. Since h0 is a hank, z1 has in h0

at least one incident edge different from e1; since the latter is no longer available
in h1\ {e1}, it must be {w0, y0}, and either z1 = w0 or z1 = y0 hence holds. Both
cases lead to a contradiction, though; in fact {w0, x1} , {x1, y0} differ from e1 and
these edges of h1 are, respectively, incident to w0 and to y0.

(Stat0?)ELEM⇒ e1 ∈ h0 &

Stat7 : z1 ∈ {v : u ∈ h0\ {e1} , v ∈ u} &z1 /∈ {v : u ∈ h1\ {e1} , v ∈ u}
〈e0, z0, e0, z1〉↪→Stat7⇒ Stat8 : z1 ∈ {w0, y0}
〈 {w0, x1} ,w0〉↪→Stat4⇒ z1 6= w0

〈 {x1, y0} , y0〉↪→Stat4⇒ z1 6= y0

(Stat8?)Discharge⇒ Qed

Thm cycle0: [A membership 2-chain and an extra edge make a cycle]
X ∈ Y & Y ∈ Z→ Cycle({{X,Y} , {Y,Z} , {Z,X}}). Proof:
Suppose not(x0, y0, z0)⇒ Auto
Use def

(
Cycle({{x0, y0} , {y0, z0} , {z0, x0}})

)
⇒ Auto

〈x0, y0, z0〉↪→Thank2(?)⇒ Stat0 : ¬〈∀d⊆ {{x0, y0} , {y0, z0} , {z0, x0}} |
Hank(d) & d 6= ∅→ d = {{x0, y0} , {y0, z0} , {z0, x0}} 〉

〈d〉↪→Stat0⇒ Stat2 : Hank(d) & d 6= ∅ &

d 6= {{x0, y0} , {y0, z0} , {z0, x0}} & d⊆ {{x0, y0} , {y0, z0} , {z0, x0}}
〈d, {y0, z0} , {z0, x0} 〉↪→Thank1(Stat2?)⇒ d 6= {{y0, z0} , {z0, x0}} &

d 6= {{y0, z0}} & d 6= {{z0, x0}}
〈d, {x0, y0} , {z0, x0} 〉↪→Thank1(Stat2,Stat2?)⇒ d 6= {{x0, y0} , {z0, x0}} &

d 6= {{x0, y0}}
〈d, {x0, y0} , {y0, z0} 〉↪→Thank1(Stat2,Stat2?)⇒ d 6= {{x0, y0} , {y0, z0}}
(Stat2?)ELEM⇒ false; Discharge⇒ Qed∥∥∥∥ The replacement of an edge by a 2-path with the same endpoints does not disrupt
a cycle.

Thm cycle1: [Cycle enrichment] Cycle(C) & {W,Y} ∈ C & W 6= Y &

X /∈
⋃

C & C′= C\ {{W,Y}}∪{{W,X} , {X,Y}}→ Cycle(C′). Proof:
Suppose not(h0,w0, y0, x1, h1)⇒ Auto
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∥∥∥∥∥∥∥∥
Supposing that h0,w0, y0, x1, h1 constitute a counter-example to the claim, observe
that Hank(h1) must hold; hence we can consider a strictly smaller hank d1 than
h1. It readily turns out that either {w0, x1} ∈ d1 or {x1, y0} ∈ d1; for otherwise
h0 would strictly include d1, since d1 6= h0 follows from {w0, y0} ∈ h0\h1.

〈h0,w0, y0, x1, h1〉↪→Thank3 ⇒ Auto
Use def(Cycle)⇒ Stat0 : {w0, y0} ∈ h0 & w0 6= y0 &

x1 /∈
⋃

h0 & h1 = h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} &

Stat1 : ¬〈∀d⊆ h1 | Hank(d) & d 6= ∅→ d = h1〉 &

Stat2 : 〈∀d⊆ h0 | Hank(d) & d 6= ∅→ d = h0〉 & Hank(h0) & Hank(h1)
〈d1, d1〉↪→Stat1(Stat0?)⇒ Stat3 : d1 ⊆ h1 & d1 6= h1 & d1 6= ∅ & Hank(d1) &

¬({w0, x1} /∈ d1 & {x1, y0} /∈ d1)
Use def(

⋃
h0)⇒ Auto

〈d1〉↪→Thank0 ⇒ Stat4 : 〈∀e ∈ d1, x ∈ e,∃q ∈ d1 | q 6= e & x ∈ q〉 &

Stat4a : x1 /∈ {v : u ∈ h0, v ∈ u} & ∅ /∈ d1∥∥∥∥∥∥
Should one of {w0, x1} , {x1, y0}, but not the other, belong to d1, we would easily
get a contradiction: the two cases are treated symmetrically. At this point we
have derived that both {w0, x1} and {x1, y0} belong to d1.

〈 {w0, x1} , x1, q0, q0, x1〉↪→Stat4(Stat0?)⇒ ¬({w0, x1} ∈ d1 & {x1, y0} /∈ d1)
〈 {x1, y0} , x1, q1, q1, x1〉↪→Stat4(Stat0?)⇒ Stat5 : {w0, x1} , {x1, y0} ∈ d1∥∥∥∥∥∥
We will show that the set d0 obtained by replacing {w0, x1} and {x1, y0} by
{w0, y0} in d1 is non-null and is a cycle strictly included in h0. Obviously
{w0, x1} 6= {w0, y0} & {x1, y0} 6= {w0, y0}, because x1, y0, and w0 are distinct.

〈 {w0, y0} , x1〉↪→Stat4a(Stat0?)⇒ Stat6 : x1 6= w0 & x1 6= y0 & w0 6= y0 &

{w0, y0} /∈ d1

Loc def ⇒ Stat7 : d0 = d1 ∪ {{w0, y0}}\ {{w0, x1} , {x1, y0}}
(Stat5,Stat7,Stat6,Stat3,Stat0,Stat4?)ELEM⇒ d0 ⊆ h0 & d0 6= ∅ &

d0 6= h0 & ∅ /∈ d0

Use def(
⋃

d0)⇒ Auto
〈d0, h0〉↪→T2c (Stat0?)⇒ Stat8 : x1 /∈ {u : v ∈ d0, u ∈ v}∥∥∥∥∥∥
Despite us having assumed at the beginning that h0 contains no proper cycle,
so that in particular Hank(d0) cannot hold, due to an edge e0 of d0 and to an
endpoint x0 of e0 which is not properly covered in d0, . . .

〈d0〉↪→Thank0 ⇒ Auto
〈d0〉↪→Stat2(Stat7?)⇒ Stat9 : ¬〈∀e ∈ d0, x ∈ e,∃q ∈ d0 | q 6= e & x ∈ q〉
〈e0, x0〉↪→Stat9⇒

Stat10 : ¬〈∃q ∈ d0 | q 6= e0 & x0 ∈ q〉 & e0 ∈ d0 & x0 ∈ e0∥∥∥∥∥∥
. . . we now aim at showing that this offending edge e0 of d0 will also offend d1,
which contradicts a fact noted at the beginning. Here we shortly digress to prove
that e0 = {w0, y0} must hold, else e0 would offend d1.

Suppose⇒ Stat11 : e0 6= {w0, y0}∥∥∥∥∥∥∥∥
Indeed, assuming e0 6= {w0, y0}, e0 would also belong to d1, and each one of its
endpoints must have edges distinct from e0 incident to it in d1. However, it will
turn out that this cannot be the case for the endpoint x0, which hence is not
properly covered in d1.
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〈e0, x0〉↪→Stat4(Stat7,Stat10,Stat11?)⇒ Stat12 : 〈∃q ∈ d1 | q 6= e0 & x0 ∈ q〉
〈q2〉↪→Stat12(Stat12?)⇒ Stat13 : x0 ∈ q2 & q2 6= e0 & q2 ∈ d1

‖ To see this, let q2 6= e0 be the edge that covers x0 in d1.

Suppose⇒ Stat14 : q2 = {w0, x1} ∨ q2 = {x1, y0}∥∥∥∥ If this edge q2 were one of the two which have been removed, the edge {w0, y0}
would satisfactorily cover x0 in d0.

