
58093 String Processing Algorithms

Lectures, Fall 2010, period II

Juha Kärkkäinen

1

Who is this course for?

• Master’s level course in Computer Science, 4 cr

• Subprogram of Algorithms and Machine Learning
– Together with Project in String Processing Algorithms (in the next

teaching period) one of the three special course combinations, one
of which must be included in the Master’s degree.

• Suitable addition to Master’s degree program for Bioinformatics,
particularly for those interested in biological sequence analysis

• Prerequisites: basic knowledge on algorithms, data structures, finite
automata, algorithm analysis.
– Recommended prerequisite courses: Data Structures,Models of

Computation, Designs and Analysis of Algorithms

2

Course components

Lectures: Tue and Thu 12–14 in B222

• Lecture notes will be available on the course home page. Attending
lectures is not obligatory but can be useful. There will be additional
examples and explanations.

• The lectures do not follow any book, but the books mentioned on the
home page can provide useful additional material.

Exercises: Thu 14-16 in B119 and 16-18 in BK107 (starting 11.11.)

• Exercise problems will be available on the course home page a week
before the exercise session. Model solutions will be available on the
home page after the exercise session.

• You should solve the problems at home and be prepared to present your
solutions at the exercise session. You do not need to solve all problems
but additional points are awarded according to how many problems you
have solved (see later).

3

Course components (continued)

Exam: Thu 16.12. at 16–19 (check time and place later)

• The exam consists of problems similar to those in the exercises. No
notes or other material is allowed in the exam.

• If you fail, there is a renewal exam (exercise points count) and separate
exams (no exercise points).

In the next period, there is a follow up course Project in String Processing
Algorithms (2 cr).

• Consist of implementing some algorithms on this course, experimenting
with them, and presenting the results.

4

Grading

Exercises 1–10 points

• Scoring is based on the number of exercises solved.

• About 20% is required and gives 1 point.

• About 80% gives the maximum of 10 points.

Exam 25–50 points

• 25 points is required

Total 30–60 points

• 30 points is required to pass and gives the lowest grade 1.

• 50 points gives the highest grade 5.

5

Contents

0. Introduction

1. Exact string matching

• How to find a pattern (string) in a text (string)

2. Approximate string matching

• How to find in the text something that is similar to the pattern

3. Sorting and searching

• How to compare strings efficiently in the context of sorting and
search trees

4. Suffix tree and array

• How to preprocess a long text for fast string matching and all kinds
of other tasks

6

0. Introduction

Strings and sequences are one of the simplest, most natural and most used
forms of storing information.

• natural language, biosequences, programming source code, XML,
music, any data stored in a file

The area of algorithm research focusing on strings is sometimes known as
stringology. Characteristic features include

• Huge data sets (document databases, biosequence databases, web
crawls, etc.) require efficiency. Linear time and space complexity is the
norm.

• Strings come with no explicit structure, but many algorithms discover
implicit structures that they can utilize.

7

About this course

On this course we will cover a few cornerstone problems in stringology. We
will describe several algorithms for the same problem:

• the best algorithms in theory and/or in practice

• algorithms using a variety of different techniques

The goal is to learn a toolbox of basic algorithms and techniques.

On the lectures, we will focus on the clean, basic problem. Exercises may
include some variations and extensions. We will mostly ignore any
application specific issues.

8

Strings

An alphabet is the set of symbols or characters that may occur in a string.
We will usually denote an alphabet with the symbol Σ and its size with σ.

We consider two types of alphabets:

• Ordered alphabet Σ = {c1, c2, . . . , cσ}, where c1 < c2 < · · · < cσ.

• Integer alphabet Σ = {0,1,2, . . . , σ − 1}.

The alphabet types are really used for classifying algorithms rather than
alphabets:

• Algorithms for ordered alphabets use only character comparisons.

• Algorithms for integer alphabets can use operations such as using a
symbol as an address to a table.

Algorithms for integer alphabets are more restricted in their applicability.

9

A string is a sequence of symbols. The set of all strings over an alphabet Σ
is

Σ∗ =
∞⋃
k=0

Σk = Σ0 ∪Σ1 ∪Σ2 ∪ . . .

where

Σk =

k︷ ︸︸ ︷
Σ×Σ× · · · ×Σ

= {a1a2 . . . ak | ai ∈ Σ for 1 ≤ i ≤ k}
= {(a1, a2, . . . , ak) | ai ∈ Σ for 1 ≤ i ≤ k}

is the set of strings of length k. In particular, Σ0 = {ε}, where ε is the
empty string.

We will usually write a string using the notation a1a2 . . . ak, but sometimes
using (a1, a2, . . . , ak) may avoid confusion.

10

There are many notations for strings.

When describing algorithms, we will typically use the array notation to
emphasize that the string is stored in an array:

S = S[1..n] = S[1]S[2] . . . S[n]

T = T [0..n) = T [0]T [1] . . . T [n− 1]

Note the half-open range notation [0..n) which is often convenient.

In abstract context, we often use other notations, for example:

• α, β ∈ Σ∗

• x = a1a2 . . . ak where ai ∈ Σ for all i

• w = uv, u, v ∈ Σ∗ (w is the concatenation of u and v)

11

Individual characters or their positions usually do not matter. The
significant entities are the substrings or factor.

Definition 0.1: Let w = xyz for any x, y, z ∈ Σ∗. Then x is a prefix,
y is a factor (substring), and z is a suffix of w.
If x is both a prefix and a suffix of w, then x is a border of w.

Example 0.2: Let w = bonobo. Then

• ε, b, bo, bon, bono, bonob, bonobo are the prefixes of w

• ε, o, bo, obo, nobo, onobo, bonobo are the suffixes of w

• ε, bo, bonobo are the borders of w.

• ε, b, o, n, bo, on, no, ob, bon, ono, nob, obo, bono, onob, nobo, bonob, onobo, bonobo
are the factors of w

Note that ε and w are always suffixes, prefixes, and borders of w. A
suffix/prefix/border of w is proper if it is not w, and nontrivial if it is not ε
or w.

12

1. Exact String Matching

Let T = T [0..n) be the text and P = P [0..m) the pattern. We say that P
occurs in T at position j if T [j..j +m) = P .

Example: P = aine occurs at position 6 in T = karjalainen.

In this part, we will describe algorithms that solve the following problem.

Problem 1.1: Given text T [0..n) and pattern P [0..m), report the first
position in T where P occurs, or n if P does not occur in T .

The algorithms can be easily modified to solve the following problems too.

• Is P a factor of T?

• Count the number of occurrences of P in T .

• Report all occurrences of P in T .

13

The naive, brute force algorithm compares P against T [0..m), then against
T [1..m+ 1), then against T [2..m+ 2) etc. until an occurrence is found or
the end of the text is reached.

Algorithm 1.2: Brute force
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) i← 0; j ← 0
(2) while i < m and j < n do
(3) if P [i] = T [j] then i← i+ 1; j ← j + 1
(4) else j ← j − i+ 1; i← 0
(5) if i = m then output j −m else output n

The worst case time complexity is O(mn). This happens, for example, when
P = am−1b = aaa..ab and T = an = aaaaaa..aa.

14

Knuth–Morris–Pratt

The Brute force algorithm forgets everything when it moves to the next
text position.

The Morris–Pratt (MP) algorithm remembers matches. It never goes back
to a text character that already matched.

The Knuth–Morris–Pratt (KMP) algorithm remembers mismatches too.

Example 1.3:
Brute force
ainaisesti-ainainen
ainai//nen (6 comp.)
/ainainen (1)
//ainainen (1)
ai//nainen (3)
/ainainen (1)
//ainainen (1)

Morris–Pratt
ainaisesti-ainainen
ainai//nen (6)

ai//nainen (1)
//ainainen (1)

Knuth–Morris–Pratt
ainaisesti-ainainen
ainai//nen (6)

//ainainen (1)

15

MP and KMP algorithms never go backwards in the text. When they
encounter a mismatch, they find another pattern position to compare
against the same text position. If the mismatch occurs at pattern position i,
then fail[i] is the next pattern position to compare.

The only difference between MP and KMP is how they compute the failure
function fail.

Algorithm 1.4: Knuth–Morris–Pratt / Morris–Pratt
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) compute fail[0..m]
(2) i← 0; j ← 0
(3) while i < m and j < n do
(4) if i = −1 or P [i] = T [j] then i← i+ 1; j ← j + 1
(5) else i← fail[i]
(6) if i = m then output j −m else output n

• fail[i] = −1 means that there is no more pattern positions to compare
against this text positions and we should move to the next text
position.

• fail[m] is never needed here, but if we wanted to find all occurrences, it
would tell how to continue after a full match.

16

We will describe the MP failure function here. The KMP failure function is
left for the exercises.

• When the algorithm finds a mismatch between P [i] and T [j], we know
that P [0..i) = T [j − i..j).

• Now we want to find a new i′ < i such that P [0..i′) = T [j − i′..j).
Specifically, we want the largest such i′.

• This means that P [0..i′) = T [j − i′..j) = P [i− i′..i). In other words,
P [0..i′) is the longest proper border of P [0..i).

Example: ai is the longest proper border of ainai.

• Thus fail[i] is the length of the longest proper border of P [0..i).

• P [0..0) = ε has no proper border. We set fail[0] = −1.

17

Example 1.5: Let P = ainainen. i P [0..i) border fail[i]
0 ε – -1
1 a ε 0
2 ai ε 0
3 ain ε 0
4 aina a 1
5 ainai ai 2
6 ainain ain 3
7 ainaine ε 0
8 ainainen ε 0

The (K)MP algorithm operates like an automaton, since it never moves
backwards in the text. Indeed, it can be described by an automaton that
has a special failure transition, which is an ε-transition that can be taken
only when there is no other transition to take.

-1 1 2 3 4 5 6 7 80
a n a i ni e nΣ

18

An efficient algorithm for computing the failure function is very similar to
the search algorithm itself!

• In the MP algorithm, when we find a match P [i] = T [j], we know that
P [0..i] = T [j − i..j]. More specifically, P [0..i] is the longest prefix of P
that matches a suffix of T [0..j].

• Suppose T = #P [1..m), where # is a symbol that does not occur in P .
Finding a match P [i] = T [j], we know that P [0..i] is the longest prefix
of P that is a proper suffix of P [0..j]. Thus fail[j + 1] = i+ 1.

Algorithm 1.6: Morris–Pratt failure function computation
Input: pattern P = P [0 . . .m)
Output: array fail[0..m] for P

(1) i← −1; j ← 0; fail[j] = i
(2) while j < m do
(3) if i = −1 or P [i] = P [j] then i← i+ 1; j ← j + 1; fail[j] = i
(4) else i← fail[i]
(5) output fail

• When the algorithm reads fail[i] on line 4, fail[i] has already been
computed.

19

Theorem 1.7: Algorithms MP and KMP preprocess a pattern in time O(m)
and then search the text in time O(n).

Proof. It is sufficient to count the number of comparisons that the
algorithms make. After each comparison P [i] = T [j] (or P [i] = P [j]), one of
the two conditional branches is executed:

then Here j is incremented. Since j never decreases, this branch can be
taken at most n+ 1 (m+ 1) times.

else Here i decreases since fail[i] < i. Since i only increases in the
then-branch, this branch cannot be taken more often than the
then-branch.

�

20

Shift-And

When the (K)MP algorithm is at position j in the text T , it computes the
longest prefix of the pattern P [0..m) that is a suffix of T [0..j]. The
Shift-And algorithm computes all prefixes of P that are suffixes of T [0..j].

• The information is stored in a bitvector D of length m, where D.i = 1 if
P [0..i] = T [j − i..j] and D.i = 0 otherwise. (D.0 is the least significant
bit.)

• When D.(m− 1) = 1, we have found an occurrence.

The bitvector D is updated at each text position j:

• There are precomputed bitvectors B[c], for all c ∈ Σ, where B[c].i = 1 if
P [i] = c and B[c].i = 0 otherwise.

• D is updated in two steps:

1. D ← (D << 1) + 1 (the bitwise shift). Now D tells, which prefixes
would match if T [j] would match every character.

2. D ← D & B[T [j]] (the bitwise and). Remove the prefixes where T [j]
does not match.

21

Let w be the wordsize of the computer, typically 32 or 64. Assume first that
m ≤ w. Then each bitvector can be stored in a single integer.

Algorithm 1.8: Shift-And
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T
Preprocess:

(1) for c ∈ Σ do B[c]← 0
(2) for i← 0 to m− 1 do B[P [i]]← B[P [i]] + 2i // B[P [i]].i← 1

Search:
(3) D ← 0
(4) for j ← 0 to n− 1 do
(5) D ← ((D << 1) + 1) & B[T [j]]
(6) if D & 2m−1 6= 0 then return j −m+ 1 // D.(m− 1) = 1

Shift-Or is a minor optimization of Shift-And. It is the same algorithm
except the roles of 0’s and 1’s in the bitvectors have been swapped. Then
& on line 5 is replaced by | (bitwise or). The advantage is that we don’t
need that “+1” on line 5.

22

Example 1.9: P = assi, T = apassi, bitvectors are columns.

B[c], c ∈ {a,i,p,s}
a i p s

a 1 0 0 0
s 0 0 0 1
s 0 0 0 1
i 0 1 0 0

D at each step
a p a s s i

a 0 1 0 1 0 0 0
s 0 0 0 0 1 0 0
s 0 0 0 0 0 1 0
i 0 0 0 0 0 0 1

The Shift-And algorithm can also be seen as a bitparallel simulation of the
nondeterministic automaton that accepts a string ending with P .

0 1 2 3-1
a ss i

Σ

After processing T [j], D.i = 1 if and only if there is a path from the initial
state (state -1) to state i with the string T [0..j].

23

On an integer alphabet when m ≤ w:

• Preprocessing time is O(σ +m).

• Search time is O(n).

If m > w, we can store the bitvectors in dm/we machine words and perform
each bitvector operation in O(dm/we) time.

• Preprocessing time is O(σdm/we+m).

• Search time is O(ndm/we).

If no pattern prefix longer than w matches a current text suffix, then only
the least significant machine word contains 1’s. There is no need to update
the other words; they will stay 0.

• Then the search time is O(n) on average.

Algorithms like Shift-And that take advantage of the implicit parallelism in
bitvector operations are called bitparallel.

24

Horspool

The algorithms we have seen so far access every character of the text. If we
start the comparison between the pattern and the current text position from
the end, we can often skip some text characters completely.

There are many algorithms that start from the end. The simplest are the
Horspool-type algorithms.

The Horspool algorithm checks first the text character aligned with the last
pattern character. If it doesn’t match, move (shift) the pattern forward
until there is a match.

Example 1.10: Horspool
ainaisesti-ainainen
ainaine/n

ainaine//n
ainainen

25

More precisely, suppose we are currently comparing P against T [j..j +m).
Start by comparing P [m− 1] to T [k], where k = j +m− 1.
• If P [m− 1] 6= T [k], shift the pattern until the pattern character aligned

with T [k] matches, or until we are past T [k].
• If P [m− 1] = T [k], compare the rest in brute force manner. Then shift

to the next position, where T [k] matches.

