582206 Models of Computation (Autumn 2009)
Exercise 1 (8–11 September)

This set of problems is a brief recap of the main prerequisites from courses *Introduction to Discrete Mathematics* and *Data Structures*. Chapter 0 of Sipser’s book gives a good summary of this material.

1. Consider $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, which are subsets of the set of integers \mathbb{Z}. We use \overline{C} to denote the complement of C:

 $\overline{C} = \mathbb{Z} - C = \{x \in \mathbb{Z} | x \notin C\}$.

 What are the elements of the set

 (a) $(A \cap B) \cup (A \cap \overline{B})$?

 (b) $A \cap \overline{B}$?

2. Prove by induction that $n^3 - n$ is divisible by three for all natural numbers n.

3. Consider a directed graph $G = (V, E)$, where

 $$
 V = \{a, b, c, d, e\},
 $$

 $$
 E = \{(a, b), (b, c), (c, a), (b, d), (d, e), (e, b), (c, d)\}.
 $$

 Apply breadth-first search to determine the shortest paths from node a to all other nodes.

4. Recall that a relation \sim in set X is an *equivalence relation*, if for all x, y and z the following conditions hold:

 - reflexivity: $x \sim x$
 - symmetricity: if $x \sim y$, then $y \sim x$
 - transitivity: if $x \sim y$ and $y \sim z$, then $x \sim z$.

 (a) Let $G = (V, E)$ be an undirected graph. We write $u \sim v$ to denote that there is path from node u to node v in the graph. Is \sim an equivalence relation in V? Justify your answer briefly.

 (b) Let $G = (V, E)$ be a directed graph. We write $u \sim v$ to denote that there is path from node u to node v in the graph. Is \sim an equivalence relation in V? Justify your answer briefly.

5. [Sipser Problem 0.12] Prove that if an undirected graph has at least two nodes, then it has two nodes that have the same degree (ie number of adjacent edges).