
AC Automaton for the Set of Suffixes

As already mentioned, a suffix tree with suffix links is essentially an
Aho–Corasick automaton for the set of all suffixes.

• We saw that it is possible to follow suffix link / failure transition from
any position, not just from suffix tree nodes.

• Following such an implicit suffix link may take more than a constant
time, but the total time during the scanning of a string with the
automaton is linear in the length of the string. This can be shown with
a similar argument as in the construction algorithm.

Thus suffix tree is asymptotically as fast to operate as the AC automaton,
but needs much less space.

152

Matching Statistics

The matching statistics of a string T [0..n) with respect to a string S is an
array MS[0..n), where MS[i] is a pair (`i, pi) such that

1. T [i..i + `i) is the longest prefix of Ti that is a factor of S, and

2. S[pi..pi + `i) = T [i..i + `i).

Matching statistics can be computed by using the suffix tree of S as an
AC-automaton and scanning T with it.

• If before reading T [i] we are at the node v in the automaton, then
T [i− d..d) = S[j..j + d), where j = start(v) and d = depth(v). If reading
T [i] causes a failure transition, then MS[i− d] = (d, j).

From the matching statistics, we can easily compute the longest common
factor of S and T . Matching statistics are also used in some approximate
string matching algorithms.

153

LCA Preprocessing

The lowest common ancestor (LCA) of two nodes u and v is the deepest
node that is an ancestor of both u and v. Any tree can be preprocessed in
linear time so that the LCA of any two nodes can be computed in constant
time. The details are omitted here.

• Let wi and wj be the leaves of the suffix tree of T that represent the
suffixes Ti and Tj. The lowest common ancestor of wi and wj represents
the longest common prefix of Ti and Tj. Thus the lcp of any two
suffixes can be computed in constant time using the suffix tree with
LCA preprocessing.

• The longest common prefix of two suffixes Si and Tj from two different
strings S and T is called the longest common extension. Using the
generalized suffix tree with LCA preprocessing, the longest common
extension for any pair of suffixes can be computed in constant time.

Some O(kn) worst case time approximate string matching algorithms use
longest common extension data structures.

154

Longest Palindrome

A palindrome is a string that is its own reverse. For example,
saippuakauppias is a palindrome.

We can use the LCA preprocessed generalized suffix tree of a string T and
its reverse TR to find the longest palindrome in T in linear time.

• Let ki be the length of the longest common extension of Ti and TR
n−i−1,

which can be computed in constant time. Then T [i− k..i + k] is the
longest odd length palindrome with the middle at i.

• We can find the longest odd length palindrome by computing ki for all
i ∈ [0..n) in O(n) time.

• The longest even length palindrome can be found similarly in O(n) time.

155

Suffix Array

The suffix array of a text T is a lexicographically ordered array of the set
T[0..n] of all suffixes of T . More precisely, the suffix array is an array SA[0..n]
of integers containing a permutation of the set [0..n] such that
TSA[0] < TSA[1] < · · · < TSA[n].

A related array is the inverse suffix array SA−1 which is the inverse
permutation, i.e., SA−1[SA[i]] = i for all i ∈ [0..n].

As with suffix trees, it is common to add the end symbol T [n] = $. It has no
effect on the suffix array assuming $ is smaller than any other symbol.

Example 4.7: The suffix array and the inverse suffix array of the text
T = banana$.

i SA[i] TSA[i]
0 6 $
1 5 a$
2 3 ana$
3 1 anana$
4 0 banana$
5 4 na$
6 2 nana$

j SA−1[j]
0 4 banana$
1 3 anana$
2 6 nana$
3 2 ana$
4 5 na$
5 1 a$
6 0 $

156

Suffix array is much simpler data structure than suffix tree. In particular,
the type and the size of the alphabet are usually not a concern.

• The size on the suffix array is O(n) on any alphabet.

• We will see that the suffix array can be constructed in the same
asymptotic time it takes to sort the characters of the text.

As with suffix trees, exact string matching in T can be performed by prefix
search on the suffix array. The answer can be conveniently given as a
contiguous range in the suffix array containing the suffixes. The range can
be found using string binary search.

• If we have the additional arrays LLCP and RLCP , the result range can
be computed in O(|P |+ logn) time.

• Without the additional arrays, we have the same time complexity on
average but the worst case time complexity is O(|P | logn).

• We can then count the number of occurrences in O(1) time, list all occ
occurrences in O(occ) time, or list a sample of k occurrences in O(k)
time.