〈 {w0, y0} 〉↪→Stat10(Stat7,Stat6,Stat11?)⇒ Stat15 : x0 /∈ {w0, y0}
〈e0, x0〉↪→Stat8⇒ Auto
(Stat10?)Discharge⇒ Stat16 : ¬(q2 = {w0, x1} ∨ q2 = {x1, y0})∥∥∥∥ q2 must hence belong to d0; but again, this implies that q2 would satisfactorily
cover x0 in d0. Therefore, e0 = {w0, y0} must hold.

〈q2〉↪→Stat10(Stat7,Stat16,Stat13?)⇒ false;
Discharge⇒ Stat17 : e0 = {w0, y0}∥∥∥∥∥∥∥∥∥∥∥∥∥∥

The only remaining possibility, e0 = {w0, y0}, is also untenable. Indeed, d1 has
two edges incident to w0, one of which is {w0, x1}; likewise, d1 has two edges
incident to y0, one of which is {x1, y0}. For either one of the endpoints w0, y0

of e0, the second incident edge belongs to d1 and differs from {w0, y0}, so it
must belong to d0 as well; since d0 also owns the edge {w0, y0} incident to either
endpoint, it is not true that e0 is an offending edge for d0, a fact that contradicts
one of the assumptions made.

〈 {w0, x1} ,w0, q4〉↪→Stat4(Stat5,Stat7,Stat6,Stat17?)⇒
Stat19 : q4 6= e0 & q4 ∈ d0 & w0 ∈ q4

〈 {x1, y0} , y0, q5〉↪→Stat4(Stat5,Stat5?)⇒
Stat20 : y0 ∈ q5 & q5 6= {x1, y0} & q5 ∈ d1

(Stat20,Stat7,Stat6,Stat17?)ELEM⇒ Stat21 : q5 6= e0 & q5, e0 ∈ d0

〈q5〉↪→Stat10(Stat21,Stat17,Stat20?)⇒ Stat22 : x0 /∈ q5 & x0 = w0

〈q4〉↪→Stat10(Stat19,Stat22?)⇒ false; Discharge⇒ Qed

Def hamiltonian1: [Hamiltonian cycle, in graph devoid of isolated vertices]
Hamiltonian(H,S,E) ↔Def Cycle(H) &

⋃
H = S & H⊆ E∥∥∥∥∥∥∥

In our specialized context, where edges are 2-sets whose elements satisfy a peculiar
membership constraint, we do not simply require that a Hamiltonian cycle H
touches every vertex, but also that every source has an incident membership
edge in H.

Def hamiltonian2: [Edges in squared membership]
sqEdges(S) =Def {{x, y} : x ∈ S, y ∈ S\ {x} , z ∈ S ∩ x | y = z ∨ y ∈ z ∨ z ∈ y}

Def hamiltonian3: [Restraining condition for Hamiltonian cycles]
SqHamiltonian(H, S) ↔Def Hamiltonian

(
H, S, sqEdges(S)

)
&

〈∀x ∈ S\
⋃

S,∃y ∈ x | {x, y} ∈ H〉
Thm hamiltonian1: [Enriched Hamiltonian cycles]

S = T ∪ {X} & X /∈ T & Y ∈ X & SqHamiltonian(H,T) & {W,Y} ∈ H &(
W ∈ Y ∨ (Y ∈W & K 6= Y & {W,K} ∈ H & K ∈W)

)
→
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SqHamiltonian(H\ {{W,Y}} ∪ {{W,X} , {X,Y}} ,S). Proof:
Suppose not(s0, t0, x1, y0, h0,w0, k0)⇒ Auto
Use def(SqHamiltonian)⇒ Stat0 : 〈∀x ∈ t0\

⋃
t0,∃y ∈ x | {x, y} ∈ h0〉 &

Hamiltonian
(
h0, t0, sqEdges(t0)

)
&

¬
(

Hamiltonian
(
h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}} , s0, sqEdges(s0)

)
&

〈∀x ∈ s0\
⋃

s0,∃y ∈ x | {x, y} ∈ h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}} 〉
)

Suppose⇒ Stat1 :
¬〈∀x ∈ s0\

⋃
s0,∃y ∈ x | {x, y} ∈ h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}} 〉∥∥∥∥∥∥∥∥∥∥∥∥

Suppose that s0, t0, x1, y0, h0,w0, k0 make a counterexample to the claim. One
reason why

SqHamiltonian(h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} , s0)
is violated might be
¬〈∀x ∈ s0\

⋃
s0,∃y ∈ x | {x, y} ∈ h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} 〉;

if this is the case, we can choose an x′ witnessing this fact.

〈x′〉↪→Stat1⇒ Stat2 :
¬〈∃k ∈ x′ | {x′, k} ∈ h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}}〉 & x′ ∈ s0\

⋃
s0∥∥∥∥∥∥∥∥∥∥

To see that x′ ∈ t0\
⋃

t0 follows from the constraint x′ ∈ s0\
⋃

s0, we assume
the contrary and argue as follows: (1) Unless x′ belongs to t0, we must have
x′= x1, which however has an incident membership edge, namely {x1, y0}, in
h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}}. (2) Thus, since x′ ∈ t0, we have x′ ∈
t0 ∩

⋃
t0 and hence x′ ∈ s0 ∩

⋃
s0, contradicting the constraint on x′.

Suppose⇒ x′ /∈ t0\
⋃

t0

〈y0〉↪→Stat2(?)⇒ x′ ∈ t0 & s0 = t0 ∪ {x1} & x1 /∈ t0 & y0 ∈ x1

〈t0, s0〉↪→T2c (Stat2?)⇒
⋃

s0 ⊇
⋃

t0

(Stat2?)Discharge⇒ Auto∥∥∥∥∥∥∥∥
Knowing that x′ ∈ t0\

⋃
t0, we can find a y1 ∈ x′ such that {x′, y1} ∈ h0. Since

this membership edge is no longer available after the modification of h0, it must
be {w0, y0}; therefore, x′= w0, for otherwise x′= y0 would (in view of the fact
y0 ∈ x1) contradict the assumption x′ ∈ s0\

⋃
s0.

〈x′, y1〉↪→Stat0(?)⇒ Stat3 : y1 ∈ x′ & {x′, y1} ∈ h0 & x1 ∈ s0 & y0 ∈ x1

Use def(
⋃

s0)⇒ Auto
〈y1〉↪→Stat2(Stat3?)⇒ Stat4 : x′ /∈ {u : v ∈ s0, u ∈ v} & {x′, y1} = {w0, y0}
〈x1, y0〉↪→Stat4(Stat2?)⇒ x′= w0∥∥∥∥∥∥
If x′ ∈ y0, the assumption x′ ∈ s0\

⋃
s0 would be contradicted similarly: but

then, by the initial assumption, we must have {x′, k0} ∈ h0 & k0 6= y0 & k0 ∈ x′,
conflicting with Stat2, because {x′, k0} = {w0, y0} would imply k0 = y0.

〈x1, y0〉↪→Stat4(?)⇒ x′ /∈ y0 & {x′, k0} ∈ h0 & k0 ∈ x′ & k0 6= y0

〈k0〉↪→Stat2(Stat4?)⇒ false; Discharge⇒
Stat5 : Hamiltonian

(
h0, t0, sqEdges(t0)

)
&

¬Hamiltonian
(
h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}} , s0, sqEdges(s0)

)
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∥∥∥∥∥∥∥∥∥∥
At this point the reason why

SqHamiltonian(h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} , s0)
is false must be that

Hamiltonian
(
h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} , s0, sqEdges(s0)

)
is false; however, we will derive a contradiction also in this case.

Use def
(

Hamiltonian
(
h0, t0, sqEdges(t0)

))
⇒ Auto

ELEM⇒ Stat6 : s0 = t0 ∪ {x1} & x1 /∈ t0 & y0 ∈ x1 & {w0, y0} ∈ h0 &(
w0 ∈ y0 ∨ (y0 ∈ w0 & k0 6= y0 & {w0, k0} ∈ h0 & k0 ∈ w0)

)
Loc def ⇒ Stat7 : h1 = h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}}
Use def

(
Hamiltonian

(
h1, s0, sqEdges(s0)

))
⇒ Auto

EQUAL 〈Stat5〉⇒ Stat8 :
(
Cycle(h0) &

⋃
h0 = t0 & h0 ⊆ sqEdges(t0)

)
&

¬
(
Cycle(h1) &

⋃
h1 = s0 & h1 ⊆ sqEdges(s0)

)∥∥∥∥∥∥∥
In fact, after observing that {w0, y0} ⊆

⋃
h0 must hold, we

will be able to discard one by one each potential reason why
Hamiltonian

(
h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} , s0, sqEdges(s0)

)
should be

false.