Algorithm 1.11: Horspool
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T
Preprocess:

(1) for c ∈ Σ do shift[c]← m
(2) for i← 0 to m− 2 do shift[P [i]]← m− 1− i

Search:
(3) j ← 0
(4) while j +m ≤ n do
(5) if P [m− 1] = T [j +m− 1] then
(6) i← m− 2
(7) while i ≥ 0 and P [i] = T [j + i] do i← i− 1
(8) if i = −1 then return j
(9) j ← j + shift[T [j +m− 1]]

(10) return n

26

The length of the shift is determined by the shift table. shift[c] is defined
for all c ∈ Σ:

• If c does not occur in P , shift[c] = m.

• Otherwise, shift[c] = m− 1− i, where P [i] = c is the last occurrence of
c in P [0..m− 2].

Example 1.12: P = ainainen. c last occ. shift
a ainainen 4
e ainainen 1
i ainainen 3
n ainainen 2

Σ \ {a,e,i,n} — 8

27

On an integer alphabet:

• Preprocessing time is O(σ +m).

• In the worst case, the search time is O(mn).
For example, P = bam−1 and T = an.

• In the best case, the search time is O(n/m).
For example, P = bm and T = an.

• In average case, the search time is O(n/min(m,σ)).
This assumes that each pattern and text character is picked
independently by uniform distribution.

In practice, a tuned implementation of Horspool is very fast when the
alphabet is not too small.

28

BNDM

Starting matching from the end enables long shifts.

• The Horspool algorithm bases the shift on a single character.

• The Boyer–Moore algorithm uses the matching suffix and the
mismatching character.

• Factor based algorithms continue matching until no pattern factor
matches. This may require more comparisons but it enables longer
shifts.

Example 1.13: Horspool shift
varmasti-aikai//sen-ainainen
ainaisen-ainainen
ainaisen-ainainen

Boyer–Moore shift
varmasti-aikai//sen-ainainen
ainaisen-ainainen

ainaisen-ainainen

Factor shift
varmasti-ai//kaisen-ainainen
ainaisen-ainainen

ainaisen-ainainen

29

Factor based algorithms use an automaton that accepts suffixes of the
reverse pattern PR (or equivalently reverse prefixes of the pattern P).

• BDM (Backward DAWG Matching) uses a deterministic automaton
that accepts exactly the suffixes of PR.

DAWG (Directed Acyclic Word Graph) is also known as suffix automaton.

• BNDM (Backward Nondeterministic DAWG Matching) simulates a
nondeterministic automaton.

Example 1.14: P = assi.

ss
-10123

ε

a i

• BOM (Backward Oracle Matching) uses a much simpler deterministic
automaton that accepts all suffixes of PR but may also accept some
other strings. This can cause shorter shifts but not incorrect behaviour.

30

Suppose we are currently comparing P against T [j..j +m). We use the
automaton to scan the text backwards from T [j +m− 1]. When the
automaton has scanned T [j + i..j +m):

• If the automaton is in an accept state, then T [j + i..j +m) is a prefix
of P .

⇒ If i = 0, we found an occurrence.

⇒ Otherwise, mark the prefix match by setting shift = i. This is the
length of the shift that would achieve a matching alignment.

• If the automaton can still reach an accept state, then T [j + i..j +m) is
a factor of P .

⇒ Continue scanning.

• When the automaton can no more reach an accept state:

⇒ Stop scanning and shift: j ← j + shift.

31

BNDM does a bitparallel simulation of the nondeterministic automaton,
which is quite similar to Shift-And.

The state of the automaton is stored in a bitvector D. When the
automaton has scanned T [j + i..j +m):

• D.i = 1 if and only if there is a path from the initial state to state i
with the string (T [j + i..j +m))R.

• If D.(m− 1) = 1, then T [j + i..j +m) is a prefix of the pattern.

• If D = 0, then the automaton can no more reach an accept state.

Updating D uses precomputed bitvectors B[c], for all c ∈ Σ:

• B[c].i = 1 if and only if P [m− 1− i] = PR[i] = c.

The update when reading T [j + i] is familiar: D = (D << 1) & B[T [j + i]

• Note that there is no “+1”. This is because D.(−1) = 0 always, so the
shift brings the right bit to D.0. With Shift-And D.(−1) = 1 always.

• The exception is that in the beginning before reading anything
D.(−1) = 1. This is handled by doing the shift at the end of the loop.

32

Algorithm 1.15: BNDM
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T
Preprocess:

(1) for c ∈ Σ do B[c] := 0
(2) for i← 0 to m− 1 do B[P [m− 1− i]]← B[P [m− 1− i]] + 2i

Search:
(3) j ← 0
(4) while j +m ≤ n do
(5) i← m; shift← m
(6) D ← 2m − 1 // D ← 1m

(7) while D 6= 0 do
// Now T [j + i..j +m) is a pattern factor

(8) i← i− 1
(9) D ← D & B[T [j + i]]

(10) if D & 2m−1 6= 0 then
// Now T [j + i..j +m) is a pattern prefix

(11) if i = 0 then return j
(12) else shift← i
(13) D ← D << 1
(14) j ← j + shift

33

Example 1.16: P = assi, T = apassi.

B[c], c ∈ {a,i,p,s}
a i p s

i 0 1 0 0
s 0 0 0 1
s 0 0 0 1
a 1 0 0 0

D when scanning apas backwards
a p a s

i 0 0 0 1
s 0 0 1 1
s 0 0 1 1
a 0 1 0 1 ⇒ shift = 2

D when scanning assi backwards
a s s i

i 0 0 0 1 1
s 0 0 1 0 1
s 0 1 0 0 1
a 1 0 0 0 1 ⇒ occurrence

34

On an integer alphabet when m ≤ w:

• Preprocessing time is O(σ +m).

• In the worst case, the search time is O(mn).
For example, P = am−1b and T = an.

• In the best case, the search time is O(n/m).
For example, P = bm and T = an.

• In the average case, the search time is O(n(logσm)/m).
This is optimal! It has been proven that any algorithm needs to inspect
Ω(n(logσm)/m) text characters on average.

When m > w, there are several options:

• Use multi-word bitvectors.

• Search for a pattern prefix of length w and check the rest when the
prefix is found.

• Use BDM or BOM.

35

• The search time of BDM and BOM is O(n(logσm)/m), which is
optimal on average. (BNDM is optimal only when m ≤ w.)

• MP and KMP are optimal in the worst case.

• There are also algorithms that are optimal in both cases. They are
based on similar techniques, but they will not be described them here.

36

Karp–Rabin

The Karp–Rabin algorithm uses a hash function H : Σ∗ → [0..q) ⊂ N for
strings. It computes H(P) and H(T [j..j +m)) for all j ∈ [0..n−m].

• If H(P) 6= H(T [j..j +m)), then we must have P 6= T [j..j +m).

• If H(P) = H(T [j..j +m), the algorithm compares P and T [j..j +m) in
brute force manner. If P 6= T [j..j +m), this is a collision.

A good hash function has two important properties:

• Collisions are rare.

• Given H(aα), a and b, where a, b ∈ Σ and α ∈ Σ∗, we can quickly
compute H(αb). This is a called rolling or sliding window hash function.

The latter property is essential for fast computation of H(T [j..j +m))
for all j.

37

The hash function used by Karp–Rabin is

H(c0c1c2 . . . cm−1) = (c0r
m−1 + c1r

m−2 + · · ·+ cm−2r + cm−1) mod q

This is a rolling hash function:

H(α) = (H(aα)− arm−1) mod q

H(αb) = (H(α) · r + b) mod q

which follows from the rules of modulo arithmetic:

(x+ y) mod q = ((x mod q) + (y mod q)) mod q

(xy) mod q = ((x mod q)(y mod q)) mod q

The parameters q and r have to be chosen with some care to ensure that
collisions are rare.

• The original choice is r = σ and q is a large prime.

• Another possibility is q = 2w, where w is the machine word size, and r is
a small prime (r = 37 has been suggested). This is faster in practice,
because it avoids slow modulo operations.

• The hash function can be randomized by choosing q or r randomly.
Furthermore, we can change q or r whenever a collision happens.

38

Algorithm 1.17: Karp-Rabin

Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) Choose q and r; s← rm−1 mod q
(2) hp← 0;ht← 0
(3) for i← 0 to m− 1 do hp← (hp · r + P [i]) mod q // hp = H(P)
(4) for j ← 0 to m− 1 do ht← (ht · r + T [j]) mod q
(5) for j ← 0 to n−m− 1 do
(6) if hp = ht then if P = T [j . . . j +m) then return j
(7) ht← ((ht− T [j] · s) · r + T [j +m]) mod q
(8) if hp = ht then if P = T [j . . . j +m) then return j
(9) return n

On an integer alphabet:

• The worst case time complexity is O(mn).

• The average case time complexity is O(m+ n).

Karp–Rabin is not competitive in practice, but hashing can be a useful
technique in other contexts.

39

2. Approximate String Matching

Often in applications we want to search a text for something that is similar
to the pattern but not necessarily exactly the same.

To formalize this problem, we have to specify what does “similar” mean.
This can be done by defining a similarity or a distance measure.

A natural and popular distance measure for strings is the edit distance, also
known as the Levenshtein distance.

40

Edit distance

The edit distance ed(A,B) of two strings A and B is the minimum number of
edit operations needed to change A into B. The allowed edit operations are:

S Substitution of a single character with another character.

I Insertion of a single character.

D Deletion of a single character.

Example 2.1: Let A = Lewensteinn and B = Levenshtein. Then
ed(A,B) = 3.

The set of edit operations can be described with an edit sequence or with
an alignment:

NNSNNNINNNND
Lewens-teinn
Levenshtein-

In the edit sequence, N means No edit.

41

There are many variations and extension of the edit distance, for example:

• Hamming distance allows only the subtitution operation.

• Damerau–Levenshtein distance adds an edit operation:

T Transposition swaps two adjacent characters.

• With weighted edit distance, each operation has a cost or weight,
which can be other than one.

• Allow insertions and deletions (indels) of factors at a cost that is lower
than the sum of character indels.

We will focus on the basic Levenshtein distance.

42

Computing Edit Distance

Given two strings A[1..m] and B[1..n], define the values dij with the
recurrence:

d00 = 0,

di0 = i, 1 ≤ i ≤ m,
d0j = j, 1 ≤ j ≤ n, and

dij = min

di−1,j−1 + δ(A[i], B[j])

di−1,j + 1

di,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n,

where

δ(A[i], B[j]) =

{
1 if A[i] 6= B[j]
0 if A[i] = B[j]

Theorem 2.2: dij = ed(A[1..i], B[1..j]) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n.
In particular, dmn = ed(A,B).

43

Example 2.3: A = ballad, B = handball

d h a n d b a l l

0 1 2 3 4 5 6 7 8
b 1 1 2 3 4 4 5 6 7
a 2 2 1 2 3 4 4 5 6
l 3 3 2 2 3 4 5 4 5
l 4 4 3 3 3 4 5 5 4
a 5 5 4 4 4 4 4 5 5
d 6 6 5 5 4 5 5 5 6

ed(A,B) = dmn = d6,8 = 6.

44

Proof of Theorem 2.2. We use induction with respect to i+ j. For
brevity, write Ai = A[1..i] and Bj = B[1..j].

Basis:
d00 = 0 = ed(ε, ε)

di0 = i = ed(Ai, ε) (i deletions)

d0j = j = ed(ε, Bj) (j insertions)

Induction step: We show that the claim holds for dij, 1 ≤ i ≤ m,1 ≤ j ≤ n.
By induction assumption, dpq = ed(Ap, Bq) when p+ q < i+ j.

The value ed(Ai, Bj) is based on an optimal edit sequence. We have three
cases depending on what the last edit operation is:

N or S: ed(Ai, Bj) = ed(Ai−1, Bj−1)+δ(A[i], B[j]) = di−1,j−1 +δ(A[i], B[j]).

I: ed(Ai, Bj) = ed(Ai, Bj−1) + 1 = di,j−1 + 1.

D: ed(Ai, Bj) = ed(Ai−1, Bj) + 1 = di−1,j + 1.

Since the edit sequence is optimal, the correct value is the minimum of the
three cases, which agrees with the definition of dij. �

45

The recurrence gives directly a dynamic programming algorithm for
computing the edit distance.

Algorithm 2.4: Edit distance
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do di0 ← i
(2) for j ← 1 to n do d0j ← j
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) dij ← min{di−1,j−1 + δ(A[i], B[j]), di−1,j + 1, di,j−1 + 1}
(6) return dmn

The time and space complexity is O(mn).

46

The space complexity can be reduced by noticing that each column of the
matrix (dij) depends only on the previous column. We do not need to store
older columns.

A more careful look reveals that, when computing dij, we only need to store
the bottom part of column j − 1 and the already computed top part of
column j. We store these in an array C[0..m] and variables c and d as shown
below:

d0,j−1

dm,j−1

di−1,j

d0,j

dm,j

di−1,j

d0,j

di−1,j−1

c

di,j di,j−1di,j−1

dm,j−1

di,j

ddi−1,j−1

C[0..m]

47

Algorithm 2.5: Edit distance in O(m) space
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do C[i]← i
(2) for j ← 1 to n do
(3) c← C[0]; C[0]← j
(4) for i← 1 to m do
(5) d← min{c+ δ(A[i], B[j]), C[i− 1] + 1, C[i] + 1}
(6) c← C[i]
(7) C[i]← d
(8) return C[m]

• Note that because ed(A,B) = ed(B,A) (exercise), we can assume that
m ≤ n.

48

It is also possible to find optimal edit sequences and alignments from the
matrix dij.

An edit graph is a directed graph, where the nodes are the cells of the edit
distance matrix, and the edges are as follows:

• If A[i] = B[j] and dij = di−1,j−1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with N.

• If A[i] 6= B[j] and dij = di−1,j−1 + 1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with S.

• If dij = di,j−1 + 1, there is an edge (i, j − 1)→ (i, j) labelled with I.

• If dij = di−1,j + 1, there is an edge (i− 1, j)→ (i, j) labelled with D.

Any path from (0,0) to (m,n) is labelled with an optimal edit sequence.

49

Example 2.6: A = ballad, B = handball

d h a n d b a l l

0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 4 → 5 → 6 → 7 → 8
b

→ ⇒ → → → ⇒
1 1 → 2 → 3 → 4 4 → 5 → 6 → 7

a

→ → → ⇒ ⇒
2 2 1 ⇒ 2 → 3 → 4 4 → 5 → 6

l

→ → → → ⇒ ⇒ → → → ⇒ →
3 3 2 2 ⇒ 3 → 4 → 5 4 → 5

l

→ → → → → → ⇒ ⇒ → → → ⇒
4 4 3 3 3 ⇒ 4 → 5 5 4

a

→ → → → → → → → → → ⇒ ⇒

5 5 4 4 4 4 4 ⇒ 5 5
d

→ → → → → → → → → → → ⇒ ⇒ ⇒

6 6 5 5 4 → 5 5 5 ⇒ 6

There are 7 paths from (0,0) to (6,8) corresponding to, for example, the
following edit sequences and alignments:

IIIINNNNDD SNISSNIS SNSSINSI
----ballad ba-lla-d ball-ad-
handball-- handball handball

50

Approximate String Matching

Now we are ready to tackle the main problem of this part: approximate
string matching.

