
Search Trees for Strings

A balanced binary search tree is a powerful data structure that stores a set
of objects and supports many operations including:

Insert and Delete.

Lookup: Find if a given object is in the set, and if it is, possibly
return some data associated with the object.

Range query: Find all objects in a given range.

The time complexity of the operations for a set of size n is O(logn) (plus
the size of the result) assuming constant time comparisons.

There are also alternative data structures, particularly if we do not need to
support all operations:

• A hash table supports operations in constant time but does not support
range queries.

• An ordered array is simpler, faster and more space efficient in practice,
but does not support insertions and deletions.

A data structure is called dynamic if it supports insertions and deletions and
static if not.

107

When the objects are strings, operations slow down:

• Comparison are slower. For example, the average case time complexity
is O(logn logσ n) for operations in a binary search tree storing a random
set of strings.

• Computing a hash function is slower too.

For a string set R, there are also new types of queries:

Lcp query: What is the length of the longest prefix of the query
string S that is also a prefix of some string in R.

Prefix query: Find all strings in R that have S as a prefix.

The prefix query is a special type of range query.

108

Trie

A trie is a rooted tree with the following properties:

• Edges are labelled with symbols from an alphabet Σ.

• The edges from any node v to its children have all different labels.

Each node represents the string obtained by concatenating the symbols on
the path from the root to that node.

The trie for a strings set R, denoted by trie(R), is the smallest trie that has
nodes representing all the strings in R.

Example 3.23: trie(R) for R = {pot, potato, pottery, tattoo, tempo}.

o

t

a

t

o

y

r

e

t

p t

o

o

t

t

a e

m

p

o

109

The time and space complexity of a trie depends on the implementation of
the child function:

For a node v and a symbol c ∈ Σ, child(v, c) is u if u is a child of v
and the edge (v, u) is labelled with c, and child(v, c) = ⊥ if v has no
such child.

There are many implementation options including:

Array: Each node stores an array of size σ. The space complexity is
O(σ||R||), where ||R|| is the total length of the strings in R. The time
complexity of the child operation is O(1).

Binary tree: Replace the array with a binary tree. The space complexity is
O(||R||) and the time complexity O(logσ).

Hash table: One hash table for the whole trie, storing the values
child(v, c) 6= ⊥. Space complexity O(||R||), time complexity O(1).

Array and hash table implementations require an integer alphabet; the
binary tree implementation works for an ordered alphabet.

110

A common simplification in the analysis of tries is to assume that σ is
constant. Then the implementation does not matter:

• Insertion, deletion, lookup and lcp query for a string S take O(|S|) time.

• Prefix query takes O(|S|+ `) time, ` is the total length of the strings in
the answer.

The potential slowness of prefix (and range) queries is one of the main
drawbacks of tries.

Note that a trie is a complete representation of the strings. There is no
need to store the strings elsewhere. Most other data structures hold
pointers to the strings, which are stored elsewhere.

111

Aho–Corasick Algorithm

Given a text T and a set P = {P1.P2, . . . , Pk} of patterns, the multiple exact
string matching problem asks for the occurrences of all the patterns in the
text. The Aho–Corasick algorithm is an extension of the Morris–Pratt
algorithm for multiple exact string matching.

Aho–Corasick uses the trie trie(P) as an automaton and augments it with a
failure function similar to the Morris-Pratt failure function.

Example 3.24: Aho–Corasick automaton for P = {he, she, his, hers}.

1 20

Σ \ {h, s}

h

s

e

e srh

i

s

3 4 5

6 7

8 9

112

Algorithm 3.25: Aho–Corasick
Input: text T , pattern set P = {P1, P2, . . . , Pk}.
Output: all pairs (i, j) such that Pi occurs in T ending at j.

(1) Construct AC automaton
(2) v ← root
(3) for j ← 0 to n− 1 do
(4) while child(v, T [j]) = ⊥ do v ← fail(v)
(5) v ← child(v, T [j])
(6) for i ∈ patterns(v) do output (i, j)

Let Sv denote the string that node v represents.

• root is the root and child() is the child function of the trie.

• fail(v) = u such that Su is the longest proper suffix of Sv represented by
any node.

• patterns(v) is the set of pattern indices i such that Pi is a suffix of Sv.

At each stage, the algorithm computes the node v such that Sv is the
longest suffix of T [0..j] represented by any node.

113

Algorithm 3.26: Aho–Corasick trie construction
Input: pattern set P = {P1, P2, . . . , Pk}.
Output: AC trie: root, child() and patterns().

(1) Create new node root
(2) for i← 1 to k do
(3) v ← root; j ← 0
(4) while child(v, Pi[j]) 6= ⊥ do
(5) v ← child(v, Pi[j]); j ← j + 1
(6) while j < |Pi| do
(7) Create new node u
(8) child(v, Pi[j])← u
(9) v ← u; j ← j + 1

(10) patterns(v)← {i}

• The creation of a new node v initializes patterns(v) to ∅ and child(v, c)
to ⊥ for all c ∈ Σ.

• After this algorithm, i ∈ patterns(v) iff v represents Pi.

114

Algorithm 3.27: Aho–Corasick automaton construction
Input: AC trie: root, child() and patterns()
Output: AC automaton: fail() and updated child() and patterns()

(1) queue← ∅
(2) for c ∈ Σ do
(3) if child(root, c) = ⊥ then child(root, c)← root
(4) else
(5) v ← child(root, c)
(6) fail(v)← root
(7) pushback(queue, v)
(8) while queue 6= ∅ do
(9) u← popfront(queue)

(10) for c ∈ Σ such that child(u, c) 6= ⊥ do
(11) v ← child(u, c)
(12) w ← fail(u)
(13) while child(w, c) = ⊥ do w ← fail(w)
(14) fail(v)← child(w, c)
(15) patterns(v)← patterns(v) ∪ patterns(fail(v))
(16) pushback(queue, v)

The algorithm does a breath first traversal of the trie. This ensures that
correct values of fail() and patterns() are already computed when needed.

