582206 Models of Computation (Autumn 2009)

Exercise 1 (8–11 September)

This set of problems is a brief recap of the main prerequisites from courses *Introduction to Discrete Mathematics* and *Data Structures*. Chapter 0 of Sipser's book gives a good summary of this material.

1. Consider $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, which are subsets of the set of integers \mathbb{Z} . We use \overline{C} to denote the complement of C:

$$\overline{C} = \mathbb{Z} - C$$
$$= \{ x \in \mathbb{Z} \mid x \notin C \}$$

What are the elements of the set

- (a) $(\overline{A} \cap B) \cup (A \cap \overline{B})$?
- (b) $\overline{\overline{A} \cap \overline{B}}$?
- 2. Prove by induction that $n^3 n$ is divisible by three for all natural numbers n.
- 3. Consider a directed graph G = (V, E), where

$$V = \{a, b, c, d, e\}$$

$$E = \{(a, b), (b, c), (c, a), (b, d), (d, e), (e, b), (c, d)\}$$

Apply breadth-first search to determine the shortest paths from node a to all other nodes.

4. Recall that a relation \sim in set X is an *equivalence relation*, if for all x, y and z the following conditions hold:

reflexivity: $x \sim x$ symmetricity: if $x \sim y$, then $y \sim x$ transitivity: if $x \sim y$ and $y \sim z$, then $x \sim z$.

- (a) Let G = (V, E) be an *undirected* graph. We write $u \rightsquigarrow v$ to denote that there is path from node u to node v in the graph. Is \rightsquigarrow an equivalence relation in V? Justify your as wer briefly.
- (b) Let G = (V, E) be a *directed* graph. We write $u \rightsquigarrow v$ to denote that there is path from node u to node v in the graph. Is \rightsquigarrow an equivalence relation in V? Justify your as wer briefly.
- 5. [Sipser Problem 0.12] Prove that if an undirected graph has at least two nodes, then it has two nodes that have the same degree (ie number of adjacent edges).