Problem 2.7: Given a text T [1..n], a pattern P [1..m] and an integer k ≥ 0,
report all positions j ∈ [1..m] such that ed(P, T (j − `...j]) ≤ k for some ` ≥ 0.

The factor T (j − `...j] is called an approximate occurrence of P .

There can be multiple occurrences of different lengths ending at the same
position j, but usually it is enough to report just the end positions.
We ask for the end position rather than the start position because that is
more natural for the algorithms.

51

Define the values gij with the recurrence:

g0j = 0, 0 ≤ j ≤ n,
gi0 = i, 1 ≤ i ≤ m, and

gij = min

gi−1,j−1 + δ(P [i], T [j])

gi−1,j + 1

gi,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n.

Theorem 2.8: For all 0 ≤ i ≤ m, 0 ≤ j ≤ n:

gij = min{ed(P [1..i], T (j − `...j]) | 0 ≤ ` ≤ j} .
In particular, j is an ending position of an approximate occurrence if and
only if gmj ≤ k.

52

Proof. We use induction with respect to i+ j.

Basis:
g00 = 0 = ed(ε, ε)

g0j = 0 = ed(ε, ε) = ed(ε, T (j − 0..j]) (min at ` = 0)

gi0 = i = ed(P [1..i], ε) = ed(P [1..i], T (0− 0..0]) (0 ≤ ` ≤ j = 0)

Induction step: Essentially the same as in the proof of Theorem 2.2.

53

Example 2.9: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m ⇒
1 1 1 0 1 1 1 1 1 1

a ⇒
2 2 2 1 0 1 2 2 2 2

t

⇒

3 3 3 2 1 1 2 3 3 3
c ⇒

4 4 4 3 2 1 2 3 4 4
h ⇒

5 5 5 4 3 2 1 2 3 4

One occurrence ending at position 6.

54

Algorithm 2.10: Approximate string matching
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for i← 0 to m do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) gij ← min{gi−1,j−1 + δ(A[i], B[j]), gi−1,j + 1, gi,j−1 + 1}
(6) if qmj ≤ k then output j

• Time and space complexity is O(mn).

• The space complexity can be reduced to O(m) by storing only one
column as in Algorithm 2.5.

55

Ukkonen’s Cut-off Heuristic

We can speed up the algorithm using the diagonal monotonicity of the
matrix (gij):

A diagonal d, −m ≤ d ≤ n, consists of the cells gij with j − i = d.
Every diagonal in (gij) is monotonically increasing.

Example 2.11: Diagonals -3 and 2.

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m –

1 1 1 0 1 1 1 1 1 1
a –

2 2 2 1 0 1 2 2 2 2
t –

3 3 3 2 1 1 2 3 3 3
c – –

4 4 4 3 2 1 2 3 4 4
h – –

5 5 5 4 3 2 1 2 3 4

56

More specifically, we have the following property.

Lemma 2.12: For every i ∈ [1..m] and every j ∈ [1..n],
gij = gi−1,j−1 or gij = gi−1,j−1 + 1.

Proof. By definition, gij ≤ gi−1,j−1 + δ(P [i], T [j]) ≤ gi−1,j−1 + 1. We show
that gij ≥ gi−1,j−1 by induction on i+ j.

The induction assumption is that gpq ≥ gp−1,q−1 when p ∈ [1..m], q ∈ [1..n] and
p+ q < i+ j. At least one of the following holds:

1. gij = gi−1,j−1 + δ(P [i], T [j]). Then gij ≥ gi−1,j−1.

2. gij = gi−1,j + 1 and i > 1. Then

gij = gi−1,j + 1
ind. assump.

≥ gi−2,j−1 + 1
definition
≥ gi−1,j−1

3. gij = gi,j−1 + 1 and j > 1. Then

gij = gi,j−1 + 1
ind. assump.

≥ gi−1,j−2 + 1
definition
≥ gi−1,j−1

4. i = 1. Then gij ≥ 0 = gi−1,j−1.

gij = gi,j−1 + 1 and j = 1 is not possible because gi,1 ≤ gi−1,0 + 1 < gi,0 + 1. �

57

We can reduce computation using diagonal monotonicity:

• Whenever the value on a column d grows larger than k, we can discard
d from consideration, because we are only interested in values at most k
on the row m.

• We keep track of the smallest undiscarded diagonal d. Each column is
computed only up to diagonal d.

Example 2.13: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m
1 1 1 0 1 1 1 1 1 1

a
2 2 2 1 0 1 2 2 2 2

t
1 1 2 3

c
1 2 3

h
1 2

58

The position of the smallest undiscarded diagonal on the current column is
kept in a variable top.

Algorithm 2.14: Ukkonen’s cut-off algorithm
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for i← 0 to m do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) top← min(k + 1,m)
(4) for j ← 1 to n do
(5) for i← 1 to top do
(6) gij ← min{gi−1,j−1 + δ(A[i], B[j]), gi−1,j + 1, gi,j−1 + 1}
(7) while gtop,j > k do top← top− 1
(8) if top = m then output j
(9) else top← top+ 1

59

The time complexity is proportional to the computed area in the
matrix (gij).

• The worst case time complexity is still O(mn).

• The average case time complexity is O(kn). The proof is not trivial.

There are many other algorithms based on diagonal monotonicity. Some of
them achieve O(kn) worst case time complexity.

60

Myers’ Bitparallel Algorithm

Another way to speed up the computation is bitparallelism.

Instead of the matrix (gij), we store differences between adjacent cells:

Vertical delta: ∆vij = gij − gi−1,j

Horizontal delta: ∆hij = gij − gi,j−1

Diagonal delta: ∆dij = gij − gi−1,j

Because gi0 = i ja g0j = 0,

gij = ∆v1j + ∆v2j + · · ·+ ∆vij

= i+ ∆hi1 + ∆hi2 + · · ·+ ∆hij

Because of diagonal monotonicity, ∆dij ∈ {0,1} and it can be stored in one
bit. By the following result, ∆hij and ∆vij can be stored in two bits.

Lemma 2.15: ∆hij,∆vij ∈ {−1,0,1} for every i, j that they are defined for.

The proof is left as an exercise.

61

Example 2.16: ‘–’ means −1, ‘=’ means 0 and ‘+’ means +1

r e m a c h i n e
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

m + + + + + = = + + + + + + + + + + + +
1 = 1 = 1 – 0 + 1 = 1 = 1 = 1 = 1 = 1

a + + + + + = + = – = = + + + + + + + +
2 = 2 = 2 – 1 – 0 + 1 + 2 = 2 = 2 = 2

t + + + + + = + = + + = + = + + + + + +
3 = 3 = 3 – 2 – 1 = 1 + 2 + 3 = 3 = 3

c + + + + + = + = + = = + = + = + + + +
4 = 4 = 4 – 3 – 2 – 1 + 2 + 3 + 4 = 4

h + + + + + = + = + = + = – = – = – = =
5 = 5 = 5 – 4 – 3 – 2 – 1 + 2 + 3 + 4

62

In the standard computation of a cell:

• Input is gi−1,j, gi−1,j−1, gi,j−1 and δ(P [i], T [j]).

• Output is gij.

In the corresponding bitparallel computation:

• Input is ∆vin = ∆vi,j−1, ∆hin = ∆hi,j−1 and Eqij = 1− δ(P [i], T [j]).

• Output is ∆vout = ∆vi,j and ∆hout = ∆hi,j.

gi−1,j−1
∆hin

−−−−−−−−→ gi−1,j

∆vin

y
y∆vout

gi,j−1 −−−−−−−−−→
∆hout

gij

63

The computation rule is defined by the following result.

Lemma 2.17: If Eq = 1 or ∆vin = −1 or ∆hin = −1,
then ∆d = 0, ∆vout = −∆hin and ∆hout = −∆vin.
Otherwise ∆d = 1, ∆vout = 1−∆hin and ∆hout = 1−∆vin.

Proof. We can write the recurrence for gij as

gij = min{gi−1,j−1 + δ(P [i], T [j]), gi,j−1 + 1, gi−1,j + 1}
= gi−1,j−1 + min{1− Eq,∆vin + 1,∆hin + 1}.

Then ∆d = gij − gi−1,j−1 = min{1− Eq,∆vin + 1,∆hin + 1}
which is 0 if Eq = 1 or ∆vin = −1 or ∆hin = −1 and 1 otherwise.

Clearly ∆d = ∆vin + ∆hout = ∆hin + ∆vout.
Thus ∆vout = ∆d−∆hin and ∆hout = ∆d−∆vin. �

64

To enable bitparallel operation, we need two changes:

• The ∆v and ∆h values are “trits” not bits. We encode each of them
with two bits as follows:

Pv =

{
1 if ∆v = +1
0 otherwise

Mv =

{
1 if ∆v = −1
0 otherwise

Ph =

{
1 if ∆h = +1
0 otherwise

Mh =

{
1 if ∆h = −1
0 otherwise

Then

∆v = Pv −Mv

∆h = Ph−Mh

• We replace arithmetic operations (+, −, min) with logical operations
(∧, ∨, ¬).

65

Now the computation rules can be expressed as follows.

Lemma 2.18: Pvout = Mhin ∨ ¬(Xv ∨ Phin) Mvout = Phin ∧Xv
Phout = Mvin ∨ ¬(Xh ∨ Pvin) Mhout = Pvin ∧Xh

where Xv = Eq ∨Mvin and Xh = Eq ∨Mhin.

Proof. We show the claim for Pv and Mv only. Ph and Mh are symmetrical.

By Lemma 2.17,

Pvout = (¬∆d ∧Mhin) ∨ (∆d ∧ ¬Phin)

Mvout = (¬∆d ∧ Phin) ∨ (∆d ∧ 0) = ¬∆d ∧ Phin

Because ∆d = ¬(Eq ∨Mvin ∨Mhin) = ¬(Xv ∨Mhin) = ¬Xv ∧ ¬Mhin,

Pvout = ((Xv ∨Mhin) ∧Mhin) ∨ (¬Xv ∧ ¬Mhin ∧ ¬Phin)

= Mhin ∨ ¬(Xv ∨Mhin ∨ Phin)

= Mhin ∨ ¬(Xv ∨ Phin)

Mvout = (Xv ∨Mhin) ∧ Phin = Xv ∧ Phin

In the last step, we used the fact that Mhin and Phin cannot be 1
simultaneously. �

66

According to Lemma 2.18, the bit representation of the matrix can be
computed as follows.

for i← 1 to m do
Pvi0 ← 1; Mvi0 ← 0

for j ← 1 to n do
Ph0j ← 0; Mh0j ← 0
for i← 1 to m do

Xhij ← Eqij ∨Mhi−1,j

Phij ←Mvi,j−1 ∨ ¬(Xhij ∨ Pvi,j−1)
Mhij ← Pvi,j−1 ∧Xhij

for i← 1 to m do
Xvij ← Eqij ∨Mvi,j−1

Pvij ←Mhi−1,j ∨ ¬(Xvij ∨ Phi−1,j)
Mvij ← Phi−1,j ∧Xvij

This is not yet bitparallel though.

67

To obtain a bitparallel algorithm, the columns Pv∗j, Mv∗j, Xv∗j, Ph∗j, Mh∗j,
Xh∗j and Eq∗j are stored in bitvectors.

Now the second inner loop can be replaced with the code

Xv∗j ← Eq∗j ∨Mv∗,j−1

Pv∗j ← (Mh∗,j << 1) ∨ ¬(Xv∗j ∨ (Ph∗j << 1))
Mv∗j ← (Ph∗j << 1) ∧Xv∗j

A similar attempt with the for first inner loop leads to a problem:

Xh∗j ← Eq∗j ∨ (Mh∗j << 1)
Ph∗j ←Mv∗,j−1 ∨ ¬(Xh∗j ∨ Pv∗,j−1)
Mh∗j ← Pv∗,j−1 ∧Xh∗j

Now the vector Mh∗j is used in computing Xh∗j before Mh∗j itself is
computed! Changing the order does not help, because Xh∗j is needed to
compute Mh∗j.

To get out of this dependency loop, we compute Xh∗j without Mh∗j using
only Eq∗j and Pv∗,j−1 which are already available when we compute Xh∗j.

68

Lemma 2.19: Xhij = ∃` ∈ [1, i] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1).

Proof. We use induction on i.

Basis i = 1: The right-hand side reduces to Eq1j, because ` = 1. By
Lemma 2.18, Xh1j = Eq1j ∨Mh0j, which is Eq1j because Mh0j = 0 for all j.

Induction step: The induction assumption is that Xhi−1,j is as claimed. Now
we have

∃` ∈ [1, i] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1)

= Eqij ∨ ∃` ∈ [1, i− 1] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1)

= Eqij ∨ (Pvi−1,j−1 ∧ ∃` ∈ [1, i− 1] : Eq`j ∧ (∀x ∈ [`, i− 2] : Pvx,j−1))

= Eqij ∨ (Pvi−1,j−1 ∧Xhi−1,j) (ind. assump.)

= Eqij ∨Mhi−1,j (Lemma 2.18)

= Xhij (Lemma 2.18)

�

69

At first sight, we cannot use Lemma 2.19 to compute even a single bit in
constant time, not to mention a whole vector Xh∗j. However, it can be
done, but we need more bit operations:

• Let Y denote the xor-operation: 0 Y 1 = 1 Y 0 = 1 and 0 Y 0 = 1 Y 1 = 0.

• A bitvector is interpreted as an integer and we use addition as a bit
operation. The carry mechanism in addition plays a key role. For
example 0001 + 0111 = 1000.

In the following, for a bitvector B, we will write

B = B[1..m] = B[m]B[m− 1] . . . B[1]

The reverse order of the bits reflects the interpretation as an integer.

70

Lemma 2.20: Denote X = Xh∗j, E = Eq∗j, P = Pv∗,j−1 ja olkoon
Y = (((E ∧ P) + P) Y P) ∨ E. Then X = Y .

Proof. By Lemma 2.19, X[i] = 1 iff and only if

a) E[i] = 1 or

b) ∃` ∈ [1, i] : E[` . . . i] = 00 · · ·01 ∧ P [` . . . i− 1] = 11 · · ·1.

and X[i] = 0 iff and only if

c) E1...i = 00 · · ·0 or

d) ∃` ∈ [1, i] : E[` . . . i] = 00 · · ·01 ∧ P [` . . . i− 1] 6= 11 · · ·1.

We prove that Y [i] = X[i] in all of these cases:

a) The definition of Y ends with “∨E” which ensures that Y [i] = 1 in this
case.