115

Assuming σ is constant:

• The preprocessing time is O(m), where m = ||P||.

– The only non-trivial issue is the while-loop on line (13). Let
root, v1, v2, . . . , v` be the nodes on the path from root to a node
representing a pattern Pi. Let wj = fail(vj) for all j. The depths in
the sequence w1, w2, . . . , w` increase by at most one in each step.
Every round in the while-loop when computing wj reduces the depth
of wj by at least one. Therefore, the total number of rounds when
computing w1, w2, . . . , w` is at most ` = |Pi|. Thus, the while-loop is
executed at most ||P|| times during the whole algorithm.

• The search time is O(n).

• The space complexity is O(m).

The analysis when σ is not constant is left as an exercise.

116

Compact Trie

Tries suffer from a large number nodes, Ω(||R||) in the worst case.

• The space requirement is large, since each node needs much more
space than a single symbol.

• Traversal of a subtree is slow, which affects prefix and range queries.

The compact trie reduces the number of nodes by replacing branchless path
segments with a single edge.

Example 3.28: Compact trie for R = {pot, potato, pottery, tattoo, tempo}.

ato

pot

tery

t

attoo
empo

117

• The number of nodes and edges is O(|R|).

• The egde labels are factors of the input strings. Thus they can be
stored in constant space using pointers to the strings, which are stored
separately.

• Any subtree can be traversed in linear time in the the number of leaves
in the subtree. Thus a prefix query for a string S can be answered in
O(|S|+ r) time, where r is the number of strings in the answer.

118

Ternary Tree

The binary tree implementation of a trie supports ordered alphabets but
awkwardly. Ternary tree is a simpler data structure based on symbol
comparisons.

Ternary tree is like a binary tree except:

• Each internal node has three children: smaller, equal and larger.

• The branching is based on a single symbol at a given position. The
position is zero at the root and increases along the middle branches.

Example 3.29: Ternary tree for R = {pot, potato, pottery, tattoo, tempo}.

o

p

t

t

a

a

potato

tattoo
tempo

potterypot

119

There is an analogy between sorting algorithms and search trees for strings.

sorting algorithm search trees

standard binary quicksort standard binary tree

string quicksort ternary tree

radix sort trie

The ternary tree can be seen as the partitioning structure by string
quicksort.

120

A ternary tree is balanced if each left and right subtree contains at most
half of the strings in its parent tree.

• The balance can be maintained by rotations similarly to binary trees.

d

D E

b

A B

b

A B

C

d

D E C

rotation

• We can also get reasonably close to balance by inserting the strings in
the tree in a random order.

In a balanced ternary tree, each step down either

• moves the position forward (middle branch), or

• halves the number of strings remaining the the subtree.

Thus, in a ternary tree storing n strings, any downward traversal following a
string S takes at most O(|S|+ logn) time.

121

For the ternary tree of a string set R of size n:

• The number of nodes is O(DP (R)).

• Insertion, deletion, lookup and lcp query for a string S takes
O(|S|+ logn) time.

• Prefix search for a string S takes O(|S|+ logn+DP (Q)), where Q is
the set of strings given as the result of the query. With some additional
data structures, this can be reduced to O(|S|+ logn+ |Q|)

122

String Binary Search

An ordered array is a simple static data structure supporting queries in
O(logn) time using binary search.

Algorithm 3.30: Binary search
Input: Ordered set R = {k1, k2, . . . , kn}, query value x.
Output: The number of elements in R that are smaller than x.

(1) left← 0; right← n // final answer is in the range [left..right]
(2) while left < right do
(3) mid← d(left+ right)/2e
(4) if kmid < x then left← mid
(5) else right← mid− 1
(6) return left

With strings as elements, however, the query time is

• O(m logn) in the worst case for a query string of length m

• O(m+ logn logσ n) on average for a random set of strings.

123

We can use the lcp comparison technique to improve binary search for
strings. The following is a key result.

Lemma 3.31: Let A ≤ B,B′ ≤ C be strings. Then lcp(B,B′) ≥ lcp(A,C).

Proof. Let Bmin = min{B,B′} and Bmax = max{B,B′}. By Lemma 3.17,

lcp(A,C) = min(lcp(A,Bmax), lcp(Bmax, C))

≤ lcp(A,Bmax) = min(lcp(A,Bmin), lcp(Bmin, Bmax))

≤ lcp(Bmin, Bmax) = lcp(B,B′)

�

124

During the binary search of P in {S1, S2, . . . , Sn}, the basic situation is the
following:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright+1, and we know
that Sleft ≤ P, Smid ≤ Sright+1.

• If we are using LcpCompare, we know lcp(Sleft, P) and lcp(P, Sright+1).

By Lemmas 3.17 and 3.31,

lcp(P, Smid) ≥ lcp(Sleft, Sright+1) = min{lcp(Sleft, P), lcp(P, Sright+1)}
Thus we can skip min{lcp(Sleft, P), lcp(P, Sright+1)} first characters when
comparing P and Smid.

125

Algorithm 3.32: String binary search (without precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n
(2) llcp← 0; rlcp← 0
(3) while left < right do
(4) mid← d(left+ right)/2e
(5) mlcp← min{llcp, rlcp}
(6) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(7) if x = “ <′′ then left← mid; llcp← mclp
(8) else right← mid− 1; rlcp← mclp
(9) return left

• The average case query time is now O(m+ logn).

• The worst case query time is still O(m logn).

126

