## 582206 Models of Computation (Autumn 2009)

Exercise 3 (22–25 September)

Here and later when you are asked to give an automaton, you should give it as a state diagram (as in Problem 2(b) below), unless otherwise stated.

1. For any language A, define

$$A^{\mathcal{R}} = \left\{ w^{\mathcal{R}} \mid w \in A \right\}$$

where  $w^{\mathcal{R}}$  is the reverse of w, i.e., if  $w = w_1, \ldots, w_n$  then  $w^{\mathcal{R}} = w_n, \ldots, w_1$ . Show that  $A^{\mathcal{R}}$  is regular if A = L(M) for some finite automaton M with at most one accept state.

- 2. (a) Let  $A = \{a\}$  and  $B = \{b, c\}$ . List the elements of the set  $(A \circ B)^*$ , which are no longer than 5.
  - (b) Describe in English the languages recognized by the following automata:



- 3. Give a finite automaton recognizing the following languages of the alphabet  $\{a, b\}$ :
  - (a) strings that contain exactly one b
  - (b) strings where every odd-numbered symbol is b
  - (c) the union of the languages in (a) and (b).

In (c), use the union automaton construction (Sipser, Theorem 1.25).

4. How many states is needed in a finite automaton recognizing the language  $L = \{ 0^k 1^k \mid 0 \le k \le n \}$ ? Justify your answer.