71

b) The following calculation shows that Y [i] = 1 in this case:

i `

E[` . . . i] =00...01

P [` . . . i] =b1...11

(E ∧ P)[` . . . i] =00...01

((E ∧ P) + P)[` . . . i] =b̄0...0c

(((E ∧ P) + P) Y P)[` . . . i] =11...1c̄

Y = ((((E ∧ P) + P) Y P) ∨ E)[` . . . i] =11...11

where b is the unknown bit P [i], c is the possible carry bit coming from
the summation of bits 1 . . . , `− 1, and b̄ and c̄ are their negations.

c) Because for all bitvectors B, 0 ∧B = 0 ja 0 +B = B, we get
Y = (((0 ∧ P) + P) Y P) ∨ 0 = (P Y P) ∨ 0 = 0.

d) Consider the calculation in case b). A key point there is that the carry
bit in the summation travels from position ` to i and produces b̄ to
position i. The difference in this case is that at least one bit P [k],
` ≤ k < i, is zero, which stops the carry at position k. Thus
((E ∧ P) + P)[i] = b and Y [i] = 0.

�

72

As a final detail, we compute the bottom row values gmj using the equalities
gm0 = m ja gmj = gm,j−1 + ∆hmj.

Algorithm 2.21: Myers’ bitparallel algorithm
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for c ∈ Σ do B[c]← 0m

(2) for i← 1 to m do B[P [i]][i] = 1
(3) Pv ← 1m; Mv ← 0; g ← m
(4) for j ← 1 to n do
(5) Eq ← B[T [j]]
(6) Xh← (((Eq ∧ Pv) + Pv) Y Pv) ∨ Eq
(7) Ph←Mv ∨ ¬(Xh ∨ Pv)
(8) Mh← Pv ∧Xh
(9) Xv ← Eq ∨Mv

(10) Pv ← (Mh << 1) ∨ ¬(Xv ∨ (Ph << 1))
(11) Mv ← (Ph << 1) ∧Xv
(12) g ← g + Ph[m]−Mh[m]
(13) if g ≤ k then output j

73

On an integer alphabet, when m ≤ w:

• Pattern preprocessing time is O(m+ σ).

• Search time is O(n).

When m > w, we can store each bit vector in dm/we machine words:

• The worst case search time is O(ndm/we).

• Using Ukkonen’s cut-off heuristic, it is possible reduce the average case
search time to O(ndk/we).

74

There are also algorithms based on bitparallel simulation of a
nondeterministic automaton.

Example 2.22: P = pattern, k = 3
a t t e r np

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

no errors

1 error

2 errors

3 errors

• The algorithm of Wu and Manber uses a bit vector for each row. It can
be seen as an extension of Shift-And. The search time complexity is
O(kndm/we).

• The algorithm of Baeza-Yates and Navarro uses a bit vector for each
diagonal, packed into one long bitvector. The search time complexity is
O(ndkm/we).

75

Baeza-Yates–Perleberg Filtering Algorithm

A filtering algorithm for approximate strings matching searches the text for
factors having some property that satisfies the following conditions:

1. Every approximate occurrence of the pattern has this property.

2. Strings having this property are reasonably rare.

3. Text factors having this property can be found quickly.

Each text factor with the property is a potential occurrence, and it is
verified for whether it is an actual approximate occurrence.

Filtering algorithms can achieve linear or even sublinear average case time
complexity.

76

The following lemma shows the property used by the Baeza-Yates–Perleberg
algorithm and proves that it satisfies the first condition.

Lemma 2.23: Let P1P2 . . . Pk+1 = P be a partitioning of the pattern P into
k + 1 nonempty factors. Any string S with ed(P, S) ≤ k contains Pi as a
factor for some i ∈ [1..k + 1].

Proof. Each single symbol edit operation can change at most one of the
pattern factors Pi. Thus any set of at most k edit operations leaves at least
one of the factors untouched. �

77

The algorithm has two phases:

Filtration: Search the text T for exact occurrences of the pattern factors Pi.
This is done in O(n) time using the Aho–Corasick algorithm for multiple
exact string matching, which we will see later during this course.

Verification: An area of length O(m) surrounding each potential occurrence
found in the filtration phase is searched using the standard dynamic
programming algorithm in O(m2) time.

The worst case time complexity is O(m2n), which can be reduced to O(mn)
by combining any overlapping areas to be searched.

78

Let us analyze the average case time complexity of the verification phase.

• The best pattern partitioning is as even as possible. Then each pattern
factor has length at least r = bm/(k + 1)c.

• The expected number of exact occurrences of a random string of
length r in a random text of length n is at most n/σr.

• The expected total verification time is at most

O
(
m2(k + 1)n

σr

)
≤ O

(
m3n

σr

)
.

This is O(n) if r ≥ 3 logσm.

• The condition r ≥ 3 logσm is satisfied when (k + 1) ≤ m/(3 logσm+ 1).

Theorem 2.24: The average case time complexity of the
Baeza-Yates–Perleberg algorithm is O(n) when k ≤ m/(3 logσm+ 1)− 1.

79

Many variations of the algorithm have been suggested:

• The filtration can be done with a different multiple exact string
matching algorithm:

– The first algorithm of this type by Wu and Manber used an
extension of the Shift-And algorithm.

– An extension of BDM achieves O(nk(logσm)/m) average case
search time. This is sublinear for small enough k.

– An extension of the Horspool algorithm is very fast in practice for
small k and large σ.

• Using a technique called hierarchical verification, the average
verification time for a single potential occurrence can be reduced to
O((m/k)2).

A filtering algorithm by Chang and Marr has average case time complexity
O(n(k + logσm)/m), which is optimal.

80

3. Sorting and Searching Sets of Strings

Sorting algorithms and search trees are among the most fundamental
algorithms and data structures for sets of objects. They are also closely
connected:

• A sorted array is an implicit search tree through binary search.

• A set can be sorted by inserting the elements in a search tree and then
traversing the tree in order.

Another connecting feature is that they are usually based on order
comparisons between elements, and their time complexity analysis counts
the number of comparisons needed.

These algorithms and data structures work when the elements of the set are
strings (pointers to strings, to be precise). However, comparisons are no
more constant time operations in general, and the number of comparisons
does not tell the whole truth about the time complexity.

In this part, we will see that algorithms and data structures designed
specifically for strings are often faster.

81

Sorting Strings

Let us first define an order for strings formally.

Definition 3.1: Let A[0..m) and B[0..n) be two strings on an ordered
alphabet Σ. We say that A is lexicographically smaller than B, denoted
A < B, if and only if either

• m < n and A = B[0..m) (i.e., A is a proper prefix of B) or

• A[0..i) = B[0..i) and A[i] < B[i] for some i ∈ [0..min{m,n}).

Determining the order of A and B needs Θ(min{m,n}) symbol comparisons
in the worst case.

On the other hand, the expected number of symbol comparisons for two
random strings is O(1).

82

Ω(n logn) is a well known lower bound for the number of comparisons
needed for sorting a set of n objects by any comparison based algorithm.
This lower bound holds both in the worst case and in the average case.

There are many algorithms that match the lower bound, i.e., sort using
O(n logn) comparisons (worst or average case). Examples include quicksort,
heapsort and mergesort.

If we use one of these algorithms for sorting a set of n strings, it is clear
that the number of symbol comparisons can be more than O(n logn) in the
worst case.

What about the average case when sorting a set of random strings?

83

The following theorem shows that we cannot achieve O(n logn) symbol
comparisons in the average case (when σ = no(1)).

Theorem 3.2: Let A be an algorithm that sorts a set of objects using only
comparisons between the objects. Let R = {S1, S2, . . . , Sn} be a set of n
strings over an ordered alphabet of Σ. Sorting R using A requires
Ω(n logn logσ n) symbol comparisons.

• If σ is considered to be a constant, the lower bound is Ω(n(logn)2).

• An intuitive explanation for this result is that the comparisons made by
a sorting algorithm are not random.

84

Proof of Theorem 3.2. Let k = b(logσ n)/2c. For any string α ∈ Σk, let Rα

be the set of strings in R having α as a prefix. Let nα = |Rα|.

Let us analyze the number of symbol comparisons when comparing strings
in Rα against each other.

• Each string comparison needs at least k symbol comparisons.

• No comparison between a string in Rα and a string outside Rα gives
any information about the relative order of the strings in Rα.

• Thus A needs to do Ω(nα lognα) string comparisons and Ω(knα lognα)
symbol comparisons to determine the relative order of the strings in Rα.

Thus the total number of symbol comparisons is Ω
(∑

α∈Σk knα lognα
)

and∑
α∈Σk

knα lognα ≥ k(n−
√
n) log

n−
√
n

σk
≥ k(n−

√
n) log(

√
n− 1)

= Ω (kn logn) = Ω (n logn logσ n) .

Here we have used the facts that σk ≤
√
n, that

∑
α∈Σk nα > n− σk ≥ n−

√
n,

and that
∑

α∈Σk nα lognα > (n−
√
n) log((n−

√
n)/σk) (see exercises). �

85

The preceding lower bound does not hold for algorithms specialized for
sorting strings. To derive a lower bound for any algorithm based on symbol
comparisons, we need the following concept.

Definition 3.3: Let S be a string and R = {S1, S2, . . . , Sn} a set of strings.
The distinguishing prefix of S in R is the shortest prefix of S that separates
it from the (other) members R. Let dpR(S) denote the length of the
distinguishing prefix, and let DP (R) =

∑
T∈R dpR(T) be the total length of

distuinguishing prefixes in R.

Example 3.4: Distuingishing prefixes:

a akkoselliseen
järjesty kseen
järjestä
m erkkijonot
n ämä

86

Theorem 3.5: Let R = {S1, S2, . . . , Sn} be a set of n strings. Sorting R into
the lexicographical order by any algorithm based on symbol comparisons
requires Ω(DP (R) + n logn) symbol comparisons.

Proof. The algorithm must examine every symbol in the duistinguishing
prefixes. This gives a lower bound Ω(DP (R)).

On the other hand, the general sorting lower bound Ω(n logn) must hold
here too.

The result follows from combining the two lower bounds. �

• Note that for a random set of strings DP (R) = O(n logσ n) on average.
The lower bound then becomes Ω(n logn).

We will next see that there are algorithms that match this lower bound.
Such algorithms can sort a random set of strings in O(n logn) time.

87

String Quicksort (Multikey Quicksort)

Quicksort is one of the fastest general purpose sorting algorithms in
practice.

Here is a variant of quicksort that partitions the input into three parts
instead of the usual two parts.

Algorithm 3.6: TernaryQuicksort(R)

Input: (Multi)set R in arbitrary order.
Output: R in increasing order.

(1) if |R| ≤ 1 then return R
(2) select a pivot x ∈ R
(3) R< ← {s ∈ R | s < x}
(4) R= ← {s ∈ R | s = x}
(5) R> ← {s ∈ R | s > x}
(6) R< ← TernaryQuicksort(R<)
(7) R> ← TernaryQuicksort(R>)
(8) return R< ·R= ·R>

88

In the normal, binary quicksort, we would have two subsets R≤ and R≥, both
of which may contain elements that are equal to the pivot.

• Binary quicksort is slightly faster in practice for sorting sets.

• Ternary quicksort can be faster for sorting multisets with many
duplicate keys (exercise).

The time complexity of both the binary and the ternary quicksort depends
on the selection of the pivot:

• The optimal choice is the median of R, which can be computed in
linear worst case time. Then the time complexity is O(n logn) in the
worst case.

• If we choose the pivot randomly, the expected time complexity is
O(n logn).

• A practical choice is the median of a few elements.

In the following, we assume an optimal pivot selection.

89

String quicksort is similar to ternary quicksort, but it partitions using a
single character position.

Algorithm 3.7: StringQuicksort(R, `)
Input: Set R of strings and the length ` of their common prefix.
Output: R in increasing lexicographical order.

(1) if |R| ≤ 1 then return R
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) select pivot X ∈ R
(4) R< ← {S ∈ R | S[`] < X[`]}
(5) R= ← {S ∈ R | S[`] = X[`]}
(6) R> ← {S ∈ R | S[`] > X[`]}
(7) R< ← StringQuicksort(R<, `)
(8) R= ← StringQuicksort(R=, `+ 1)
(9) R> ← StringQuicksort(R>, `)

(10) return R⊥ · R< · R= · R>

In the initial call, ` = 0.

90

Example 3.8: A possible partitioning, when ` = 2.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al i gnment
al g orithm
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

Theorem 3.9: String quicksort sorts a set R of n strings in
O(DP (R) + n logn) time.

• Thus string quicksort is an optimal symbol comparison based algorithm.

• String quicksort is also fast in practice.

91

Proof of Theorem 3.9. The time complexity is dominated by the symbol
comparisons on lines (4)–(6). We charge the cost of each comparison either
on a single symbol or on a string depending on the result of the comparison:

S[`] = X[`]: Charge the comparison on the symbol S[`].

• Now the string S is placed in the set R=. The recursive call on R=

increases the common prefix length to `+ 1. Thus S[`] cannot be
involved in any future comparison and the total charge on S[`] is 1.

• The algorithm never accesses symbols outside the distinguishing
prefixes. Thus the total number of symbol comparisons resulting
equality is at most O(DP (R)).

S[`] 6= X[`]: Charge the comparison on the string S.

• Now the string S is placed in the set R< or R>. Assuming an
optimal choice of the pivot X, the size of either set is at most |R|/2.

• Every comparison charged on S halves the size of the set containing
S, and hence the total charge accumulated by S is at most logn.

• Thus the total number of symbol comparisons resulting inequality is
at most O(n logn). �

92

Radix Sort

The Ω(n logn) sorting lower bound does not apply to algorithms that use
stronger operations than comparisons. A basic example is counting sort for
sorting integers.

Algorithm 3.10: CountingSort(R)
Input: (Multi)set R = {k1, k2, . . . kn} of integers from the range [0..σ).
Output: R in nondecreasing order in array J[0..n).

(1) for i← 0 to σ − 1 do C[i]← 0
(2) for i← 1 to n do C[ki]← C[ki] + 1
(3) sum← 0
(4) for i← 0 to σ − 1 do // cumulative sums
(5) tmp← C[i]; C[i]← sum; sum← sum+ tmp
(6) for i← 1 to n do // distribute
(7) J[C[ki]]← ki; C[ki]← C[ki] + 1
(8) return J

• The time complexity is O(n+ σ).

• Counting sort is a stable sorting algorithm, i.e., the relative order of
equal elements stays the same.

93

Similarly, the Ω(DP (R) + n logn) lower bound does not apply to string
sorting algorithms that use stronger operations than symbol comparisons.
Radix sort is such an algorithm for integer alphabets.

Radix sort was developed for sorting large integers, but it treats an integer
as a string of digits, so it is really a string sorting algorithm (more on this in
the exercises).

There are two types of radix sorting:

MSD radix sort starts sorting from the beginning of strings (most
significant digit).

LSD radix sort starts sorting from the end of strings (least
significant digit).

94

The LSD radix sort algorithm is very simple.

Algorithm 3.11: LSDRadixSort(R)

Input: Set R = {S1, S2, . . . , Sn} of strings of length m over the alphabet [0..σ).
Output: R in increasing lexicographical order.

(1) for `← m− 1 to 0 do CountingSort(R,`)
(2) return R

• CountingSort(R,`) sorts the strings in R by the symbols at position `
using counting sort (with ki is replaced by Si[`]). The time complexity is
O(|R|+ σ).

• The stability of counting sort is essential.