〈h0,w0, y0, x1, h1〉↪→T cycle1 (Stat6?)⇒ Stat9 :
(
Cycle(h0) &

⋃
h0 = t0 &

h0 ⊆ sqEdges(t0)
)

& ¬
(⋃

h1 = s0 & h1 ⊆ sqEdges(s0)
)

Suppose⇒ Stat10 : {w0, y0} 6⊆
⋃

h0

Use def(
⋃

h0)⇒ Auto
〈b〉↪→Stat10(Stat10?)⇒ Stat11 : b /∈ {u : v ∈ h0, u ∈ v} & b ∈ {w0, y0}
〈 {w0, y0} , b〉↪→Stat11(Stat11,Stat6?)⇒ false; Discharge⇒

Stat12 : w0, y0 ∈ t0

Suppose⇒ Stat13 : h1 6⊆ sqEdges(s0)
Use def

(
sqEdges(s0)

)
⇒ Auto

〈e〉↪→Stat13(Stat7?)⇒ (e ∈ h0 ∨ e = {w0, x1} ∨ e = {x1, y0}) & Stat14 :
e /∈ {{x, y} : x ∈ s0, y ∈ s0\ {x} , z ∈ s0 ∩ x | y = z ∨ y ∈ z ∨ z ∈ y}

(Stat6,Stat12?)ELEM⇒ Stat15 :
x1, y0,w0 ∈ s0 & y0 ∈ x1 & (w0 ∈ y0 ∨ y0 ∈ w0) & x1 6= w0

〈x1, y0, y0〉↪→Stat14(Stat15?)⇒ e 6= {x1, y0}
〈x1,w0, y0〉↪→Stat14(Stat15?)⇒ e 6= {w0, x1}
Use def

(
sqEdges(t0)

)
⇒ Auto

(Stat8?)ELEM⇒ Stat16 :
e ∈ {{x, y} : x ∈ t0, y ∈ t0\ {x} , z ∈ t0 ∩ x | y = z ∨ y ∈ z ∨ z ∈ y}

〈x2, y2, z2〉↪→Stat16(Stat16?)⇒ Stat17 : e = {x2, y2} & x2, y2, z2 ∈ t0 &

x2 6= y2 & z2 ∈ x2 & (y2 = z2 ∨ y2 ∈ z2 ∨ z2 ∈ y2)
(Stat6?)ELEM⇒ s0 ⊇ t0

〈x2, y2, z2〉↪→Stat14(Stat17?)⇒ false; Discharge⇒ Stat18 :
⋃

h1 6= s0

‖We prove first that
⋃

h1 ⊆ s0.

〈 {{w0, x1} , {x1, y0}} , {w0, x1} , {x1, y0} 〉↪→T2a(Stat18?)⇒⋃
{{w0, x1} , {x1, y0}} = {w0, x1, y0}

〈h0\ {{w0, y0}} , {{w0, x1} , {x1, y0}} 〉↪→T2c(Stat18?)⇒⋃
(h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}})

=
⋃

(h0\ {{w0, y0}}) ∪
⋃
{{w0, x1} , {x1, y0}}

〈h0\ {{w0, y0}} , h0〉↪→T2c(Stat8?)⇒
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⋃
h0 ⊇

⋃
(h0\ {{w0, y0}}) & {w0, y0} ⊆

⋃
h0

EQUAL 〈Stat7〉⇒
⋃

h1 =
⋃

(h0\ {{w0, y0}}) ∪ {w0, x1, y0}
(Stat6?)ELEM⇒

⋃
h1 ⊆ s0

‖ The remaining case is s0 6⊆
⋃

h1, which entails that we can find an a ∈ t0\
⋃

h1.

Use def(
⋃

h1)⇒ Auto
〈a〉↪→Stat18(Stat18?)⇒ Stat23 : a /∈ {u : v ∈ h1, u ∈ v} & a ∈ s0\ {x1}

‖ Since a ∈ t0 and t0 =
⋃

h0, we can find an e′ ∈ h0 such that a ∈ e′.

Use def(
⋃

)⇒ Stat24 : a ∈ {u : v ∈ h0, u ∈ v}
〈e′, u′〉↪→Stat24(Stat25?)⇒ Stat25 : e′ ∈ h0 & a ∈ e′∥∥∥∥∥ Since h1 = h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}}, we conclude that e′= {w0, y0}
must hold. Hence, either a = w0 or a = y0 must hold, both of which yield a
contradiction.

〈e′, a〉↪→Stat23(Stat7,Stat25?)⇒ e′= {w0, y0}
〈 {w0, x1} ,w0〉↪→Stat23(Stat7?)⇒ a = y0

〈 {x1, y0} , y0〉↪→Stat23(Stat7?)⇒ false; Discharge⇒ Qed

Thm hamiltonian2: [Doubly enriched Hamiltonian cycles]
S = T ∪ {X,Z} & {X,Z} ∩ T = ∅ & X 6= Z & Y ∈ X ∩ Z &

SqHamiltonian(H,T) & {W,Y} ∈ H & W ∈ Y ∩ X→
SqHamiltonian(H\{{W,Y}}∪{{W,X} , {X,Z} , {Z,Y}} ,S). Proof:

Suppose not(s0, t0, x0, z0, y0, h0,w0)⇒ Auto
〈t0 ∪ {x0} , t0, x0, y0, h0,w0, ∅〉↪→Thamiltonian1⇒

SqHamiltonian(h0\ {{w0, y0}} ∪ {{w0, x0} , {x0, y0}} , t0 ∪ {x0})
Loc def ⇒ Stat1 :

h1 = h0\ {{w0, y0}} ∪ {{w0, x0} , {x0, y0}} & t1 = t0 ∪ {x0}
ELEM⇒ Stat2 : s0 = t1 ∪ {z0} & x0 /∈ t0

EQUAL⇒ SqHamiltonian(h1, t1)
Suppose⇒ {x0, y0} ∈ h0∥∥∥∥∥∥

Notice that since h0 is a Hamiltonian path in t0, its unionset must equal t0; since
x0 does not belong to t0, but it belongs to {x0, y0}, it follows that {x0, y0} cannot
belong to h0.

Use def
(
SqHamiltonian(h0, t0)

)
⇒ Auto

Use def
(

Hamiltonian
(
h0, t0, sqEdges(t0)

))
⇒ Auto

Use def(
⋃

)⇒ Stat3 : x0 /∈ {u : v ∈ h0, u ∈ v}
〈 {x0, y0} , x0〉↪→Stat3(Stat2?)⇒ false; Discharge⇒ Auto
ELEM⇒ {x0, y0} 6= {w0, x0} & z0 /∈ t1 &

y0 ∈ z0 & y0 ∈ x0 & w0 ∈ y0 & w0 ∈ x0

〈t1 ∪ {z0} , t1, z0, y0, h1, x0,w0〉↪→Thamiltonian1 (Stat1?)⇒
SqHamiltonian(h1\ {{x0, y0}} ∪ {{x0, z0} , {z0, y0}} , t1 ∪ {z0})

(Stat1?)ELEM⇒ h1\ {{x0, y0}} = h0\ {{w0, y0}} ∪ {{w0, x0}}
(Stat1?)ELEM⇒ h1\ {{x0, y0}} ∪ {{x0, z0} , {z0, y0}}

= h0\ {{w0, y0}} ∪ {{w0, x0} , {x0, z0} , {z0, y0}}
EQUAL⇒ false; Discharge⇒ Qed
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Thm hamiltonian3: [Trivial Hamiltonian cycles]
S = {X,Y,Z} & X ∈ Y & Y ∈ Z→

SqHamiltonian({{X,Y} , {Y,Z} , {Z,X}} , S). Proof:
Suppose not(s, x0, y0, z0)⇒ Auto∥∥∥∥∥∥∥∥∥∥∥∥

Arguing by contradiction, assume that {{x0, y0} , {y0, z0} , {z0, x0}} is not a
‘square Hamiltonian’ cycle for s = {x0, y0, z0}, where x0 ∈ y0 and y0 ∈ z0 holds.
We will first exclude the possibility that {{x0, y0} , {y0, z0} , {z0, x0}} is not a
Hamiltonian cycle in the ‘square edges’ of s; after discarding this, we will also
exclude that this cycle may fail to satisfy the restraining condition that it has a
genuine membership edge incident into each source of s.

