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HIGH-THROUGHPUT SEQUENCING
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ILLUMINA HISEQX
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GENOME ASSEMBLY PROBLEM
E.coli 4.6 · 106

Human 3.2 · 109

Spurce 25 · 109

INPUT: A collection of paired-end reads
OUTPUT: The genome

Initial formulations:
I Shortest superstring problem (NP-hard)
I Build a graph with reads as nodes, and significant overlaps between

reads as directed edges:
I Find a walk that passes through every node exactly once (NP-complete)
I Find a walk that passes through every node at least once

Unrealistic:
I Longer repeated regions are collapsed
I Genome coverage is not uniform
I We cannot choose between multiple solutions
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PRACTICAL FORMULATIONS / PIPELINE

1. Contig assembly: assemble the reads into strings (contigs) that are
guaranteed to occur in the genome

GTACGATA
ACGTACG

GATATCTA
CTAGTACCC

CTAATTCGA

ACGTACGATATCTAcontig:

2. Scaffolding: using paired-end reads, chain the contigs into scaffolds that
are guaranteed to occur in the genome
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PRACTICAL FORMULATIONS / PIPELINE (2)

3. Gap filling: fill the gaps in the scaffolds

Tens of genome assembly programs available: ABySS, Velvet, Allpaths-LG,
Bambus2, MSR-CA, SGA, Cortex, SOAPdenovo, Opera-LG, SPADES, ...
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DE BRUIJN GRAPHS

DEFINITION

Given a set R of strings, the de Bruijn graph of order k of R is the directed
graph DBk(R) with

I node set: the set of k-mers of R
I edge set: the set of k + 1-mers of the strings of R

Also edges occur in the strings of R!

ATGCGTGGCA
ATGCG

TGGCA
CGTG AT TG GC

CGGT

GG

CA

k = 2
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CONTIG ASSEMBLY

joint work with Paul Medvedev
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CONTIG ASSEMBLY

I No previous formal definition of contig
I Usually, contigs are maximal, unary paths (i.e., whose internal nodes

have in-degree and out-degree 1, aka unitigs)

v0 v1 v2 vk vk+1 vt vt+1

Given a dBG G:
I a genomic walk of G is a circular edge-covering walk of G
I a walk is safe if it is a sub-walk of all genomic walks of G

We now assume that the dBG admits a genomic walk (i.e., is strongly
connected) and is not a single cycle.
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CONTIG ASSEMBLY (2)

We say that a contig assembly algorithm is
I sound: if every output walk is safe
I complete: if every safe walk is in the output

The unitig algorithm is:
I outputting all maximal unitigs
I sound
I not complete

Is there a sound and complete
contig assembly algorithm?
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NON-SWITCHING CONTIGS

v0 v1 v2 vk vk+1 vt vt+1

I A path with all out-branching nodes before all in-branching nodes

I Related to transformation-based algorithms of
I Kingsford, Schatz, Pop 2010
I Jackson 2009
I Medvedev, Georgiou, Myers, Brudno 2007

THEOREM

There is an O(|G|+ |output|)-time algorithm to output all maximal non-switching
contigs of G.

THEOREM

The non-switching contig assembly algorithm is sound but not complete.
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OmniTIGS

v0 vi vj vt+1e0 ei−1 ei ej−1 ej et

We say that a walk w = (v0, e0, v1, e1, . . . , vt, et, vt+1) is an omnitig if for all
1 ≤ i ≤ j ≤ t, there is no proper vj-vi path with first edge different from ej,
and last edge different from ei−1.

THEOREM

A walk w is safe⇔ w is an omnitig.

THEOREM

There is a polynomial time algorithm for outputting all maximal omnitigs.

COROLLARY

The omnitig algorithm is sound and complete.
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EXPERIMENTAL RESULTS

Algorithm #strings E-size AVG length
unitig 41,524 7,806 893
non-switching contigs 32,589 7,822 1,136
omnitigs 24,949 7,850 1,479

I genome: circularized human chr21 (length 48 · 106)
I graph: dBGk(chr21) for k = 55
I e-size: given a set of substrings of genome, their e-size is the average,

over all genomic positions i, of the mean length of the strings spanning
position i
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GAP FILLING

joint work with Leena Salmela, Kristoffer Sahlin and Veli Mäkinen

17 / 25



High-throughput sequencing Genome assembly problem Contig assembly Gap filling End

PROBLEM FORMULATION
Previous formulations (GapCloser 2012, GapFiller 2012):

s t

We formulate it as Exact Path Length problem. Given:
I G = dBGk(R), for some k
I s, t ∈ V(G), the two k-mers flanking the gap
I [d′..d] an estimate on the gap length

For every x ∈ [d′..d] find an s-t path spelling a string of length x (i.e. a path of
length x− k).

s

ts

t
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DYNAMIC PROGRAMMING (DP)

Usually, d < |V(G)|.

Can be solved by DP in time O(d · |E(G)|):
I for every node v store:

a(v, i) :=

{
1 if there exists an s-v path of length i,
0 otherwise.

I initialize a(s, 0) = 1, and compute

a(v, i) :=
∨

u∈N−(v)

a(u, i− 1).s

ts

t

v
u a(v,i)
a(u,i-1)

I back-tracking in the DP matrix from a(t, x− k) gives a path (if exists)
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ENGINEERED IMPLEMENTATION

I k-mers flanking the gaps can have errors
I allow paths to start/end at up to t flanking k-mers

I we should not explore the entire graph!
I meet in the middle optimization

I DP matrix rows are sparse
I store only the non-zero entries in each row

I parallelization on scaffold level

I limit the memory usage of the DP matrix
I abandon the search on a gap if limit exceeded
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EXPERIMENTAL RESULTS (Gap2Seq)

Remaining
Gap Length

Erroneous
Length

0

1 · 105
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Original
GapCloser
GapFiller-bowtie
GapFiller-bwa
Gap2Seq

I genome: Staphylococcus aureus (length 2.8 · 106)
I graph: dBG with k = 31, for R = a collection of real reads
I results are totals over all scaffolds from a benchmark dataset (ABySS,

Allpaths-LG, Bambus2, CABOG, MSR-CA, SGA, SOAPdenovo, Velvet)
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EXPERIMENTAL RESULTS (Gap2Seq)
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CONCLUSIONS

Potential uses for omnitigs:
I longer contigs = better starting point for scaffolding and gap filling
I more flanking information around loci of interest

Directions for omnitigs:
I robustness to errors, coverage gaps, reverse complements?
I faster omnitig algorithm
I a sound and complete algorithm when the genomic walk is linear?

————————

Gap Filling:

I performance on human data is ‘so and so’ (but all tools have problems)
I we need to improve the runtime and memory usage
I we need a way to choose between multiple solutions (contig assembly?)
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MULŢUMESC
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