Example 3.12: R = {cat, him, ham, bat}.

cat
him
ham
bat

=⇒

hi m
ha m
ca t
ba t

=⇒

h a m
c a t
b a t
h i m

=⇒

b at
c at
h am
h im

95

The algorithm assumes that all strings have the same length m, but it can
be modified to handle strings of different lengths (exercise).

Theorem 3.13: LSD radix sort sorts a set R of strings over the alphabet
[0..σ) in O(||R||+mσ) time, where ||R|| is the total length of the strings in
R and m is the length of the longest string in R.

• The weakness of LSD radix sort is that it uses Ω(||R||) time even when
DP (R) is much smaller than ||R||.

• It is best suited for sorting short strings and integers.

96

MSD radix sort resembles string quicksort but partitions the strings into σ
parts instead of three parts.

Example 3.14: MSD radix sort partitioning.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al g orithm
al i gnment
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

97

Algorithm 3.15: MSDRadixSort(R, `)
Input: Set R = {S1, S2, . . . , Sn} of strings over the alphabet [0..σ)

and the length ` of their common prefix.
Output: R in increasing lexicographical order.

(1) if |R| < σ then return StringQuicksort(R, `)
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) (R0,R1, . . . ,Rσ−1)← CountingSort(R, `)
(4) for i← 0 to σ − 1 do Ri ←MSDRadixSort(Ri, `+ 1)
(5) return R⊥ · R0 · R1 · · ·Rσ−1

• Here CountingSort(R,`) not only sorts but also returns the partitioning
based on symbols at position `. The time complexity is still O(|R|+ σ).

• The recursive calls eventually lead to a large number of very small sets,
but counting sort needs Ω(σ) time no matter how small the set is. To
avoid the potentially high cost, the algorithm switches to string
quicksort for small sets.

98

Theorem 3.16: MSD radix sort sorts a set R of n strings over the
alphabet [0..σ) in O(DP (R) + n logσ) time.

Proof. Consider a call processing a subset of size k ≥ σ:

• The time excluding the recursive call but including the call to counting
sort is O(k + σ) = O(k). The k symbols accessed here will not be
accessed again.

• The algorithm does not access any symbols outside the distinguishing
prefixes. Thus the total time spent in this kind of calls is O(DP (R)).

This still leaves the time spent in the calls to string quicksort. The calls are
for sets of size smaller than σ and no string is included two calls. Therefore,
the total time over all calls is O(DP (R) + n logσ).

�

• There exists a more complicated variant of MSD radix sort with time
complexity O(DP (R) + σ).

• Ω(DP (R)) is a lower bound for any algorithm that must access symbols
one at a time.

• In practice, MSD radix sort is very fast, but it is sensitive to
implementation details.

99

String Mergesort

Standard comparison based sorting algorithms are not optimal for sorting
strings because of an imbalance between effort and result in a string
comparison: it can take a lot of time but the result is only a bit or a trit of
useful information.

String quicksort solves this problem by using symbol comparisons where the
constant time is in balance with the information value of the result.

String mergesort takes the opposite approach. It replaces a standard string
comparison with the operation LcpCompare(A,B, k):

• The return value is the pair (x, `), where x ∈ {<,=, >} indicates the
order, and ` is the length of the longest common prefix (lcp) of strings
A and B, denoted by lcp(A,B).

• The input value k is the length of a known common prefix, i.e., a lower
bound on lcp(A,B). The comparison can skip the first k characters.

Any extra time spent in the comparison is balanced by the extra information
obtained in the form of the lcp value.

100

The following result show how we can use the information from past
comparisons to obtain a lower bound or even the exact value for an lcp.

Lemma 3.17: Let A, B and C be strings.

(a) lcp(A,C) ≥ min{lcp(A,B), lcp(B,C)}.

(b) If A ≤ B ≤ C, then lcp(A,C) = min{lcp(A,B), lcp(B,C)}.

Proof. Assume ` = lcp(A,B) ≤ lcp(B,C). The opposite case
lcp(A,B) ≥ lcp(B,C) is symmetric.

(a) Now A[0..`) = B[0..`) = C[0..`) and thus lcp(A,C) ≥ `.

(b) Either |A| = ` or A[`] < B[`] ≤ C[`]. In either case, lcp(A,C) = `.

�

101

It can also be possible to determine the order of two strings without
comparing them directly.

Lemma 3.18: Let A ≤ B,B′ ≤ C be strings.

(a) If lcp(A,B) > lcp(A,B′), then B < B′.

(b) If lcp(B,C) > lcp(B′, C), then B > B′.

Proof. We show (a); (b) is symmetric. Assume to the contrary that B ≥ B′.
Then by Lemma 3.17, lcp(A,B) = min{lcp(A,B′), lcp(B′, B)} ≤ lcp(A,B′),
which is a contradiction. �

102

String mergesort has the same structure as the standard mergesort: sort the
first half and the second half separately, and then merge the results.

Algorithm 3.19: StringMergesort(R)
Input: Set R = {S1, S2, . . . , Sn} of strings.
Output: R sorted and augmented with lcp information.

(1) if |R| = 1 then return {(S1,0)}
(2) k ← bn/2c
(3) P ← StringMergesort({S1, S2, . . . , Sk})
(4) Q ← StringMergesort({Sk+1, Sk+2, . . . , Sn})
(5) return StringMerge(P,Q)

The output is of the form

{(T1, `1), (T2, `2), . . . , (Tn, `n)}
where `i = lcp(Ti, Ti−1) for i > 1 and `1 = 0.

In other words, we get not only the order of the strings but also a lot of
information about their common prefixes. The procedure StringMerge uses
this information effectively.

103

Algorithm 3.20: StringMerge(P,Q)
Input: Sequences P =

(
(S1, k1), . . . , (Sm, km)

)
and Q =

(
(T1, `1), . . . , (Tn, `n)

)
Output: Merged sequence R

(1) R← ∅; i← 1; j ← 1
(2) while i ≤ m and j ≤ n do
(3) if ki > `j then append (Si, ki) to R; i← i+ 1
(4) else if `j > ki then append (Tj, `j) to R; j ← j + 1
(5) else // ki = `j
(6) (x, h)← LcpCompare(Si, Tj, ki)
(7) if x = ”<” then
(8) append (Si, ki) to R; i← i+ 1
(9) `j ← h

(10) else
(11) append (TJ , `j) to R; j ← j + 1
(12) ki ← h
(13) while i ≤ m do append (Si, ki) to R; i← i+ 1
(14) while j ≤ n do append (TJ , `j) to R; j ← j + 1
(15) return R

104

Lemma 3.21: StringMerge performs the merging correctly.

Proof. We will show that the following invariant holds at the beginning of
each round in the loop on lines (2)–(12):

Let X be the last string appended to R (or ε if R = ∅). Then
ki = lcp(X,Si) and `j = lcp(X,Tj).

The invariant is clearly true in the beginning. We will show that the invariant
is maintained and the smaller string is chosen in each round of the loop.

• If ki > `j, then lcp(X,Si) > lcp(X,Tj) and thus

– Si < Tj by Lemma 3.18.

– lcp(Si, Tj) = lcp(X,Tj) because by Lemma 3.17
lcp(X,Tj) = min{lcp(X,Si), lcp(Si, Tj)}.

Hence, the algorithm chooses the smaller string and maintains the
invariant. The case `j > ki is symmetric.

• If ki = `j, then clearly lcp(Si, Tj) ≥ ki and the call to LcpCompare is safe,
and the smaller string is chosen. The update `j ← h or ki ← h maintains
the invariant. �

105

Theorem 3.22: String mergesort sorts a set R of n strings in
O(DP (R) + n logn) time.

Proof. If the calls to LcpCompare took constant time, the time complexity
would be O(n logn) by the same argument as with the standard mergesort.

Whenever LcpCompare makes more than one, say 1 + t symbol
comparisons, one of the lcp values stored with the strings increases by t.
The lcp value stored with a string S cannot become larger than dpR(S).
Therefore, the extra time spent in LcpCompare is bounded by O(DP (R)).

�

• Other comparison based sorting algorithms, for example heapsort and
insertion sort, can be adapted for strings using the lcp comparison
technique.

106

Search Trees for Strings

A balanced binary search tree is a powerful data structure that stores a set
of objects and supports many operations including:

Insert and Delete.

Lookup: Find if a given object is in the set, and if it is, possibly
return some data associated with the object.

Range query: Find all objects in a given range.

The time complexity of the operations for a set of size n is O(logn) (plus
the size of the result) assuming constant time comparisons.

There are also alternative data structures, particularly if we do not need to
support all operations:

• A hash table supports operations in constant time but does not support
range queries.

• An ordered array is simpler, faster and more space efficient in practice,
but does not support insertions and deletions.

A data structure is called dynamic if it supports insertions and deletions and
static if not.

107

When the objects are strings, operations slow down:

• Comparison are slower. For example, the average case time complexity
is O(logn logσ n) for operations in a binary search tree storing a random
set of strings.

• Computing a hash function is slower too.

For a string set R, there are also new types of queries:

Lcp query: What is the length of the longest prefix of the query
string S that is also a prefix of some string in R.

Prefix query: Find all strings in R that have S as a prefix.

The prefix query is a special type of range query.

108

Trie

A trie is a rooted tree with the following properties:

• Edges are labelled with symbols from an alphabet Σ.

• The edges from any node v to its children have all different labels.

Each node represents the string obtained by concatenating the symbols on
the path from the root to that node.

The trie for a strings set R, denoted by trie(R), is the smallest trie that has
nodes representing all the strings in R.

Example 3.23: trie(R) for R = {pot, potato, pottery, tattoo, tempo}.

o

t

a

t

o

y

r

e

t

p t

o

o

t

t

a e

m

p

o

109

The time and space complexity of a trie depends on the implementation of
the child function:

For a node v and a symbol c ∈ Σ, child(v, c) is u if u is a child of v
and the edge (v, u) is labelled with c, and child(v, c) = ⊥ if v has no
such child.

There are many implementation options including:

Array: Each node stores an array of size σ. The space complexity is
O(σ||R||), where ||R|| is the total length of the strings in R. The time
complexity of the child operation is O(1).

Binary tree: Replace the array with a binary tree. The space complexity is
O(||R||) and the time complexity O(logσ).

Hash table: One hash table for the whole trie, storing the values
child(v, c) 6= ⊥. Space complexity O(||R||), time complexity O(1).

Array and hash table implementations require an integer alphabet; the
binary tree implementation works for an ordered alphabet.

110

A common simplification in the analysis of tries is to assume that σ is
constant. Then the implementation does not matter:

• Insertion, deletion, lookup and lcp query for a string S take O(|S|) time.

• Prefix query takes O(|S|+ `) time, ` is the total length of the strings in
the answer.

The potential slowness of prefix (and range) queries is one of the main
drawbacks of tries.

Note that a trie is a complete representation of the strings. There is no
need to store the strings elsewhere. Most other data structures hold
pointers to the strings, which are stored elsewhere.

111

Aho–Corasick Algorithm

Given a text T and a set P = {P1.P2, . . . , Pk} of patterns, the multiple exact
string matching problem asks for the occurrences of all the patterns in the
text. The Aho–Corasick algorithm is an extension of the Morris–Pratt
algorithm for multiple exact string matching.

Aho–Corasick uses the trie trie(P) as an automaton and augments it with a
failure function similar to the Morris-Pratt failure function.

Example 3.24: Aho–Corasick automaton for P = {he, she, his, hers}.

1 20

Σ \ {h, s}

h

s

e

e srh

i

s

3 4 5

6 7

8 9

112

Algorithm 3.25: Aho–Corasick
Input: text T , pattern set P = {P1, P2, . . . , Pk}.
Output: all pairs (i, j) such that Pi occurs in T ending at j.

(1) Construct AC automaton
(2) v ← root
(3) for j ← 0 to n− 1 do
(4) while child(v, T [j]) = ⊥ do v ← fail(v)
(5) v ← child(v, T [j])
(6) for i ∈ patterns(v) do output (i, j)

Let Sv denote the string that node v represents.

• root is the root and child() is the child function of the trie.

• fail(v) = u such that Su is the longest proper suffix of Sv represented by
any node.

• patterns(v) is the set of pattern indices i such that Pi is a suffix of Sv.

At each stage, the algorithm computes the node v such that Sv is the
longest suffix of T [0..j] represented by any node.

113

Algorithm 3.26: Aho–Corasick trie construction
Input: pattern set P = {P1, P2, . . . , Pk}.
Output: AC trie: root, child() and patterns().

(1) Create new node root
(2) for i← 1 to k do
(3) v ← root; j ← 0
(4) while child(v, Pi[j]) 6= ⊥ do
(5) v ← child(v, Pi[j]); j ← j + 1
(6) while j < |Pi| do
(7) Create new node u
(8) child(v, Pi[j])← u
(9) v ← u; j ← j + 1

(10) patterns(v)← {i}

• The creation of a new node v initializes patterns(v) to ∅ and child(v, c)
to ⊥ for all c ∈ Σ.

• After this algorithm, i ∈ patterns(v) iff v represents Pi.

114

Algorithm 3.27: Aho–Corasick automaton construction
Input: AC trie: root, child() and patterns()
Output: AC automaton: fail() and updated child() and patterns()

(1) queue← ∅
(2) for c ∈ Σ do
(3) if child(root, c) = ⊥ then child(root, c)← root
(4) else
(5) v ← child(root, c)
(6) fail(v)← root
(7) pushback(queue, v)
(8) while queue 6= ∅ do
(9) u← popfront(queue)

(10) for c ∈ Σ such that child(u, c) 6= ⊥ do
(11) v ← child(u, c)
(12) w ← fail(u)
(13) while child(w, c) = ⊥ do w ← fail(w)
(14) fail(v)← child(w, c)
(15) patterns(v)← patterns(v) ∪ patterns(fail(v))
(16) pushback(queue, v)

The algorithm does a breath first traversal of the trie. This ensures that
correct values of fail() and patterns() are already computed when needed.

115

Assuming σ is constant:

• The preprocessing time is O(m), where m = ||P||.

– The only non-trivial issue is the while-loop on line (13). Let
root, v1, v2, . . . , v` be the nodes on the path from root to a node
representing a pattern Pi. Let wj = fail(vj) for all j. The depths in
the sequence w1, w2, . . . , w` increase by at most one in each step.
Every round in the while-loop when computing wj reduces the depth
of wj by at least one. Therefore, the total number of rounds when
computing w1, w2, . . . , w` is at most ` = |Pi|. Thus, the while-loop is
executed at most ||P|| times during the whole algorithm.

• The search time is O(n).

• The space complexity is O(m).

The analysis when σ is not constant is left as an exercise.

116

Compact Trie

Tries suffer from a large number nodes, Ω(||R||) in the worst case.

• The space requirement is large, since each node needs much more
space than a single symbol.

• Traversal of a subtree is slow, which affects prefix and range queries.

The compact trie reduces the number of nodes by replacing branchless path
segments with a single edge.

Example 3.28: Compact trie for R = {pot, potato, pottery, tattoo, tempo}.

ato

pot

tery

t

attoo
empo

117

• The number of nodes and edges is O(|R|).

• The egde labels are factors of the input strings. Thus they can be
stored in constant space using pointers to the strings, which are stored
separately.