Use def
(
SqHamiltonian({{x0, y0} , {y0, z0} , {z0, x0}} , s)

)
⇒ Auto

Use def
(

Hamiltonian
(
{{x0, y0} , {y0, z0} , {z0, x0}} , s, sqEdges(s)

))
⇒ Auto

〈x0, y0, z0〉↪→T cycle0 ⇒ Auto
ELEM⇒ Stat1 : s = {x0, y0, z0} & x0 ∈ y0 & y0 ∈ z0

Suppose⇒ Stat8 : {{x0, y0} , {y0, z0} , {z0, x0}} 6⊆ sqEdges(s)
Use def

(
sqEdges(s)

)
⇒ Auto

〈e0〉↪→Stat8(Stat8?)⇒ Stat9 :
e0 /∈ {{x, y} : x ∈ s, y ∈ s\ {x} , z ∈ s ∩ x | y = z ∨ y ∈ z ∨ z ∈ y} &

e0 ∈ {{x0, y0} , {y0, z0} , {z0, x0}}
〈z0, y0, y0〉↪→Stat9(Stat1,Stat1?)⇒ e0 6= {y0, z0}
〈z0, x0, y0〉↪→Stat9(Stat1,Stat9?)⇒ e0 6= {z0, x0}
〈y0, x0, x0〉↪→Stat9(Stat1,Stat1?)⇒ e0 6= {x0, y0}

(Stat9?)Discharge⇒ Auto
Suppose⇒ Stat4 :

⋃
{{x0, y0} , {y0, z0} , {z0, x0}} 6= s

(Stat1,Stat1?)ELEM⇒ s = {x0, y0, z0} &

{{x0, y0} , {y0, z0} , {z0, x0}} = {{x0, y0} , {y0, z0}}∪{{z0, x0}} &

{x0, y0, z0} ∪ {z0, x0} = {x0, y0, z0}
〈 {{x0, y0} , {y0, z0}} , {{z0, x0}} 〉↪→T2c (Stat5?)⇒ Stat5 :⋃

({{x0, y0} , {y0, z0}} ∪ {{z0, x0}})
=
⋃
{{x0, y0} , {y0, z0}} ∪

⋃
{{z0, x0}}

〈 {{x0, y0} , {y0, z0}} , {x0, y0} , {y0, z0} 〉↪→T2a (Stat6?)⇒ Stat6 :⋃
{{x0, y0} , {y0, z0}} = {x0, y0, z0}

〈 {{z0, x0} , {z0, x0}} , {z0, x0} , {z0, x0} 〉↪→T2a (Stat7?)⇒ Stat7 :⋃
{{z0, x0} , {z0, x0}}={z0, x0} & {{z0, x0} , {z0, x0}}={{z0, x0}}

EQUAL 〈Stat4〉⇒ false; Discharge⇒ Stat10 :
¬〈∀z ∈ s\

⋃
s,∃y ∈ z | {z, y} ∈ {{x0, y0} , {y0, z0} , {z0, x0}} 〉∥∥∥∥∥∥

We conclude by checking that {{x0, y0} , {y0, z0} , {z0, x0}} owns a genuine mem-
bership edge incident into each source of s; as a matter of fact, z0 is the only
source of s and {y0, z0} is a membership edge.

〈z′〉↪→Stat10(Stat10?)⇒ Stat11 :
¬〈∃y ∈ z′ | {z′, y} ∈ {{x0, y0} , {y0, z0} , {z0, x0}} 〉 & z′ ∈ s\

⋃
s

〈y0〉↪→Stat11(Stat11?)⇒ Stat12 :
y0 /∈ z′ ∨ {z′, y0} /∈ {{x0, y0} , {y0, z0} , {z0, x0}}

Use def(
⋃

)⇒ Stat13 : z′ /∈ {u : v ∈ s, u ∈ v} & z′ ∈ s
〈z0, y0〉↪→Stat13(Stat12,Stat1?)⇒ Stat14 : z′= x0
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〈y0, x0〉↪→Stat13(Stat14,Stat13,Stat12,Stat1?)⇒ false; Discharge⇒ Qed

∥∥∥∥Any non-trivial transitive set whose square is devoid of Hamiltonian cycles must
strictly comprise certain sets.

Thm hamiltonian4: [Potential revealers of non-Hamiltonicity]
Trans(S) & S 6⊆ {∅, {∅}} & ¬〈∃h | SqHamiltonian(h,S)〉→

S 6= {∅, {∅} , {{∅}}} & S 6= {∅, {∅} , {∅, {∅}}} &

S 6= {∅, {∅} , {{∅}} , {∅, {∅}}} & S⊇ {∅, {∅}} &(
{{∅}} ∈ S ∨ {∅, {∅}} ∈ S

)
. Proof:

Suppose not(t)⇒ Auto∥∥∥∥∥∥∥∥∥∥∥∥

Indeed, any set satisfying the premises of our present claim must, due to its tran-
sitivity and non-triviality, include either one of the Hamiltonian cycles endowed
with the vertices ∅, {∅} , {{∅}} and ∅, {∅} , {∅, {∅}}, respectively; but it must also
own additional elements, else the last premise would be falsified. Moreover, it
cannot have exactly the elements ∅, {∅} , {{∅}} , {∅, {∅}}, as these form a Hamil-
tonian cycle.

〈t, {∅, {∅}} 〉↪→T4b ⇒ Stat1 : ¬〈∃h | SqHamiltonian(h, t)〉 &(
t⊇ {∅, {∅} , {{∅}}} ∨ t⊇ {∅, {∅} , {∅, {∅}}}

)∥∥∥∥∥∥∥∥
The cases t = {∅, {∅} , {{∅}}} and t = {∅, {∅} , {∅, {∅}}} must be excluded, be-
cause we have the respective Hamiltonian cycles

{{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} , ∅}} ,
{{∅, {∅}} , {{∅} , {∅, {∅}}} , {{∅, {∅}} , ∅}} .

〈t, ∅, {∅} , {{∅}} 〉↪→Thamiltonian3 ⇒ Auto
〈 {{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} , ∅}} 〉↪→Stat1(?)⇒ t 6= {∅, {∅} , {{∅}}}
〈t, ∅, {∅} , {∅, {∅}} 〉↪→Thamiltonian3 ⇒ Auto
〈 {{∅, {∅}} , {{∅} , {∅, {∅}}} , {{∅, {∅}} , ∅}} 〉↪→Stat1(?)⇒

Stat2 : t = {∅, {∅} , {{∅}} , {∅, {∅}}}∥∥∥∥∥Having thus established that t = {∅, {∅} , {{∅}} , {∅, {∅}}}, we can now exploit
Theorem hamiltonian2 to enrich the Hamiltonian cycle for {∅, {∅} , {{∅}}} into
one which does to our case.

〈 {∅, {∅} , {{∅}}} , ∅, {∅} , {{∅}} 〉↪→Thamiltonian3(Stat2?)⇒
SqHamiltonian({{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} , ∅}} , {∅, {∅} , {{∅}}})
〈 {∅, {∅} , {{∅}}} , ∅, {∅} , {{∅}} 〉↪→Thamiltonian3 ⇒

SqHamiltonian({{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} , ∅}} , {∅, {∅} , {{∅}}})
〈 {∅, {∅} , {{∅}} , {∅, {∅}}} , {∅, {∅} , {{∅}}} , {∅, {∅}} , {∅} ,

{{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} , ∅}} , ∅〉↪→Thamiltonian1(Stat2?)⇒
SqHamiltonian({{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} , ∅}}\ {{∅, {∅}}} ∪

{{∅, {∅, {∅}}} , {{∅, {∅}} , {∅}}} ,
{∅, {∅} , {{∅}} , {∅, {∅}}})

EQUAL 〈Stat2〉⇒
SqHamiltonian({{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} , ∅}}\ {{∅, {∅}}} ∪

{{∅, {∅, {∅}}} , {{∅, {∅}} , {∅}}} , t)
〈 {{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} , ∅}}\{{∅, {∅}}} ∪ {{∅, {∅, {∅}}} , {{∅, {∅}} , {∅}}} 〉

↪→Stat1(Stat2?)⇒ false; Discharge⇒ Qed
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B.7 Hamiltonicity of squared claw-free sets

‖Non-trivial, claw-free, finite transitive sets have Hamiltonian squares.