157

LCP Array

Efficient string binary search uses the arrays LLCP and RLCP . For many
applications, the suffix array is augmented with a different lcp array
LCP [1..n]. For all i,

LCP [i] = lcp(TSA[i], TSA[i−1])

This is the same as the lcp information in the output of StringMergesort.

Example 4.8: The LCP array for T = banana$.

i SA[i] LCP [i] TSA[i]
0 6 $
1 5 0 a$
2 3 1 ana$
3 1 3 anana$
4 0 0 banana$
5 4 0 na$
6 2 2 nana$

158

The suffix tree can be easily constructed from the suffix and LCP arrays in
linear time.

• Insert the suffixes into the tree in lexicographical order.

• The leaf wi representing the suffix Ti is inserted as the rightmost leaf.
The parent ui of wi is along the rightmost path in the tree, and the
depth of ui is LCP [i]. If there is no node at that depth, a new node is
inserted.

uiLCP [i]

wi−1 wi

• Keep the nodes on the rightmost path on a stack with the deepest
node on top. The node ui or the edge, where ui is inserted, is found by
removing nodes from the stack until the right depth has been reached.
Note that the removed nodes are no more on the rightmost path after
the insertion of wi.

159

The suffix tree can be replaced by the suffix and LCP arrays in many
applications. For example:

• The longest repeating factor is marked by the maximum value in the
LCP array.

• The number of distinct factors can be compute by the formula

n(n + 1)

2
+ 1−

n∑
i=1

LCP [i]

This follows from the suffix tree construction on the previous slide and
the formula we saw earlier for the suffix tree.

• Matching statistics of T with respect to S can be computed in linear
time using the generalized suffix array of S and T (i.e., suffix array of
S£T$) and its LCP array.

160

RMQ Preprocessing

The range minimum query (RMQ) asks for the smallest value in a given
range in an array. Any array can be preprocessed in linear time so that RMQ
for any range can be answered in constant time.

In the LCP array, RMQ can be used for computing the lcp of any two
suffixes.

Lemma 4.9: The length of the longest common prefix of two suffixes
Ti < Tj is lcp(Ti, Tj) = min{LCP [k] | k ∈ [SA−1[i] + 1..SA−1[j]]}.

The proof is left as an exercise.

• The RMQ preprocessing of the LCP array supports the same kind of
applications as the LCA preprocessing of the suffix tree. RMQ
preprocessing is much simpler than LCA preprocessing.

• The RMQ preprocessed LCP array can also replace the LLCP and
RLCP arrays.

161

Enhanced Suffix Array

The enhanced suffix array adds two more arrays to the suffix and LCP
arrays to make the data structure fully equivalent to suffix tree.

• The idea is to represent a suffix tree node v by a suffix array range
corresponding to the suffixes that are in the subtree rooted at v.

• The additional arrays support navigation in the suffix tree using this
representation: one array along the regular edges, the other along suffix
links.

162

LCP Array Construction

The LCP array is easy to compute in linear time using the suffix array SA
and its inverse SA−1. The idea is to compute the lcp values by comparing
the suffixes, but skip a prefix based on a known lower bound for the lcp
value obtained using the following result.

Lemma 4.10: For any i ∈ [0..n), LCP [SA−1[i + 1]] ≥ LCP [SA−1[i]]− 1

Proof. Let Tj be the lexicographic predecessor of Ti, i.e., Tj < Ti and there
are no other suffixes between them in the lexicographical order.

• Then LCP [SA−1[i]] = lcp(Ti, Tj) = `.

• If ` > 0, then for some symbol c, Ti = cTi+1 and Tj = cTj+1. Thus
Tj+1 < Ti+1 and lcp(Ti+1, Tj+1) = `− 1.

• Then LCP [[SA−1[i + 1]] ≥ lcp(Ti+1, Tj+1) = `− 1.

�

163

The algorithm computes the lcp values in the order that makes it easy to
use the above lower bound.

Algorithm 4.11: LCP array construction
Input: text T [0..n], suffix array SA[0..n], inverse suffix array SA−1[0..n]
Output: LCP array LCP [1..n]

(1) `← 0
(2) for i← 0 to n− 1 do
(3) k ← SA−1[i] // i = SA[k]
(4) j ← SA[k − 1]
(5) while T [i + `] = T [j + `] do `← ` + 1
(6) LCP [k]← `
(7) if ` > 0 then `← `− 1
(8) return LCP

The time complexity is O(n):

• Everything except the while loop on line (5) takes clearly linear time.

• Each round in the loop increments `. Since ` is decremented at most n
times on line (7) and cannot grow larger than n, the loop is executed
O(n) times in total.

164