• Any subtree can be traversed in linear time in the the number of leaves
in the subtree. Thus a prefix query for a string S can be answered in
O(|S|+ r) time, where r is the number of strings in the answer.

118

Ternary Tree

The binary tree implementation of a trie supports ordered alphabets but
awkwardly. Ternary tree is a simpler data structure based on symbol
comparisons.

Ternary tree is like a binary tree except:

• Each internal node has three children: smaller, equal and larger.

• The branching is based on a single symbol at a given position. The
position is zero at the root and increases along the middle branches.

Example 3.29: Ternary tree for R = {pot, potato, pottery, tattoo, tempo}.

o

p

t

t

a

a

potato

tattoo
tempo

potterypot

119

There is an analogy between sorting algorithms and search trees for strings.

sorting algorithm search trees

standard binary quicksort standard binary tree

string quicksort ternary tree

radix sort trie

The ternary tree can be seen as the partitioning structure by string
quicksort.

120

A ternary tree is balanced if each left and right subtree contains at most
half of the strings in its parent tree.

• The balance can be maintained by rotations similarly to binary trees.

d

D E

b

A B

b

A B

C

d

D E C

rotation

• We can also get reasonably close to balance by inserting the strings in
the tree in a random order.

In a balanced ternary tree, each step down either

• moves the position forward (middle branch), or

• halves the number of strings remaining the the subtree.

Thus, in a ternary tree storing n strings, any downward traversal following a
string S takes at most O(|S|+ logn) time.

121

For the ternary tree of a string set R of size n:

• The number of nodes is O(DP (R)).

• Insertion, deletion, lookup and lcp query for a string S takes
O(|S|+ logn) time.

• Prefix search for a string S takes O(|S|+ logn+DP (Q)), where Q is
the set of strings given as the result of the query. With some additional
data structures, this can be reduced to O(|S|+ logn+ |Q|)

122

String Binary Search

An ordered array is a simple static data structure supporting queries in
O(logn) time using binary search.

Algorithm 3.30: Binary search
Input: Ordered set R = {k1, k2, . . . , kn}, query value x.
Output: The number of elements in R that are smaller than x.

(1) left← 0; right← n // final answer is in the range [left..right]
(2) while left < right do
(3) mid← d(left+ right)/2e
(4) if kmid < x then left← mid
(5) else right← mid− 1
(6) return left

With strings as elements, however, the query time is

• O(m logn) in the worst case for a query string of length m

• O(m+ logn logσ n) on average for a random set of strings.

123

We can use the lcp comparison technique to improve binary search for
strings. The following is a key result.

Lemma 3.31: Let A ≤ B,B′ ≤ C be strings. Then lcp(B,B′) ≥ lcp(A,C).

Proof. Let Bmin = min{B,B′} and Bmax = max{B,B′}. By Lemma 3.17,

lcp(A,C) = min(lcp(A,Bmax), lcp(Bmax, C))

≤ lcp(A,Bmax) = min(lcp(A,Bmin), lcp(Bmin, Bmax))

≤ lcp(Bmin, Bmax) = lcp(B,B′)

�

124

During the binary search of P in {S1, S2, . . . , Sn}, the basic situation is the
following:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright+1, and we know
that Sleft ≤ P, Smid ≤ Sright+1.

• If we are using LcpCompare, we know lcp(Sleft, P) and lcp(P, Sright+1).

By Lemmas 3.17 and 3.31,

lcp(P, Smid) ≥ lcp(Sleft, Sright+1) = min{lcp(Sleft, P), lcp(P, Sright+1)}
Thus we can skip min{lcp(Sleft, P), lcp(P, Sright+1)} first characters when
comparing P and Smid.

125

Algorithm 3.32: String binary search (without precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n
(2) llcp← 0; rlcp← 0
(3) while left < right do
(4) mid← d(left+ right)/2e
(5) mlcp← min{llcp, rlcp}
(6) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(7) if x = “ <′′ then left← mid; llcp← mclp
(8) else right← mid− 1; rlcp← mclp
(9) return left

• The average case query time is now O(m+ logn).

• The worst case query time is still O(m logn).

126

We can further improve string binary search using precomputed information
about the lcp’s between the strings in R.

Consider again the basic situation during string binary search:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright+1, and we know
lcp(Sleft, P) and lcp(P, Sright+1).

The values left and right depend only on mid. In particular, they do not
depend on P . Thus, we can precompute and store the values

LLCP [mid] = lcp(Sleft, Smid)

RLCP [mid] = lcp(Smid, Sright+1)

127

Now we know all lcp values between P , Sleft, Smid, Sright+1 except
lcp(P, Smid). The following lemma shows how to utilize this.

Lemma 3.33: Let A ≤ B,B′ ≤ C be strings.
(a) If lcp(A,B) > lcp(A,B′), then B < B′ and lcp(B,B′) = lcp(A,B′).
(b) If lcp(A,B) < lcp(A,B′), then B > B′ and lcp(B,B′) = lcp(A,B).
(c) If lcp(B,C) > lcp(B′, C), then B > B′ and lcp(B,B′) = lcp(B′, C).
(d) If lcp(B,C) < lcp(B′, C), then B < B′ and lcp(B,B′) = lcp(B,C).
(e) If lcp(A,B) = lcp(A,B′) and lcp(B,C) = lcp(B′, C), then

lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}.

Proof. Cases (a)–(d) are symmetrical, we show (a). B < B′ follows directly
from Lemma 3.18. Then by Lemma 3.17,
lcp(A,B′) = min{lcp(A,B), lcp(B,B′)}. Since lcp(A,B′) < lcp(A,B), we must
have lcp(A,B′) = lcp(B,B′).

In case (e), we use Lemma 3.17:

lcp(B,B′) ≥ min{lcp(A,B), lcp(A,B′)} = lcp(A,B)

lcp(B,B′) ≥ min{lcp(B,C), lcp(B′, C)} = lcp(B,C)

Thus lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}. �

128

Algorithm 3.34: String binary search (with precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, arrays LLCP and RLCP,

query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n
(2) llcp← 0; rlcp← 0
(3) while left < right do
(4) mid← d(left+ right)/2e
(5) if LLCP [mid] > llcp then left← mid
(6) else if RLCP [mid] > rlcp then right← mid− 1
(7) else if llcp > LLCP [mid] then right← mid− 1; rlcp← LLCP [mid]
(8) else if rlcp > RLCP [mid] then left← mid; llcp← RLCP [mid]
(9) else

(10) mlcp← max{llcp, rlcp}
(11) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(12) if x = “ <′′ then left← mid; llcp← mclp
(13) else right← mid− 1; rlcp← mclp
(14) return left

129

Theorem 3.35: An ordered string set R = {S1, S2, . . . , Sn} can be
preprocessed in O(DP (R)) time and O(n) space so that a binary search with
a query string P can be executed in O(|P |+ logn) time.

Proof. The values LLCP [mid] and RLCP [mid] can be computed in
O(dpR(Smid)) time. Thus the arrays LLCP and RLCP can be computed in
O(DP (R)) time and stored in O(n) space.

The main while loop in Algorithm 3.7.7 is executed O(logn) times and
everything except LcpCompare on line (11) needs constant time.

If a given LcpCompare call performs 1 + t symbol comparisons, mclp
increases by t on line (11). Then on lines (12)–(13), either llcp or rlcp
increase by at least t, since mlcp was max{llcp, rlcp} before LcpCompare.
Since llcp and rlcp never decrease and never grow larger than |P |, the total
number of extra symbol comparisons in LcpCompare during the binary
search is O(|P |). �

130

Binary search can be seen as a search on an implicit binary search tree,
where the middle element is the root, the middle elements of the first and
second half are the children of the root, etc.. The string binary search
technique can be extended for arbitrary binary search trees.

• Let Sv be the string stored at a node v in a binary search tree. Let S<
and S> be the closest lexicographically smaller and larger strings stored
at ancestors of v.

• The comparison of a query string P and the string Sv is done the same
way as the comparison of P and Smid in string binary search. The roles
of Sleft and Sright+1 are taken by S< and S>.

• If each node v stores the values lcp(S<, Sv) and lcp(Sv, S>), then a
search in a balanced search tree can be executed in O(|P |+ logn) time.
Other operations including insertions and deletions take O(|P |+ logn)
time too.

131

4. Suffix Trees and Arrays

Let T = T [0..n) be the text. For i ∈ [0..n], let Ti denote the suffix T [i..n).
Furthermore, for any subset C ∈ [0..n], we write TC = {Ti | i ∈ C}. In
particular, T[0..n] is the set of all suffixes of T .

Suffix tree and suffix array are search data structures for the set T[0..n].

• Suffix tree is a compact trie for T[0..n].

• Suffix array is a ordered array for T[0..n].

They support fast exact string matching on T :

• A pattern P has an occurrence starting at position i if and only if P is a
prefix of Ti.

• Thus we can find all occurrences of P by a prefix search in T[0..n].

There are numerous other applications too, as we will see later.

132

The set T[0..n] contains |T[0..n]| = n+ 1 strings of total length
||T[0..n]|| = Θ(n2). It is also possible that DP (T[0..n]) = Θ(n2), for example,
when T = an or T = XX for any string X.

• Trie with ||T[0..n]|| nodes and ternary tree with DP (T[0..n]) nodes would
be too large.

• Compact trie with O(n) nodes and an ordered array with n+ 1 entries
have linear size.

• Binary search tree with O(n) nodes would be an option too, but an
ordered array is a better choice for a static text. We do not cover the
case of dynamic, changing text on this course: it a non-trivial problem
because changing a single symbol can affect a large number of suffixes.

Even for a compact trie or an ordered array, we need a specialized
construction algorithm, because any general construction algorithm would
need Ω(DP (T[0..n])) time.

133

Suffix Tree

The suffix tree of a text T is the compact trie of the set T[0..n] of all suffixes
of T .

We assume that there is an extra character $ 6∈ Σ at the end of the text.
That is, T [n] = $ and Ti = T [i..n] for all i ∈ [0..n]. Then:

• No suffix is a prefix of another suffix, i.e., the set T[0..n] is prefix free.

• All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms.

Example 4.1: T = banana$.

1
3

5

6

2

4

0

$

$

$

na$

na
$

na

na$

banana$

a

134

As with tries, there are many possibilities for implementing the child
operation. We again avoid this complication by assuming that σ is constant.
Then the size of the suffix tree is O(n):

• There are exactly n+ 1 leaves and at most n internal nodes.

• There are at most 2n edges. The edge labels are factors of the text
and can be represented by pointers to the text.

Given the suffix tree of T , all occurrences of P in T can be found in time
O(|P |+ occ), where occ is the number of occurrences.

135

Brute Force Construction

Let us now look at algorithms for constructing the suffix tree. We start with
a brute force algorithm with time complexity Θ(DP (T[0..n])). This is later
modified to obtain a linear time complexity.

The idea is to add suffixes to the trie one at a time starting from the
longest suffix. The insertion procedure is essentially the same as in
Algorithm 3.26 (AC trie construction) except it has been modified to work
on a compact trie instead of a trie.

136

The suffix tree representation uses four functions:

child(u, c) is the child v of node u such that the label of the edge
(u, v) starts with the symbol c, and ⊥ if u has no such child.

parent(u) is the parent of u.

depth(u) is the length of the string Su represented by u.

start(u) is the starting position of some occurrence of Su in T .

Then

• Su = T [start(u) . . . start(u) + depth(u)).

• T [start(u) + depth(parent(u)) . . . start(u) + depth(u)) is the label of the
edge (parent(u), u).

• A pair (u, d) with depth(parent(u)) < d ≤ depth(u) represents a position
on the edge (parent(u), u) corresponding to the string
S(u,d) = T [start(u) . . . start(u) + d).

Note that the positions (u, d) correspond to nodes in the uncompact trie.

137

Algorithm 4.2: Brute force suffix tree construction
Input: text T [0..n] (T [n] = $)
Output: suffix tree of T : root, child, parent, depth, start

(1) create new node root; depth(root)← 0
(2) u← root; d← 0
(3) for i← 0 to n do // insert suffix Ti
(4) while d = depth(u) and child(u, T [i+ d]) 6= ⊥ do
(5) u← child(u, T [i+ d]); d← d+ 1
(6) while d < depth(u) and T [start(u) + d] = T [i+ d] do d← d+ 1
(7) if d < depth(u) then // we are in the middle of an edge
(8) create new node v
(9) start(v)← i; depth(v)← d

(10) p← parent(u)
(11) child(v, T [start(u) + d])← u; parent(u)← v
(12) child(p, T [i+ depth(p)])← v; parent(v)← p
(13) u← v
(14) create new leaf w // w represents suffix Ti
(15) start(w)← i; depth(w)← n− i+ 1
(16) child(u, T [i+ d])← w; parent(w)← u
(17) u← root; d← 0

138

Suffix Links

The key to efficient suffix tree construction are suffix links:

slink(u) is the node v such that Sv is the longest proper suffix of
Su, i.e., if Su = T [i..j) then Sv = T [i+ 1..j).

Example 4.3: The suffix tree of T = banana$ with internal node suffix links.

1
3

5

6

2

4

0

$

$

$

na$

na
$

na

na$

banana$

a

139

Suffix links are well defined for all nodes except the root.

Lemma 4.4: If the suffix tree of T has a node u representing T [i..j) for any
0 ≤ i < j ≤ n, then it has a node v representing T [i+ 1..j)

Proof. If u is the leaf representing the suffix Ti, then v is the leaf
representing the suffix Ti+1.

If u is an internal node, then it has two child edges with labels starting with
different symbols, say a and b, which means that T [i..j)a and T [i..j)b occur
somewhere in T . Then, T [i+ 1..j)a and T [i+ 1..j)b occur in T too, and thus
there must be a branching node v representing T [i+ 1..j). �

Usually, suffix links are needed only for internal nodes. For root, we define
slink(root) = root.

140

Suffix links are the same as Aho–Corasick failure links but Lemma 4.4
ensures that depth(slink(u)) = depth(u)− 1. This is not the case for an
arbitrary trie or a compact trie.

Suffix links are stored for compact trie nodes only, but we can define and
compute them for any position represented by a pair (u, d):

slink(u, d)
(1) v ← slink(parent(u))
(2) while depth(v) < d− 1 do
(3) v ← child(v, T [start(u) + depth(v) + 1])
(4) return (v, d− 1)

parent(u)

(u, d)

u
slink(u)

slink(u, d)

slink(parent(u))

141

The same idea can be used for computing the suffix links during or after the
brute force construction.

ComputeSlink(u)
(1) v ← slink(parent(u))
(2) while depth(v) < depth(u)− 1 do
(3) v ← child(v, T [start(u) + depth(v) + 1])
(4) if depth(v) > depth(u)− 1 then
(5) create new node w
(6) start(w)← start(u) + 1; depth(w)← depth(u)− 1; slink(w)← ⊥
(7) p← parent(v)
(8) child(w, T [start(v) + depth(w)])← v; parent(v)← w
(9) child(p, T [start(w) + depth(p)])← w; parent(w)← p

(10) v ← w
(11) slink(u)← v

The algorithm uses the suffix link of the parent, which must have been
computed before. Otherwise the order of computation does not matter.