Thm clawFreeness1: [Hamiltonicity of non-trivial, claw-free sets]
Finite(S) & Trans(S) & ClawFree(S) & S 6⊆ {∅, {∅}}→
〈∃h | SqHamiltonian(h, S)〉. Proof:

Suppose not(s1)⇒ Auto∥∥∥∥ For, assuming the opposite, there would exist an inclusion-minimal, finite tran-
sitive non-trivial claw-free set whose square lacks a Hamiltonian cycle.

APPLY 〈finΘ : s0〉 finiteInduction
(

s0 7→ s1,P(S) 7→
(
Trans(S) & ClawFree(S) &

S 6⊆ {∅, {∅}} & ¬〈∃h | SqHamiltonian(h,S)〉))⇒
Stat1 : 〈∀s | s⊆ s0→ Finite(s) &

(
Trans(s) & ClawFree(s) &

s 6⊆ {∅, {∅}} & ¬〈∃h | SqHamiltonian(h, s)〉↔ s = s0

)
〉

〈s0〉↪→Stat1(Stat1?)⇒ Stat2 : ¬〈∃h | SqHamiltonian(h, s0)〉 & Finite(s0) &

Trans(s0) & ClawFree(s0) & s0 6⊆ {∅, {∅}}∥∥∥∥∥∥∥∥∥∥∥∥

Thanks to the finiteness of such an s0, the Theory pivotsForClawFreeness can
be applied to s0. We thereby pick an element x from the frontier of s0, and an
element y of x which is pivotal relative to s0. This y will have at most two in-
neighbors (one of the two being x) in s0. We denote by z an in-neighbor of y in
s0, such that z differs from x if possible. Observe, among others, that neither one
of x, z can belong to the other.

APPLY 〈xΘ : x, yΘ : y, zΘ : z, tΘ : t〉 pivotsForClawFreeness(s0 7→ s0)⇒
Stat3 : {v ∈ s0 | y ∈ v} = {x, z} & z ∈ s0 & y ∈ z & y ∈ x & y, x ∈ s0 &

y /∈
⋃⋃

s0 & t = {u ∈ s0 | y /∈ u} & Trans(t) & ClawFree(t) &

s0 ⊇ t & x /∈ t & y ∈ t\
⋃

t & t = s0\ {x, z} & x /∈ z & z /∈ x∥∥∥∥∥∥
Thus it turns out readily that removal of x, z from s0 leads to a set t to which,
unless t is ‘trivial’ (i.e. a subset of {∅, {∅}}), the inductive hypothesis applies;
hence, by that hypothesis, there is a Hamiltonian cycle h0 for t.

Suppose⇒ t⊆ {∅, {∅}}∥∥∥∥∥∥∥∥∥∥
In order that t be trivial, we should have s0 ⊆ {∅, {∅} , {{∅}} , {∅, {∅}}}; but then,
as already shown in the proof of Theorem hamiltonian4, we have the ability,
either directly, or by enrichment of a Hamiltonian cycle for {∅, {∅} , {{∅}}}, to
construct a Hamiltonian cycle for s0: thus, if we suppose t⊆ {∅, {∅}} then we
get a contradiction.

〈s0, x, z〉↪→T3d(Stat2?)⇒ Stat7 : s0 ⊆ {∅, {∅} , {{∅}} , {∅, {∅}}}
〈s0〉↪→Thamiltonian4(Stat2,Stat7?)⇒ false; Discharge⇒ Auto
〈t〉↪→Stat1(Stat3?)⇒ Stat9 : 〈∃h | SqHamiltonian(h, t)〉 & t 6⊆ {∅, {∅}}
〈h0〉↪→Stat9(Stat9?)⇒ Stat10 : SqHamiltonian(h0, t)

Use def
(

Hamiltonian
(
h0, t, sqEdges(t)

))
⇒ Auto

Use def(SqHamiltonian)⇒
Stat11 : 〈∀x ∈ t\

⋃
t,∃y ∈ x | {x, y} ∈ h0〉 & Cycle(h0) &⋃

h0 = t & h0 ⊆ sqEdges(t)
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

It follows from y being a source of t =
⋃

h0 that there is an edge {y,w}, with w ∈ y,
in h0, If x = z, to get a Hamiltonian cycle h1 for s0 (a fact conflicting with the
inductive hypothesis) it will suffice to take h1 = h0\ {{y,w}} ∪ {{x, y} , {x,w}},
where {x,w} is a square edge because w ∈ y and y ∈ x both hold. On the
other hand, if x 6= z, claw-freeness implies that either w ∈ x or w ∈ z. Assume
the former for definiteness, and put h2 = h0\ {{y,w}} ∪ {{y, z} , {z, x} , {x,w}},
where {x, z} is a square edge and {x,w} and {y, z} are genuine edges incident in
the sources x, z. We are again facing a contradiction, because h2 is a Hamiltonian
cycle for s0.

〈y,w〉↪→Stat11(Stat3?)⇒ Stat12 : w ∈ y & {w, y} ∈ h0

Suppose⇒ x = z
〈s0, t, x, y, h0,w, ∅〉↪→Thamiltonian1(Stat3?)⇒

SqHamiltonian(h0\ {{w, y}} ∪ {{w, x} , {x, y}} , s0)
〈h0\ {{w, y}} ∪ {{w, x} , {x, y}} 〉↪→Stat2(Stat2?)⇒ false;

Discharge⇒ Stat13 : x 6= z
(Stat2,Stat3?)ELEM⇒ Stat14 : ClawFree(s0) & y ∈ x ∩ z & s0⊇ {y, x, z}
〈s0, y〉↪→T3c(Stat2,Stat3,Stat12?)⇒ w ∈ s0

〈s0, y, x, z,w〉↪→T clawFreenessb(Stat3?)⇒ w ∈ x ∪ z
Suppose⇒ Stat15 : w ∈ x
〈s0, t, x, z, y, h0,w〉↪→Thamiltonian2(Stat3,Stat13,Stat14,Stat10,Stat12,Stat15?)⇒

SqHamiltonian(h0\ {{w, y}} ∪ {{w, x} , {x, z} , {z, y}} , s0)
〈h0\ {{w, y}} ∪ {{w, x} , {x, z} , {z, y}} 〉↪→Stat2(Stat2?)⇒ false;

Discharge⇒ Stat16 : w ∈ z
〈s0, t, z, x, y, h0,w〉↪→Thamiltonian2(Stat3,Stat13,Stat14,Stat10,Stat12,Stat16?)⇒

SqHamiltonian(h0\ {{w, y}} ∪ {{w, z} , {z, x} , {x, y}} , s0)
〈h0\ {{w, y}} ∪ {{w, z} , {z, x} , {x, y}} 〉↪→Stat2(Stat2?)⇒ false;

Discharge⇒ Qed

B.8 Perfect matchings∥∥∥∥∥∥∥
Next we introduce the notion of perfect matching. This is a partition consisting
of doubletons one of whose elements belongs to the other. Special cases of a
perfect matching are: the empty set and, more generally, all subsets of a perfect
matching.

Def perfect matching: [Set of disjoint membership pairs]
PerfectMatching(M) ↔Def

〈∀p ∈ M,∃x ∈ p, y ∈ x,∀q ∈ M | x ∈ q ∨ y ∈ q→ {x, y} = q〉
Thm perfectMatching0: [The null set is a perfect matching]

PerfectMatching(∅). Proof:
Suppose not()⇒ Auto

Use def(PerfectMatching)⇒ Stat0 : ¬〈∀p ∈ ∅,∃x ∈ p, y ∈ x,∀q ∈ ∅ |
x ∈ q ∨ y ∈ q→ {x, y} = q〉

〈p1〉↪→Stat0⇒ false; Discharge⇒ Qed

Thm perfectMatching1: [Perfect matchings consist of true doubletons]
PerfectMatching(M) & P ∈ M→ P /∈ {∅, {X}} . Proof:
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Suppose not(m, p0, x0)⇒ Auto
Use def(PerfectMatching)⇒ Stat1 : 〈∀p ∈ m,∃x ∈ p, y ∈ x,∀q ∈ m |

x ∈ q ∨ y ∈ q→ {x, y} = q〉
〈p0, x, y, p0〉↪→Stat1(?)⇒ false; Discharge⇒ Qed

Thm perfectMatching2: [All subsets of a perfect matching are perfect]
PerfectMatching(M) & M⊇ N→ PerfectMatching(N). Proof:
Suppose not(m, n)⇒ Auto

Set monot⇒
〈∀p ∈ m,∃x ∈ p, y ∈ x,∀q ∈ m | x ∈ q ∨ y ∈ q→ {x, y} = q〉→
〈∀p ∈ n,∃x ∈ p, y ∈ x,∀q ∈ n | x ∈ q ∨ y ∈ q→ {x, y} = q〉

Use def(PerfectMatching)⇒ false; Discharge⇒ Qed

∥∥∥∥ By adjoining a pair {x, y} with y ∈ x to a perfect matching none of whose blocks
has either x or y as an element, we always obtain a perfect matching.

