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RNA-SEQUENCING
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Problem: assemble the RNA transcripts from the RNA-Seq
reads and quantify their expression levels
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MULTI-ASSEMBLY

Assembly of fragments from different, but related, sequences
I transcriptomics (RNA-Seq)
I viral quasi-species
I metagenomics

Assumptions:

" existing reference (genome-guided multi-assembly)

$ no existing annotation
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SPLICING GRAPHS
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OVERLAP GRAPHS
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I reads ≡ nodes
I overlaps ≡ arcs
I + coverage information

Existing reference =⇒ directed acyclic graphs (DAGs)
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OUTLINE OF THE TALK

Three problem formulations:

1. Assembly only
2. Simultaneous assembly and estimation of expression levels
3. Assembly only, with long reads, or paired-end reads
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ASSEMBLY: MINIMUM PATH COVER (MPC)

What is the minimum number of paths required to cover all
nodes of a DAG?

I RNA-Seq: Cufflinks 2010, CLASS 2012, BRANCH 2013
I Viral quasi-species: ShoRAH 2011
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ASSEMBLY: MINIMUM PATH COVER (MPC)

In general it is NP-hard (one path iff G has a Hamiltonian path)

But it is solvable in polynomial-time on DAGs:

I Dilworth’s theorem 1950 + Fulkerson’s constructive proof
1956

I by a maximum matching algorithm, solvable in
time O(t(G)

√
n)

I the weighted version can be solved in time
O(n2 log n + t(G)n)

where m ≤ t(G) ≤ n2 is #arcs in the transitive closure of G.

11 / 33



Multi-assembly Assembly Assembly and expression levels Long, and paired-end reads End

MIN-COST MPC VIA MIN-COST FLOWS

I Unweighted case: MPC via min-flows, e.g. [Pijls, Potharst,
2013]

I Weighted case: MPC via min-cost flows
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MPC VIA MIN-COST FLOWS

This min-cost flow problem
I can be solved in time O(n2 log n + nm) by [Gabow and

Tarjan, 1991]

I observed in [Rizzi, T., Mäkinen, 2014]

This is better than O(n2 log n + nt(G)), since m ≤ t(G) ≤ n2

I as soon as there is a path of length O(n), we have
t(G) = O(n2)
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OUTLINE OF THE TALK

Three problem formulations:

1. Assembly only
2. Simultaneous assembly and estimation of expression

levels
3. Assembly only, with long reads, or paired-end reads
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ASSEMBLY AND ESTIMATION OF EXPRESSION LEVELS

INPUT: An arc-weighted DAG G, and

I A superset S of the sources, and a superset T of the sinks

TASK: Find a collection of paths P1, . . . ,Pk in G, and their
expression levels e1, . . . , ek, such that:

I every Pi starts in S, and ends in T, and

I the following cost is minimized

∑
(x,y)∈E

∣∣∣∣∣∣w(x, y)−
∑

j : (x,y)∈Pj

ej

∣∣∣∣∣∣ .

Variants for RNA-Seq in: IsoInfer 2010, IsoLasso 2011, CLIIQ
2012, FlipFlop 2014
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ASSEMBLY AND ESTIMATION OF EXPRESSION LEVELS
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Cost is |6− 8|+ |3− 0|+ |4− 3|
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ASSEMBLY AND ESTIMATION OF EXPRESSION LEVELS

Previous solutions based on enumeration of all paths (+ILP)

Solvable in polynomial-time by min-cost flows
I [T., Kuosmanen, Rizzi, Mäkinen, 2013]

If number k of paths is given in input, then NP-hard
But solvable in time O(Wkaw(G)kn2)

I [T., Gagie, Popa, Rizzi, Kuosmanen, Mäkinen, 2015]
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OUTLINE OF THE TALK
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ASSEMBLY WITH LONG READS
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ASSEMBLY WITH LONG READS (2)
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ASSEMBLY WITH LONG READS
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MIN-COST MPC WITH SUBPATH CONSTRAINTS

INPUT: An arc-weighted DAG G, and

1. A superset S of the sources, and a superset T of the sinks

2. A family P in = {Pin
1 , . . . ,Pin

c } of directed paths in G

TASK: Find a minimum number k of directed paths Psol
1 , . . . ,Psol

k
in G such that

1. Every node in V(G) occurs in some Psol
i

2. Every path Pin ∈ P in is a subpath of some Psol
i

3. Every path Psol
i starts in S and ends in T

4.
k∑

i=1

∑
edge e∈Psol

i

w(e) is minimum among all such k paths

I introduced by [Bao, Jiang, Girke, 2013, BRANCH], but the
case of overlapping constraints not solved
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MIN-COST MPC WITH SUBPATH CONSTRAINTS

s t

25 / 33



Multi-assembly Assembly Assembly and expression levels Long, and paired-end reads End

MIN-COST MPC WITH SUBPATH CONSTRAINTS

Subpath constraints as arc demands:

≥ 0≥ 0≥ 0

≥ 1

26 / 33



Multi-assembly Assembly Assembly and expression levels Long, and paired-end reads End

MIN-COST MPC WITH SUBPATH CONSTRAINTS
Problem 1: a constraint P included in another constraint Q

≥ 0≥ 0≥ 0

≥ 1
≥ 1

I Remove P
I Can be implemented in time O(N) with a suffix tree for

large alphabets, [Farach, 1997]
I N = sum of lengths of Subpath Constraints
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MIN-COST MPC WITH SUBPATH CONSTRAINTS
Problem 2: Suffix-prefix overlaps

≥ 0≥ 0≥ 0

≥ 1 ≥ 1

≥ 0

I Iteratively merge constraints with longest suffix-prefix
overlap

I All suffix-prefix overlaps can be found in optimal time
O(N + |overlaps|) by [Gusfield, Landau and Schieber, 1992]

I Our iterative merging also takes O(N + |overlaps|) time
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MIN-COST MPC WITH SUBPATH CONSTRAINTS

Pre-processing phase
I O(N + |overlaps|)

The flow network has size:
I O(n) nodes and O(m + c) arcs

Min-cost MPC with Subpath Constraints can be solved in time
O(N + |overlaps|+ n2 log n + n(m + c)) using [Gabow and Tarjan,
1991]

I [Rizzi, T., Mäkinen, 2014]
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MPC WITH PAIRED SUBPATH CONSTRAINTS

INPUT: A DAG G and

1. A family P in = {(Pin
1,1,Pin

1,2), . . . , (P
in
t,1,Pin

t,2)} of pairs of
directed paths in G

TASK: Find a minimum number k of directed paths Psol
1 , . . . ,Psol

k
in G such that

1. Every node in V(G) occurs in some Psol
i

2. For every pair (Pin
j,1,Pin

j,2) ∈ P in, there exists Psol
i such that

both Pin
j,1 and Pin

j,2 are subpaths of Psol
i

I introduced by [Song and Florea, 2013, CLASS]
I NP-hard

I [Rizzi, T., Mäkinen, 2014]
I [Beerenwinkel, Beretta, Bonizzoni, Dondi and Pirola, 2014]
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CONCLUSIONS

I Min-cost Minimum Path Cover

O(n2 log n + nm)

I Simultaneous assembly and expression estimation

polynomial-time, but NP-hard for given k

I Min-cost Minimum Path Cover with Subpath Constraints

O(N + |overlaps|+ n2 log n + n(m + c))
I c = number of Subpath Constraints
I N = sum of lengths of Subpath Constraints

I Minimum Path Cover with Pairs of Subpaths Constraints

NP-hard
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 “… a well-thought-out, integrated book that fi lls a gap in the recent literature of textbooks 
in algorithmic bioinformatics.”              
Nadia Pisanti, University of Pisa, Italy

“… a new reference for string data structures and algorithms, and for their applications in 
genome analysis. The technically precise style, illustrated with a great collection of
well-designed examples and many exercises, makes it an ideal resource for researchers, 
students and teachers.”    
Jens Stoye, Universität Bielefeld, Germany

“The … scope, clarity, and mathematically precise, compelling explanations make the 
advanced topics in genome-wide bioinformatics accessible to a wide audience.” 
Christina Boucher, Colorado State University, USA

“… a timely, rigorous and comprehensive systematization of the concepts and tools at the 
core of post-genome bioinformatics … The authors have created a rare, self-contained 
reference that will smoothly introduce the neophyte and assist the seasoned researcher … 
This is an ideal textbook for courses directed at a mixed audience coming from diverse, 
even distant, backgrounds.”          
Alberto Apostolico, Georgia Tech, USA 

Presenting the fundamental algorithms and data structures that power modern sequence 
analysis workfl ows, this book covers a range of topics from the foundations of biological 
sequence analysis (alignments and hidden Markov models), to classical index structures 
(k-mer indexes, suffi x arrays, and suffi x trees), Burrows–Wheeler indexes, graph algorithms, 
and a number of advanced omics applications. The chapters feature numerous examples, 
algorithm visualizations, exercises, and problems, providing graduate students and 
researchers with a powerful toolkit for the emerging applications of high-throughput 
sequencing. An accompanying website (www.genome-scale.info) offers LaTeX source fi les 
for the exercises, along with relevant links. 

The authors are researchers in the Department of Computer Science of the University of 
Helsinki, Finland. Professor VELI MÄKINEN is also in charge of bioinformatics education in 
the Department. Dr DJAMAL BELAZZOUGUI conducts research on hashing, space-effi cient 
data structures, and string algorithms. Dr FABIO CUNIAL focuses on string algorithms 
and genome analysis. Dr ALEXANDRU I. TOMESCU’s interests lie at the intersection of 
computational biology and computer science.
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Thank you
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