142

The creation of a new node on lines (4)–(10) is not necessary in a fully
constructed suffix tree, but during the brute force algorithm the necessary
node may not exist yet:

• If a new internal node ui was created during the insertion of the suffix
Ti, there exists an earlier suffix Tj, j < i that branches at ui into a
different direction than Ti.

• Then slink(ui) represents a prefix of Tj+1 and thus exists at least as a
position on the path labelled Tj+1. However, it may be that it does not
become a branching node until the insertion of Ti+1.

• In such a case, ComputeSlink(ui) creates slink(ui) a moment before it
would otherwise be created by the brute force construction.

143

McCreight’s Algorithm

McCreight’s suffix tree construction is a simple modification of the brute
force algorithm that computes the suffix links during the construction and
uses them as short cuts:

• Consider the situation, where we have just added a leaf wi representing
the suffix Ti as a child to a node ui. The next step is to add wi+1 as a
child to a node ui+1.

• The brute force algorithm finds ui+1 by traversing from the root.
McCreight’s algorithm takes a short cut to slink(ui).

slink(ui)
ui

wi
wi+1

ui+1

• This is safe because slink(ui) represents a prefix of Ti+1.

144

Algorithm 4.5: McCreight
Input: text T [0..n] (T [n] = $)
Output: suffix tree of T : root, child, parent, depth, start, slink

(1) create new node root; depth(root)← 0; slink(root)← root
(2) u← root; d← 0
(3) for i← 0 to n do // insert suffix Ti
(4) while d = depth(u) and child(u, T [i+ d]) 6= ⊥ do
(5) u← child(u, T [i+ d]); d← d+ 1
(6) while d < depth(u) and T [start(u) + d] = T [i+ d] do d← d+ 1
(7) if d < depth(u) then // we are in the middle of an edge
(8) create new node v
(9) start(v)← i; depth(v)← d; slink(v)← ⊥

(10) p← parent(u)
(11) child(v, T [start(u) + d])← u; parent(u)← v
(12) child(p, T [i+ depth(p)])← v; parent(v)← p
(13) u← v
(14) create new leaf w // w represents suffix Ti
(15) start(w)← i; depth(w)← n− i+ 1
(16) child(u, T [i+ d])← w; parent(w)← u
(17) if slink(u) = ⊥ then ComputeSlink(u)
(18) u← slink(u); d← d− 1

145

Theorem 4.6: Let T be a string of length n over an alphabet of constant
size. McCreight’s algorithm computes the suffix tree of T in O(n) time.

Proof. Insertion of a suffix Ti takes constant time except in two points:

• The while loops on lines (4)–(6) traverse from the node slink(ui) to
ui+1. Every round in these loops increments d. The only place where d
decreases is on line (18) and even then by one. Since d can never
exceed n, the total time on lines (4)–(6) is O(n).

• The while loop on lines (2)–(3) during a call to ComputeSlink(ui)
traverses from the node slink(parent(ui)) to slink(ui). Let d′i be the
depth of parent(ui). Clearly, d′i+1 ≥ d′i − 1, and every round in the while
loop during ComputeSlink(ui) increases d′i+1. Since d′i can never be
larger than n, the total time in the loop on lines (2)–(3) in
ComputeSlink is O(n).

�

146

There are other linear time algorithms for suffix tree construction:

• Weiner’s algorithm was the first. It inserts the suffixes into the tree in
the opposite order: Tn, Tn−1, . . . , T0.

• Ukkonen’s algorithm constructs suffix tree first for T [0..1) then for
T [0..2), etc.. The algorithm is structured differently, but performs
essentially the same tree traversal as McCreight’s algorithm.

• All of the above are linear time only for constant alphabet size.
Farach’s algorithm achieves linear time for an integer alphabet of
polynomial size. The algorithm is complicated and unpractical.

147

Applications of Suffix Tree

Let us have a glimpse of the numerous applications of suffix trees.

Exact String Matching

As already mentioned earlier, given the suffix tree of the text, all occ
occurrences of a pattern P can be found in time O(|P |+ occ).

Even if we take into account the time for constructing the suffix tree, this is
asymptotically as fast as Knuth–Morris–Pratt for a single pattern and
Aho–Corasick for multiple patterns.

However, the primary use of suffix trees is in indexed string matching, where
we can afford to spend a lot of time in preprocessing the text, but must
then answer queries very quickly.

148

Approximate String Matching

Several approximate string matching algorithms achieving O(kn) worst case
time complexity are based on suffix trees.

Filtering algorithms that reduce approximate string matching to exact string
matching such as partitioning the pattern into k + 1 factors, can use suffix
trees in the filtering phase.

Another approach is to generate all strings in the k-neighborhood of the
pattern, i.e., all strings within edit distance k from the pattern and search
for them in the suffix tree.

The best practical algorithms for indexed approximate string matching are
hybrids of the last two approaches.

149

Text Statistics

Suffix tree is useful for computing all kinds of statistics on the text. For
example:

• The number of distinct factors in the text is exactly the number of
nodes in the (uncompact) trie. Using the suffix tree, this number can
be computed as the total length of the edges plus one (root/empty
string). The time complexity is O(n) even though the resulting value is
typically Θ(n2).

• The longest repeating factor of the text is the longest string that
occurs at least twice in the text. It is represented by the deepest
internal node in the suffix tree.

150

Generalized Suffix Tree

A generalized suffix tree of two strings S and T is the suffix three of the
string S£T$, where £ and $ are symbols that do not occur elsewhere in S
and T .

Each leaf is marked as an S-leaf or a T -leaf according to the starting
position of the suffix it represents. Using a depth first traversal, we
determine for each internal node if its subtree contains only S-leafs, only
T -leafs, or both. The deepest node that contains both represents the
longest common factor of S and T . It can be computed in linear time.

The generalized suffix tree can also be defined for more than two strings.

151

AC Automaton for the Set of Suffixes

As already mentioned, a suffix tree with suffix links is essentially an
Aho–Corasick automaton for the set of all suffixes.

• We saw that it is possible to follow suffix link / failure transition from
any position, not just from suffix tree nodes.

• Following such an implicit suffix link may take more than a constant
time, but the total time during the scanning of a string with the
automaton is linear in the length of the string. This can be shown with
a similar argument as in the construction algorithm.

Thus suffix tree is asymptotically as fast to operate as the AC automaton,
but needs much less space.

152

Matching Statistics

The matching statistics of a string T [0..n) with respect to a string S is an
array MS[0..n), where MS[i] is a pair (`i, pi) such that

1. T [i..i+ `i) is the longest prefix of Ti that is a factor of S, and

2. S[pi..pi + `i) = T [i..i+ `i).

Matching statistics can be computed by using the suffix tree of S as an
AC-automaton and scanning T with it.

• If before reading T [i] we are at the node v in the automaton, then
T [i− d..d) = S[j..j + d), where j = start(v) and d = depth(v). If reading
T [i] causes a failure transition, then MS[i− d] = (d, j).

From the matching statistics, we can easily compute the longest common
factor of S and T . Matching statistics are also used in some approximate
string matching algorithms.

153

LCA Preprocessing

The lowest common ancestor (LCA) of two nodes u and v is the deepest
node that is an ancestor of both u and v. Any tree can be preprocessed in
linear time so that the LCA of any two nodes can be computed in constant
time. The details are omitted here.

• Let wi and wj be the leaves of the suffix tree of T that represent the
suffixes Ti and Tj. The lowest common ancestor of wi and wj represents
the longest common prefix of Ti and Tj. Thus the lcp of any two
suffixes can be computed in constant time using the suffix tree with
LCA preprocessing.

• The longest common prefix of two suffixes Si and Tj from two different
strings S and T is called the longest common extension. Using the
generalized suffix tree with LCA preprocessing, the longest common
extension for any pair of suffixes can be computed in constant time.

Some O(kn) worst case time approximate string matching algorithms use
longest common extension data structures.

154

Longest Palindrome

A palindrome is a string that is its own reverse. For example,
saippuakauppias is a palindrome.

We can use the LCA preprocessed generalized suffix tree of a string T and
its reverse TR to find the longest palindrome in T in linear time.

• Let ki be the length of the longest common extension of Ti and TRn−i−1,
which can be computed in constant time. Then T [i− k..i+ k] is the
longest odd length palindrome with the middle at i.

• We can find the longest odd length palindrome by computing ki for all
i ∈ [0..n) in O(n) time.

• The longest even length palindrome can be found similarly in O(n) time.

155

Suffix Array

The suffix array of a text T is a lexicographically ordered array of the set
T[0..n] of all suffixes of T . More precisely, the suffix array is an array SA[0..n]
of integers containing a permutation of the set [0..n] such that
TSA[0] < TSA[1] < · · · < TSA[n].

A related array is the inverse suffix array SA−1 which is the inverse
permutation, i.e., SA−1[SA[i]] = i for all i ∈ [0..n].

As with suffix trees, it is common to add the end symbol T [n] = $. It has no
effect on the suffix array assuming $ is smaller than any other symbol.

Example 4.7: The suffix array and the inverse suffix array of the text
T = banana$.

i SA[i] TSA[i]
0 6 $
1 5 a$
2 3 ana$
3 1 anana$
4 0 banana$
5 4 na$
6 2 nana$

j SA−1[j]
0 4 banana$
1 3 anana$
2 6 nana$
3 2 ana$
4 5 na$
5 1 a$
6 0 $

156

Suffix array is much simpler data structure than suffix tree. In particular,
the type and the size of the alphabet are usually not a concern.

• The size on the suffix array is O(n) on any alphabet.

• We will see that the suffix array can be constructed in the same
asymptotic time it takes to sort the characters of the text.

As with suffix trees, exact string matching in T can be performed by prefix
search on the suffix array. The answer can be conveniently given as a
contiguous range in the suffix array containing the suffixes. The range can
be found using string binary search.

• If we have the additional arrays LLCP and RLCP , the result range can
be computed in O(|P |+ logn) time.

• Without the additional arrays, we have the same time complexity on
average but the worst case time complexity is O(|P | logn).

• We can then count the number of occurrences in O(1) time, list all occ
occurrences in O(occ) time, or list a sample of k occurrences in O(k)
time.

157

LCP Array

Efficient string binary search uses the arrays LLCP and RLCP . For many
applications, the suffix array is augmented with a different lcp array
LCP [1..n]. For all i,

LCP [i] = lcp(TSA[i], TSA[i−1])

This is the same as the lcp information in the output of StringMergesort.

Example 4.8: The LCP array for T = banana$.

i SA[i] LCP [i] TSA[i]
0 6 $
1 5 0 a$
2 3 1 ana$
3 1 3 anana$
4 0 0 banana$
5 4 0 na$
6 2 2 nana$

158

The suffix tree can be easily constructed from the suffix and LCP arrays in
linear time.

• Insert the suffixes into the tree in lexicographical order.

• The leaf wi representing the suffix Ti is inserted as the rightmost leaf.
The parent ui of wi is along the rightmost path in the tree, and the
depth of ui is LCP [i]. If there is no node at that depth, a new node is
inserted.

uiLCP [i]

wi−1 wi

• Keep the nodes on the rightmost path on a stack with the deepest
node on top. The node ui or the edge, where ui is inserted, is found by
removing nodes from the stack until the right depth has been reached.
Note that the removed nodes are no more on the rightmost path after
the insertion of wi.

159

The suffix tree can be replaced by the suffix and LCP arrays in many
applications. For example:

• The longest repeating factor is marked by the maximum value in the
LCP array.

• The number of distinct factors can be compute by the formula

n(n+ 1)

2
+ 1−

n∑
i=1

LCP [i]

This follows from the suffix tree construction on the previous slide and
the formula we saw earlier for the suffix tree.

• Matching statistics of T with respect to S can be computed in linear
time using the generalized suffix array of S and T (i.e., suffix array of
S£T$) and its LCP array.

160

RMQ Preprocessing

The range minimum query (RMQ) asks for the smallest value in a given
range in an array. Any array can be preprocessed in linear time so that RMQ
for any range can be answered in constant time.

In the LCP array, RMQ can be used for computing the lcp of any two
suffixes.

Lemma 4.9: The length of the longest common prefix of two suffixes
Ti < Tj is lcp(Ti, Tj) = min{LCP [k] | k ∈ [SA−1[i] + 1..SA−1[j]]}.

The proof is left as an exercise.

• The RMQ preprocessing of the LCP array supports the same kind of
applications as the LCA preprocessing of the suffix tree. RMQ
preprocessing is much simpler than LCA preprocessing.

• The RMQ preprocessed LCP array can also replace the LLCP and
RLCP arrays.

161

Enhanced Suffix Array

The enhanced suffix array adds two more arrays to the suffix and LCP
arrays to make the data structure fully equivalent to suffix tree.

• The idea is to represent a suffix tree node v by a suffix array range
corresponding to the suffixes that are in the subtree rooted at v.

• The additional arrays support navigation in the suffix tree using this
representation: one array along the regular edges, the other along suffix
links.

162

LCP Array Construction

The LCP array is easy to compute in linear time using the suffix array SA
and its inverse SA−1. The idea is to compute the lcp values by comparing
the suffixes, but skip a prefix based on a known lower bound for the lcp
value obtained using the following result.

Lemma 4.10: For any i ∈ [0..n), LCP [SA−1[i+ 1]] ≥ LCP [SA−1[i]]− 1

Proof. Let Tj be the lexicographic predecessor of Ti, i.e., Tj < Ti and there
are no other suffixes between them in the lexicographical order.

• Then LCP [SA−1[i]] = lcp(Ti, Tj) = `.

• If ` > 0, then for some symbol c, Ti = cTi+1 and Tj = cTj+1. Thus
Tj+1 < Ti+1 and lcp(Ti+1, Tj+1) = `− 1.

• Then LCP [[SA−1[i+ 1]] ≥ lcp(Ti+1, Tj+1) = `− 1.

�

163

The algorithm computes the lcp values in the order that makes it easy to
use the above lower bound.

Algorithm 4.11: LCP array construction
Input: text T [0..n], suffix array SA[0..n], inverse suffix array SA−1[0..n]
Output: LCP array LCP [1..n]

(1) `← 0
(2) for i← 0 to n− 1 do
(3) k ← SA−1[i] // i = SA[k]
(4) j ← SA[k − 1]
(5) while T [i+ `] = T [j + `] do `← `+ 1
(6) LCP [k]← `
(7) if ` > 0 then `← `− 1
(8) return LCP

The time complexity is O(n):

• Everything except the while loop on line (5) takes clearly linear time.

• Each round in the loop increments `. Since ` is decremented at most n
times on line (7) and cannot grow larger than n, the loop is executed
O(n) times in total.

164

Suffix Array Construction

Suffix array construction means simply sorting the set of all suffixes.

• Using standard sorting or string sorting the time complexity is
Ω(DP (T[0..n])).

• Another possibility is to first construct the suffix tree and then traverse
it from left to right to collect the suffixes in lexicographical order. The
time complexity is O(n) on a constant size alphabet.

Specialized suffix array construction algorithms are a better option, though.