Thm perfectMatching3: [Bottom-up assembly of a perfect matching]
PerfectMatching(M) & X /∈

⋃
M & Y /∈

⋃
M & Y ∈ X→

PerfectMatching(M ∪ {{X,Y}}). Proof:
Suppose not(m, x0, y0)⇒ Stat2 : PerfectMatching(m) & x0 /∈

⋃
m &

y0 /∈
⋃

m & y0 ∈ x0 & ¬PerfectMatching(m ∪ {{x0, y0}})
Suppose⇒ Stat3 : ¬〈∀q ∈ m | x0 /∈ q & y0 /∈ q〉

Use def(
⋃

)⇒ Stat4 : x0 /∈ {v : u ∈ m, v ∈ u} &

y0 /∈ {v : u ∈ m, v ∈ u}
〈q2〉↪→Stat3(Stat3?)⇒ q2 ∈ m & x0 ∈ q2 ∨ y0 ∈ q2

〈q2, x0, q2, y0〉↪→Stat4(Stat4?)⇒ false; Discharge⇒
Stat5 : 〈∀q ∈ m | x0 /∈ q & y0 /∈ q〉

Use def(PerfectMatching)⇒
Stat6 : ¬〈∀p ∈ m ∪ {{x0, y0}} ,∃x ∈ p, y ∈ x,

∀q ∈ m ∪ {{x0, y0}} | x ∈ q ∨ y ∈ q→ {x, y} = q〉 &

Stat7 : 〈∀p ∈ m,∃x ∈ p, y ∈ x,
∀q ∈ m | x ∈ q ∨ y ∈ q→ {x, y} = q〉

〈p0〉↪→Stat6(Stat6?)⇒
Stat8 : ¬〈∃x ∈ p0, y ∈ x,∀q ∈ m ∪ {{x0, y0}} | x ∈ q ∨ y ∈ q→

{x, y} = q〉 & p0 ∈ m ∪ {{x0, y0}}
Suppose⇒ Stat9 : p0 = {x0, y0}
〈x0, y0〉↪→Stat8(Stat2,Stat9?)⇒
Stat10 :¬〈∀q ∈ m ∪ {{x0, y0}} | x0 ∈ q ∨ y0 ∈ q→ {x0, y0} = q〉
〈q1〉↪→Stat9(Stat9?)⇒ q1 ∈ m & x0 ∈ q1 ∨ y0 ∈ q1

〈q1〉↪→Stat5(Stat10?)⇒ false; Discharge⇒ Auto
〈p0, x1, y1〉↪→Stat7⇒ Auto
〈x1, y1〉↪→Stat8(Stat8?)⇒

Stat13 :¬〈∀q ∈ m ∪ {{x0, y0}} | x1 ∈ q ∨ y1 ∈ q→{x1, y1} = q〉&
Stat12 : 〈∀q ∈ m | x1 ∈ q ∨ y1 ∈ q→ {x1, y1} = q〉 & p0 ∈ m &

x1 ∈ p0 & y1 ∈ x1

〈q0, q0〉↪→Stat13(Stat13?)⇒ Stat14 : q0 = {x0, y0} & x1 ∈ q0 ∨ y1 ∈ q0

〈p0〉↪→Stat5(?)⇒ x0 /∈ p0 & y0 /∈ p0
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〈p0〉↪→Stat12(Stat13,Stat13?)⇒ {x1, y1} = p0

(Stat14?)Discharge⇒ Qed

∥∥∥∥∥∥
If, in a perfect matching m, we replace one block {y,w} by pairs {y, z} , {x,w},
then, under suitable conditions ensuring disjointness between blocks and mem-
bership within each block, we get a perfect matching again.

Thm perfectMatching4: [Deviated perfect matching]
PerfectMatching(M) & {Y,W} ∈ M & X /∈

⋃
M & Z /∈

⋃
M & Y ∈ Z &

Y 6= X & X 6= Z & W ∈ X→
PerfectMatching(M\ {{Y,W}} ∪ {{Y,Z} , {X,W}}). Proof:

Suppose not(m, y0,w0, x0, z0)⇒ Auto∥∥∥∥∥∥
For assuming that m, y0,w0, x0, z0 are a counterexample to the claim, we could
get a contradiction arguing as follows. Begin by observing that neither y0 nor w0

can belong to the unionset of the perfect submatching m\ {{y0,w0}} of m.

Suppose⇒ Stat1 : {y0,w0} ∩
⋃

(m\ {{y0,w0}}) 6= ∅
Use def(PerfectMatching)⇒ Stat2 :
〈∀p ∈ m,∃x ∈ p, y ∈ x,∀q ∈ m | x ∈ q ∨ y ∈ q→ {x, y} = q〉

Use def
(⋃

(m\ {{y0,w0}})
)
⇒ Auto

〈w1〉↪→Stat1⇒ Stat3 :
w1 ∈ {u : v ∈ m\ {{y0,w0}} , u ∈ v} & w1 ∈ {y0,w0}

〈p0,w2〉↪→Stat3⇒ p0 ∈ m\ {{y0,w0}} & w1 ∈ p0

〈p0, x2, y2〉↪→Stat2⇒ Stat4 :
〈∀q ∈ m | x2 ∈ q ∨ y2 ∈ q→ {x2, y2} = q〉 & x2 ∈ p0 & y2 ∈ x2

〈p0〉↪→Stat4⇒ p0 = {x2, y2}
〈 {y0,w0} 〉↪→Stat4(?)⇒ false; Discharge⇒ Auto
〈m,m\ {{y0,w0}} 〉↪→TperfectMatching2⇒ PerfectMatching(m\ {{y0,w0}})∥∥∥∥∥∥
Thus, taking into account that w0 ∈ x0 and that x0 /∈

⋃
m which is a superset

of
⋃

(m\ {{y0,w0}}), we can extend the perfect matching m\ {{y0,w0}} with the
doubleton {x0,w0}.

〈m\ {{y0,w0}} ,m〉↪→T2c ⇒ x0 /∈
⋃

(m\ {{y0,w0}})
〈m\ {{y0,w0}} , x0,w0〉↪→TperfectMatching3 ⇒

PerfectMatching(m\ {{y0,w0}} ∪ {{x0,w0}})∥∥∥∥∥∥∥∥
Observe next that x0 6= y0 and z0 6= w0, because x0 /∈

⋃
m and z0 /∈

⋃
m whereas

y0 ∈
⋃

m and w0 ∈
⋃

m. It then follows from z0 6= w0, thanks to the assump-
tion z0 6= x0, that z0 does not belong to the unionset of the perfect matching
m\ {{y0,w0}} ∪ {{x0,w0}}.

Suppose⇒ x0 = w0 ∨ z0 = w0

Use def(
⋃

)⇒ Stat5 : z0 /∈ {u : v ∈ m, u ∈ v} & x0 /∈ {u : v ∈ m, u ∈ v}
〈 {y0,w0} ,w0, {y0,w0} , y0〉↪→Stat5⇒ false; Discharge⇒ Auto
Suppose⇒ z0 ∈

⋃
(m\ {{y0,w0}} ∪ {{x0,w0}})

〈m\ {{y0,w0}} ,m〉↪→T2c⇒ z0 /∈
⋃

(m\ {{y0,w0}})
〈m\ {{y0,w0}} , {x0,w0} 〉↪→T2e ⇒ false; Discharge⇒ Auto
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∥∥∥∥∥∥∥∥
y0 cannot equal w0 either, the reason being that the set {y0,w0} is a block of
a perfect matching and hence it cannot be a singleton. If follows, thanks to
the assumption y0 ∈ x0 (entailing that y0 6= x0), that y0 does not belong to⋃

(m\ {{y0,w0}} ∪ {{x0,w0}}) either.

〈m, {y0,w0} ,w0〉↪→TperfectMatching1 ⇒ y0 6= w0

〈m\ {{y0,w0}} , {x0,w0} 〉↪→T2e ⇒ y0 /∈
⋃

(m\ {{y0,w0}} ∪ {{x0,w0}})∥∥∥∥∥We now know that the perfect matching m\ {{y0,w0}} ∪ {{x0,w0}} can be ex-
tended with the doubleton {y0, z0}, which readily leads us to the sought contra-
diction.

〈m\ {{y0,w0}} ∪ {{x0,w0}} , z0, y0〉↪→TperfectMatching3 ⇒
PerfectMatching(m\ {{y0,w0}} ∪ {{x0,w0}} ∪ {{y0, z0}}) &

m\ {{y0,w0}} ∪ {{x0,w0}} ∪ {{y0, z0}} =
m\ {{y0,w0}} ∪ {{y0, z0} , {x0,w0}}

EQUAL⇒ false; Discharge⇒ Qed

B.9 Each claw-free set admits a near-perfect matching∥∥∥ Every claw-free finite, transitive set admits a perfect matching perhaps omitting
one of its elements.

Thm clawFreeness2: [Claw-free sets admit near-perfect matchings]
Finite(S) & Trans(S) & ClawFree(S)→
〈∃m, y | PerfectMatching(m) & S\ {y} =

⋃
m〉. Proof:

Suppose not(s1)⇒ Auto∥∥∥∥∥∥
For, supposing the contrary, there would be an inclusion-minimal finite set s0

which is transitive and claw-free, and such that no perfect matching m partitions
the set s0 possibly deprived of an element y0.

APPLY 〈finΘ : s0〉 finiteInduction
(

s0 7→ s1,P(S) 7→
(
Trans(S) & ClawFree(S) &

¬〈∃m, y | PerfectMatching(m) & S\ {y} =
⋃

m〉))⇒
Stat1 : 〈∀s | s⊆ s0→ Finite(s) &

(
Trans(s) & ClawFree(s) &

¬〈∃m, y | PerfectMatching(m) & s\ {y} =
⋃

m〉↔ s = s0

)
〉

〈s0〉↪→Stat1(Stat1?)⇒
Stat2 : ¬〈∃m, y | PerfectMatching(m) & s0\ {y} =

⋃
m〉 &

Trans(s0) & ClawFree(s0) & Finite(s0)∥∥∥We observe that such an s0 cannot equal ∅ or {∅}, else the null perfect matching
would cover it.

Suppose⇒ Stat3 : s0 ∩
⋃

s0 = ∅
〈s0〉↪→T3a ⇒ Auto
〈s0〉↪→T31d ⇒ Auto
〈∅〉↪→T31d ⇒ Auto
〈∅, ∅〉↪→Stat2⇒ ¬PerfectMatching(∅)

〈 〉↪→TperfectMatching0(Stat3?)⇒ false; Discharge⇒ s0 ∩
⋃

s0 6= ∅
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∥∥∥∥∥∥∥∥∥∥
Thanks to the finiteness of s0, the Theory pivotsForClawFreeness can be applied
to s0. We thereby pick an element x from the frontier of s0 and an element y of x
which is pivotal relative to s0. This y will have at most two ∈-predecessors (one
of the two being x) in s0. We denote by z a predecessor of y in s0, such that z
differs from x if possible.

APPLY 〈xΘ : x, yΘ : y, zΘ : z, tΘ : t′〉 pivotsForClawFreeness(s0 7→ s0)⇒
Stat4 : {v ∈ s0 | y ∈ v} = {x, z} & z ∈ s0 & y ∈ z & y ∈ x& y, x ∈ s0 &

y /∈
⋃⋃

s0 & t′= {z ∈ s0 | y /∈ z} & Trans(t′) & ClawFree(t′) &

s0 ⊇ t′ & x /∈ t′ & y ∈ t′\
⋃

t′ & t′= s0\ {x, z} & x /∈ z & z /∈ x∥∥∥∥Moreover, we take t′ to be s0 deprived of the predecessors of y and, if x 6= z, we
take t = t′ else we take t = t′\ {y}.

Loc def ⇒ t = if x = z then t′\ {y} else t′ fi∥∥∥∥ Thus it turns out readily that t is transitive; hence, by the inductive hypothesis,
there is a perfect matching m0 for t.

〈t′, t〉↪→T clawFreenessa(Stat4?)⇒ Stat5 : ClawFree(t) & x /∈ t & s0 ⊇ t &

t′ ⊇ t & t′= s0\ {x, z} & y ∈ t′

〈t′, t〉↪→T4c(Stat4?)⇒ Trans(t)
〈t〉↪→Stat1(Stat4?)⇒ Stat6 : 〈∃m, y | PerfectMatching(m) & t\ {y} =

⋃
m〉

〈m0, y0〉↪→Stat6(Stat6?)⇒ Stat7 : PerfectMatching(m0) &
⋃

m0 = t\ {y0}∥∥∥∥∥∥∥∥∥∥
The possibility that y does not belong to

⋃
m0 is then discarded; in fact, if

this were the case, then by adding the pair {x, y} to m0 we would get a perfect
matching for s0, while we have assumed that such a matching does not exist.
From the fact y ∈

⋃
m0 it follows that y belongs to t, hence that t = t′ and that

x, z are distinct.

Suppose⇒ Stat8 : y /∈
⋃

m0

〈m0, x, y〉↪→TperfectMatching3(Stat4?)⇒
Stat9 : PerfectMatching(m0 ∪ {{x, y}})

Loc def ⇒ Stat10 : v = if x = z then y else z fi
(Stat4?)ELEM⇒ Stat11 : s0 = t ∪ {x, v} & {x} ∪ {y} = {x, y}
(Stat5,Stat11,Stat8,Stat7?)ELEM⇒ y = v ∨ y = y0

〈m0, t, y0, s0, {x} , v, y〉↪→T31h(Stat4?)⇒
Stat12 : 〈∃d |

⋃
(m0 ∪ {{x} ∪ {y}}) = s0\ {d} 〉

〈d0〉↪→Stat12(Stat12?)⇒
⋃

(m0 ∪ {{x} ∪ {y}}) = s0\ {d0}
EQUAL 〈Stat11〉⇒ Stat13 :

⋃
(m0 ∪ {{x, y}}) = s0\ {d0}

〈m0 ∪ {{x, y}} , d0〉↪→Stat2(Stat9,Stat13?)⇒ false; Discharge⇒
Stat14 : y ∈

⋃
m0

Use def(
⋃

)⇒ Stat15 : y ∈ {h : p ∈ m0, h ∈ p} & y ∈ x ∩ z & x 6= z &

t = t′ & x /∈ z & z /∈ x &
⋃

m0 = {h : p ∈ m0, h ∈ p}∥∥∥∥∥∥∥
It also follows that y is the tail of that arc p1 of m0 to which it belongs. In fact,
if y were instead the head of p1, then the tail x2 of p1, which must belong to⋃

m0 would belong to s0\ {x, z}, hence would be inside s0 but outside the set of
predecessors of y, which is absurd.

Suppose⇒ Stat16 : ¬〈∃w | {y,w} ∈ m0 & w ∈ y〉
〈p1, h1〉↪→Stat15(Stat16?)⇒ p1 ∈ m0 & y ∈ p1
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Use def(PerfectMatching)⇒ Stat17 : 〈∀p ∈ m0,∃x ∈ p, y ∈ x,∀q ∈ m0 |
x ∈ q ∨ y ∈ q→ {x, y} = q〉

〈p1, x2,w2, p1〉↪→Stat17(Stat16?)⇒ x2 ∈ p1 & w2 ∈ x2 & p1 ∈ m0 &

{x2,w2} = p1

〈w2〉↪→Stat16(Stat16?)⇒ Stat18 : y ∈ x2 & {y, x2} ∈ m0

Suppose⇒ Stat19 : x2 /∈ {u : v ∈ m0, u ∈ v}
〈 {y, x2} , x2〉↪→Stat19(Stat18?)⇒ false; Discharge⇒ Auto
EQUAL 〈Stat4〉⇒ Stat20 : {v ∈ s0 | y ∈ v} = {x, z} & x2 ∈

⋃
m0

(Stat7,Stat5,Stat20?)ELEM⇒ Stat21 : x2 /∈ {v ∈ s0 | y ∈ v} & x2 ∈ s0

〈x2〉↪→Stat21(Stat18,Stat21?)⇒ false; Discharge⇒
Stat22 : 〈∃w | {y,w} ∈ m0 & w ∈ y〉∥∥∥∥ Call w the head of the arc issuing from y in m0. Then y, x, z,w form a potential

claw; this implies, since s0 is claw-free that either w ∈ x or w ∈ z.