In fact, possibly the fastest way to construct a suffix tree is to first
construct the suffix array and the LCP array, and then the suffix tree using
the algorithm we saw earlier.

165

Prefix Doubling

Our first specialized suffix array construction algorithm is a conceptually
simple algorithm achieving O(n logn) time.

Let T `i denote the text factor T [i..min{i+ `, n+ 1}) and call it an `-factor.
In other words:

• T `i is the factor starting at i and of length ` except when the factor is
cut short by the end of the text.

• T `i is the prefix of the suffix Ti of length `, or Ti when |Ti| < `.

The idea is to sort the sets T `[0..n] for ever increasing values of `.

• First sort T 1
[0..n], which is equivalent to sorting individual characters.

This can be done in O(n logn) time.

• Then, for ` = 1,2,4,8, . . . , use the sorted set T `[0..n] to sort the set T 2`
[0..n]

in O(n) time.

• After O(logn) rounds, ` > n and T `[0..n] = T[0..n], so we have sorted the
set of all suffixes.

166

We still need to specify, how to use the order for the set T `[0..n] to sort the

set T 2`
[0..n]. The key idea is assigning order preserving names for the factors in

T `[0..n]. For i ∈ [0..n], let N `
i be an integer in the range [0..n] such that, for all

i, j ∈ [0..n]:

N `
i ≤ N `

j if and only if T `i ≤ T `j .

Then, for ` > n, N `[i] = SA−1[i].

For smaller values of `, there can be many ways of satisfying the conditions
and any one of them will do. A simple choice is

N `
i = |{j ∈ [0, n] | T `j < T `i }| .

Example 4.12: Prefix doubling for T = banana$.

N1

4 b
1 a
5 n
1 a
5 n
1 a
0 $

N2

4 ba
2 an
5 na
2 an
5 na
1 a$
0 $

N4

4 bana
3 anan
6 nana
2 ana$
5 na$
1 a$
0 $

N8 = SA−1

4 banana$
3 anana$
6 nana$
2 ana$
5 na$
1 a$
0 $

167

Now, given N `, for the purpose of sorting, we can use

• N `
i to represent T `i

• the pair (N `
i , N

`
i+`) to represent T 2`

i = T `i T
`
i+`.

Thus we can sort T 2`
[0..n] by sorting pairs of integers, which can be done in

O(n) time using LSD radix sort.

Theorem 4.13: The suffix array of a string T [0..n] can be constructed in
O(n logn) time using prefix doubling.

• The technique of assigning order preserving names to factors whose
lengths are powers of two is called the Karp–Miller–Rosenberg naming
technique. It was developed for other purposes in the early seventies
when suffix arrays did not exist yet.

• The best practical implementation is the Larsson–Sadakane algorithm,
which uses ternary quicksort instead of LSD radix sort for sorting the
pairs, but still achieves O(n logn) total time.

168

Let us return to the first phase of the prefix doubling algorithm: assigning
names N1

i to individual characters. This is done by sorting the characters,
which is easily within the time bound O(n logn), but sometimes we can do
it faster:

• On an ordered alphabet, we can use ternary quicksort for time
complexity O(n logσT) where σT is the number of distinct symbols in T .

• On an integer alphabet of size nc for any constant c, we can use LSD
radix sort with radix n for time complexity O(n).

After this, we can replace each character T [i] with N1
i to obtain a new

string T ′:

• The characters of T ′ are integers in the range [0..n].

• The character T ′[n] = 0 is the unique, smallest symbol, i.e., $.

• The suffix arrays of T and T ′ are exactly the same.

Thus, we can assume that the text is like T ′ during the suffix array
construction. After the construction, we can use either T or T ′ as the text
depending on what we want to do.

169

Recursive Suffix Array Construction

Let us now describe a linear time algorithm for suffix array construction. We
assume that the alphabet of the text T [0..n) is [1..n] and that T [n] = 0 (=$
in the examples).

The outline of the algorithm is:

0. Divide the suffixes into two subsets A ⊂ [0..n] and Ā = [0..n] \A.

1. Sort the set TA. This is done by a reduction to the suffix array
construction of a string of length |A|, which is done recursively.

2. Sort the set TĀ using the order of TA.

3. Merge the two sorted sets TA and TĀ.

The set A can be chosen so that

• |A| ≤ αn for a constant α < 1.

• Excluding the recursive call, all steps can be done in linear time.

Then the total time complexity can be expressed as the recurrence
t(n) = O(n) + t(αn), whose solution is t(n) = O(n).

170

The set A must be chosen so that:

1. Sorting TA can be reduced to suffix array construction on a text of
length |A|.

2. Given sorted TA the suffix array of T is easy to construct.

There are a few different options. Here we use the simplest one.

Step 0: Select A.

• For k ∈ {0,1,2}, define Ck = {i ∈ [0..n] | i mod 3 = k}.

• Let A = C1 ∪ C2.

Example 4.14: i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $

Ā = C0 = {0,3,6,9,12}, C1 = {1,4,7,10}, C2 = {2,5,8,11} and
A = {1,2,4,5,7,8,10,11}.

171

Step 1: Sort TA.

• For k ∈ {1,2}, Construct the strings Rk = (T 3
k , T

3
k+3, T

3
k+6, . . . , T

3
maxCk

)
whose characters are factors of length 3 in the original text, and let
R = R1R2.

• Replace each factor T 3
i in R with a lexicographic name N3

i ∈ [1..|R|].
The names can be computed by sorting the factors with LSD radix sort
in O(n) time. Let R′ be the result appended with 0.

• Construct the inverse suffix array SA−1
R′ of R′. This is done recursively

unless all symbols in R′ are unique, in which case SA−1
R′ = R′.

• From SA−1
R′ , we get lexicographic names for suffixes in TA.

For i ∈ A, let N [i] = SA−1
R′ [j], where j is the position of T 3

i in R.
For i ∈ Ā, let N [i] = ⊥. Also let N [n+ 1] = N [n+ 2] = 0.

Example 4.15: R abb ada bba do$ bba dab bad o$
R′ 1 2 4 7 4 6 3 8 0

SA−1
R′ 1 2 5 7 4 6 3 8 0

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] y a b b a d a b b a d o $
N [i] ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥ 0 0

172

Step 2: Sort TĀ.

• For each i ∈ Ā, we represent Ti with the pair (T [i], N [i+ 1]). Then

Ti ≤ Tj ⇐⇒ (T [i], N [i+ 1]) ≤ (T [j], N [j + 1]) .

Note that N [i+ 1] 6= ⊥.

• The pairs (T [i], N [i+ 1]) are sorted by LSD radix sort in O(n) time.

Example 4.16:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
N [i] ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T12 < T6 < T9 < T3 < T0 because ($,0) < (a,5) < (a,7) < (b,2) < (y,1).

173

Step 3: Merge TA and TĀ.

• Use comparison based merging algorithm needing O(n) comparisons.

• To compare Ti ∈ TA and Tj ∈ TĀ, we have two cases:

i ∈ C1 : Ti ≤ Tj ⇐⇒ (T [i], N [i+ 1]) ≤ (T [j], N [j + 1])

i ∈ C2 : Ti ≤ Tj ⇐⇒ (T [i], T [i+ 1], N [i+ 2]) ≤ (T [j], T [j + 1], N [j + 2])

Note that N [i+ 1] 6= ⊥ in the first case and N [i+ 2] 6= ⊥ in the second
case.

Example 4.17:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
N [i] ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T1 < T6 because (a,4) < (a,5).
T3 < T8 because (b, a,6) < (b, a,7).

174

Theorem 4.18: The suffix array of a string T [0..n) can be constructed in
O(n) time plus the time needed to sort the characters of T .

• There are a few other suffix array construction algorithms and one suffix
tree construction algorithm (Farach’s) with the same time complexity.

• All of them have a similar recursive structure, where the problem is
reduced to suffix array construction on a shorter string that represents
a subset of all suffixes.

175

Burrows–Wheeler Transform

The Burrows–Wheeler transform (BWT) is an important technique for text
compression, text indexing, and their combination compressed text indexing.

Let T [0..n] be the text with T [n] = $. For any i ∈ [0..n], T [i..n]T [0..i) is a
rotation of T . Let M be the matrix, where the rows are all the rotations of
T in lexicographical order. All columns of M are permutations of T . In
particular:

• The first column F contains the text characters in order.

• The last column L is the BWT of T .

Example 4.19: The BWT of T = banana$ is L = annb$aa.

F L
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

176

Here are some of the key properties of the BWT.

• The BWT is easy to compute using the suffix array:

L[i] =

{
$ if SA[i] = 0
T [SA[i]− 1] otherwise

• The BWT is invertible, i.e., T can be reconstructed from the BWT L
alone. The inverse BWT can be computed in the same time it takes to
sort the characters.

• The BWT L is typically easier to compress than the text T . Many text
compression algorithms are based on compressing the BWT.

• The BWT supports backward searching, a different technique for
indexed exact string matching. This is used in many compressed text
indexes.

177

Inverse BWT

Let M′ be the matrix obtained by rotating M one step to the right.

Example 4.20:

M
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

rotate−→

M′

a $ b a n a n
n a $ b a n a
n a n a $ b a
b a n a n a $
$ b a n a n a
a n a $ b a n
a n a n a $ b

• The rows of M′ are the rotations of T in a different order.

• In M′ without the first column, the rows are sorted lexicographically. If
we sort the rows of M′ stably by the first column, we obtain M.

This cycle M rotate−→ M′ sort−→M is the key to inverse BWT.

178

• In the cycle, each column moves one step to the right and is permuted.
The permutation is fully determined by the last column of M, i.e., the
BWT.

• By repeating the cycle, we can reconstruct M from the BWT.

• To reconstruct T , we do not need to compute the whole matrix just
one row.

Example 4.21:

- - - - - - a
- - - - - - n
- - - - - - n
- - - - - - b
- - - - - - $
- - - - - - a
- - - - - - a

rotate−→

a - - - - - -
n - - - - - -
n - - - - - -
b - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -

sort−→

$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a

rotate−→

a $ - - - - -
n a - - - - -
n a - - - - -
b a - - - - -
$ b - - - - -
a n - - - - -
a n - - - - -

sort−→

$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a

rotate
& sort−→

$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a

rotate
& sort−→

$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a

rotate
& sort−→

$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a

rotate
& sort−→

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

179

The permutation that transforms M′ into M is called the LF-mapping.
• LF-mapping is the permutation that stably sorts the BWT L, i.e.,
F [LF [i]] = L[i]. Thus it is easy to compute from L.

• Given the LF-mapping, we can easily follow a row through the
permutations.

Algorithm 4.22: Inverse BWT
Input: BWT L[0..n]
Output: text T [0..n]
Compute LF-mapping:

(1) for i← 0 to n do R[i] = (L[i], i)
(2) sort R (stably by first element)
(3) for i← 0 to n do
(4) (·, j)← R[i]; LF [j]← i

Reconstruct text:
(5) j ← position of $ in L
(6) for i← n downto 0 do
(7) T [i]← L[j]
(8) j ← LF [j]
(9) return T

The time complexity is dominated by the stable sorting.

180

On Burrows-Wheeler Compression

The basic principle of text compression is that, the more frequently a factor
occurs, the shorter its encoding should be.

Let c be a symbol and w a string such that the factor cw occurs frequently
in the text.

• The occurrences of cw may be distributed all over the text, so
recognizing cw as a frequently occurring factor is not easy. It requires
some large, global data structures.

• In the BWT, the high frequency of cw means that c is frequent in that
part of the BWT that corresponds to the rows of the matrix M
beginning with w. This is easy to recognize using local data structures.

This localizing effect makes compressing the BWT much easier than
compressing the original text.

We will not go deeper into text compression on this course.

181

Example 4.23: A part of the BWT of a reversed english text
corresponding to rows beginning with ht:

oreeereoeeieeeeaooeeeeeaereeeeeeeeeeeeereeeeeeeeeeaaeeaeeeeeeee
eaeeeeeeeeaeieeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeaeeieeeeeeaaieee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeieeeeeeeeeeeeeeeeeeeeeeeeeeeeaee
eeeeeeeeeeeeeeeeeeereeeeeeeeeeeieaeeeeieeeeaeeeeeeeeeieeeeeeeee
eeeieeeeeeeeioaaeeaoereeeeeeeeeeaaeaaeeeeieeeeeeeieeeeeeeeaeeee
eeaeeeeeereeeaeeeeeieeeeeeeeiieee. e eeeeiiiiii e ,
i o oo e eiiiiee,er , , , . iii

and some of those symbols in context:

t raise themselves, and the hunter, thankful and r
ery night it flew round the glass mountain keeping
agon, but as soon as he threw an apple at it the b
f animals, were resting themselves. "Halloa, comr
ple below to life. All those who have perished on
that the czar gave him the beautiful Princess Mil
ng of guns was heard in the distance. The czar an
cked magician put me in this jar, sealed it with t
o acted as messenger in the golden castle flew pas
u have only to say, ’Go there, I know not where; b

182

Backward Search

Let P [0..m) be a pattern and let [b..e) be the suffix array range
corresponding to suffixes that begin with P , i.e., SA[b..e) contains the
starting positions of P in the text T . Earlier we noted that [b..e) can be
found by binary search on the suffix array.

Backward search is a different technique for finding this range. It is based
on the observation that [b..e) is also the range of rows in the matrix M
beginning with P .

Let [bi, ei) be the range for the pattern suffix Pi. The backward search will
first compute [bm−1, em−1), then [bm−2, em−2), etc. until it obtains
[b0, e0) = [b, e). Hence the name backward search.

183

Backward search uses the following data structures:

• An array C[0..σ), where C[c] =
∣∣{i ∈ [0..n] | L[i] < c}

∣∣. In other words,
C[c] is the number of occurrences of symbols that are smaller than c.

• The function rankL : Σ× [0..n+ 1]→ [0..n]:

rankL(c, j) =
∣∣{i | i < j and L[i] = c}

∣∣ .
In other words, rankL(c, j) is the number of occurrences of c in L before
position i.

Given bi+1, we can now compute bi as follows. Computing ei from ei+1 is
similar.

• C[P [i]] is the number of rows beginning with a symbol smaller than
P [i]. Thus b ≥ C[P [i]].

• rankL(P [i], bi+1) is the number of rows that are lexicographically smaller
than Pi+1 and contain P [i] at the last column. Rotating these rows one
step to the right, we obtain the rotations of T that begin with P [i] and
are lexicographically smaller than Pi.

• Thus bi = C[P [i]] + rankL(P [i], bi+1).

184

Algorithm 4.24: Backward Search
Input: array C, function rankL, pattern P
Output: suffix array range [b..e) containg starting positions of P

(1) b← 0; e← n+ 1
(2) for i← m− 1 downto 0 do
(3) c← P [i]
(4) b← C[c] + rankL(c, b)
(5) e← C[c] + rankL(c, e)
(6) return [b..e)

• The array C requires an integer alphabet that is not too large.

• The trivial implementation of the function rankL as an array requires
Θ(σn) space, which is often too much. There are much more space
efficient (but slower) implementations. There are even implementations
with a size that is close to the size of the compressed text.

185