〈w〉↪→Stat22(Stat22?)⇒ Stat23 : w ∈ y & {y,w} ∈ m0

〈s0, y〉↪→T3c(Stat2,Stat4,Stat23,Stat4,Stat5,Stat15?)⇒
Stat24 : w, y, x, z ∈ s0

(Stat2,Stat7,Stat15?)ELEM⇒
ClawFree(s0) & PerfectMatching(m0) & y ∈ x ∩ z

〈s0, y, x, z,w〉↪→T clawFreenessb(Stat15?)⇒ w ∈ x ∪ z∥∥∥∥∥∥∥∥
Obviously, w ∈

⋃
m0. Moreover, through elementary reasoning we derive⋃

m0 ∪ {z, x} = s0\ {y1}, where y1 lies outside s0 if both x and z has been covered
by the matching m0, otherwise y1 equals the one of x, z (which might be the same
set) left over by m0.

Suppose⇒ Stat25 : w /∈ {u : v ∈ m0, u ∈ v}
〈 {y,w} ,w〉↪→Stat25(Stat23,Stat23?)⇒ false; Discharge⇒ Auto
(Stat7,Stat5?)ELEM⇒ x /∈

⋃
m0 & z /∈

⋃
m0

Loc def ⇒ Stat26 : y1 = if y0 ∈ {x, z} then s0 else y0 fi
(Stat24,Stat26?)ELEM⇒ s0\ {x, z, y0} ∪ {z, x} = s0\ {y1}
(Stat7,Stat15,Stat5?)ELEM⇒

⋃
m0 ∪ {z, x} = s0\ {x, z, y0} ∪ {z, x}

EQUAL 〈Stat15〉⇒ Stat27 :
⋃

m0 ∪ {z, x} = s0\ {y1} & w ∈
⋃

m0∥∥∥∥∥∥∥
If there is an edge between w and x, then we deviate the perfect matching by
replacing {y,w} by {y, z} and {x,w}; otherwise we replace {y,w} by {y, x} and
{z,w}. Plainly we get a perfect matching for s0 in either case, which leads us to
the desired contradiction.

Suppose⇒ w ∈ x
〈m0, y,w, x, z〉↪→TperfectMatching4(Stat15?)⇒

Stat28 : PerfectMatching(m0\ {{y,w}}∪{{y, z} , {x,w}})
〈m0, {y,w} , {y, z} , {x,w} , {z, x} 〉↪→T31f(Stat15,Stat27?)⇒⋃

(m0\{{y,w}} ∪ {{y, z} , {x,w}}) = s0\ {y1}
〈m0\ {{y,w}} ∪ {{y, z} , {x,w}} , y1〉↪→Stat2(Stat28?)⇒ false

Discharge⇒ Auto
〈m0, y,w, z, x〉↪→TperfectMatching4(Stat15?)⇒

Stat29 : PerfectMatching(m0\ {{y,w}}∪{{y, x} , {z,w}})
〈m0, {y,w} , {y, x} , {z,w} , {z, x} 〉↪→T31f(Stat15,Stat27?)⇒⋃

(m0\{{y,w}} ∪ {{y, x} , {z,w}}) = s0\ {y1}
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〈m0\ {{y,w}} ∪ {{y, x} , {z,w}} , y1〉↪→Stat2(Stat29?)⇒ false;
Discharge⇒ Qed

B.10 From membership digraphs to general graphs∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Let us now place the results presented so far under the more general perspective
that motivates this work. We display in this section the interfaces of two The-
orys (not developed formally with Ref, as of today), explaining why we can work
with membership as a convenient surrogate for the edge relationship of general
graphs.

One of these, Theory finGraphRepr, will implement the proof that any finite
graph (v0, e0) is ‘isomorphic’, via a suitable orientation of its edges and an injec-
tion %Θ of v0 onto a set νΘ, to a digraph (νΘ, {(x, y) : x ∈ νΘ, y ∈ x ∩ νΘ}) that
enjoys the weak extensionality property: “distinct non-sink vertices have different
out-neighborhoods”.∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Although accessory, the weak extensionality condition is the clue for getting
the desired isomorphism; in fact, for any weakly extensional digraph, acyclicity
always ensures that a variant of Mostowski’s collapse is well-defined: in order to
get it, one starts by assigning a distinct set Mt to each sink t and then proceeds
by putting recursively

Mw = {Mu : (w, u) is an arc }
for all non-sink vertices w; plainly, injectivity of the function u 7→ Mu can be
ensured globally by a suitable choice of the images Mt of the sinks t.

Display finGraphRepr

Theory finGraphRepr(v0, e0)
Finite(v0) & e0 ⊆ {{x, y} : x, y ∈ v0 | x 6= y}

⇒ (%Θ, νΘ)
1–1(%Θ) & domain(%Θ) = v0 & range(%Θ) = νΘ

〈∀x ∈ v0, y ∈ v0 | {x, y} ∈ e0↔ %Θ�x ∈ %Θ�y ∨ %Θ�y ∈ %Θ�x〉
{x ∈ νΘ | x ∩ νΘ 6= ∅} ⊆ P

(
νΘ

)
End finGraphRepr∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

The other Theory, cfGraphRepr, will specialize finGraphRepr to the case of a
connected, claw-free (undirected, finite) graph—connectedness and claw-freeness
are specified, respectively, by the second and by the third assumption of this
Theory . For these graphs, we can insist that the orientation be so imposed as to
ensure extensionality in full: “distinct vertices have different out-neighborhoods”.
Consequently, the following will hold:
• there is a unique sink, ∅; moreover,

• the set νΘ of vertices underlying the image digraph is transitive. And, trivially,

• νΘ is a claw-free set, in an even stronger sense than the definition with which
we have been working throughout this proof scenario.

(As regards the third of these points, it should be clear that none of the four
non-isomorphic membership renderings of a claw are induced by any quadruple
of elements of νΘ; our definition forbade only two of them, though!)

Display cfGraphRepr
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188 B. Connected Claw-Free Graphs: a Proof-Scenario Checked by Referee

Theory cfGraphRepr(v0, e0)
Finite(v0) & e0 ⊆ {{x, y} : x, y ∈ v0 | x 6= y}
〈∀x ∈ v0, y ∈ v0 | x 6= y & {x, y} /∈ e0→ 〈∃p⊆ e0 | Cycle(p ∪ {{y, x}})〉〉
〈∀w ∈ v0, x ∈ v0, y ∈ v0, z ∈ v0 | {w, y} , {y, x} , {y, z} ∈ e0→

x = z ∨ w ∈ {z, x} ∨ {x, z} ∈ e0 ∨ {z,w} ∈ e0 ∨ {w, x} ∈ e0〉
⇒ (ρΘ, νΘ)

1–1(ρΘ) & domain(ρΘ) = v0 & range(ρΘ) = νΘ

〈∀x ∈ v0, y ∈ v0 | {x, y} ∈ e0↔ ρΘ�x ∈ ρΘ�y ∨ ρΘ�y ∈ ρΘ�x〉
Trans(νΘ) & ClawFree(νΘ)

End cfGraphRepr∥∥∥∥∥∥∥
Via the Theory cfGraphRepr, the above-proved existence results about perfect
matchings and Hamiltonian cycles can be transferred from a realm of special
membership digraphs to the a priori more general realm of the connected claw-
free graphs.
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[16] Bellè, D., Parlamento, F.: Truth in V for ∃∗∀∀-sentences is decidable. The Journal
of Symbolic Logic 71(4) (2006) 1200–1222



Tesi di dottorato di Alexandru Ioan Tomescu, discussa presso l’Università degli Studi di Udine
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