
58093 String Processing Algorithms

Lectures, Autumn 2011, period II

Juha Kärkkäinen

1

Contents

0. Introduction

1. String Sorting

• String comparisons, radix sorting

2. Sets of strings

• Search trees, binary search, automata

3. Exact string matching

• Finding a pattern (string) in a text (string)

4. Approximate string matching

• Finding in the text something that is similar to the pattern

5. Suffix tree and array

• Preprocess a long text for fast string matching and all kinds of
other tasks

2

0. Introduction

Strings and sequences are one of the simplest, most natural and most used
forms of storing information.

• natural language, biosequences, programming source code, XML,
music, any data stored in a file

The area of algorithm research focusing on strings is sometimes known as
stringology. Characteristic features include

• Huge data sets (document databases, biosequence databases, web
crawls, etc.) require efficiency. Linear time and space complexity is the
norm.

• Strings come with no explicit structure, but many algorithms discover
implicit structures that they can utilize.

3

About this course

On this course we will cover a few cornerstone problems in stringology. We
will describe several algorithms for the same problem:

• the best algorithms in theory and/or in practice

• algorithms using a variety of different techniques

The goal is to learn a toolbox of basic algorithms and techniques.

On the lectures, we will focus on the clean, basic problem. Exercises may
include some variations and extensions. We will mostly ignore any
application specific issues.

4

Strings

An alphabet is the set of symbols or characters that may occur in a string.
We will usually denote an alphabet with the symbol Σ and its size with σ.

We consider three types of alphabets:

• Ordered alphabet Σ = {c1, c2, . . . , cσ}, where c1 < c2 < · · · < cσ.

• Integer alphabet Σ = {0,1,2, . . . , σ − 1}.

• Constant alphabet An ordered alphabet for a (small) constant σ.

The alphabet types are really used for classifying algorithms rather than
alphabets:

• Algorithms for ordered alphabet use only character comparisons.

• Algorithms for integer alphabet can use operations such as using a
symbol as an address to a table.

• Algorithms for constant alphabet can perform almost any operation on
characters and even sets of characters in constant time.

5

A string is a sequence of symbols. The set of all strings over an alphabet Σ
is

Σ∗ =
∞⋃
k=0

Σk = Σ0 ∪Σ1 ∪Σ2 ∪ . . .

where

Σk =

k︷ ︸︸ ︷
Σ×Σ× · · · ×Σ

= {a1a2 . . . ak | ai ∈ Σ for 1 ≤ i ≤ k}
= {(a1, a2, . . . , ak) | ai ∈ Σ for 1 ≤ i ≤ k}

is the set of strings of length k. In particular, Σ0 = {ε}, where ε is the
empty string.

We will usually write a string using the notation a1a2 . . . ak, but sometimes
using (a1, a2, . . . , ak) may avoid confusion.

6

There are many notations for strings.

When describing algorithms, we will typically use the array notation to
emphasize that the string is stored in an array:

S = S[1..n] = S[1]S[2] . . . S[n]

T = T [0..n) = T [0]T [1] . . . T [n− 1]

Note the half-open range notation [0..n) which is often convenient.

In abstract context, we often use other notations, for example:

• α, β ∈ Σ∗

• x = a1a2 . . . ak where ai ∈ Σ for all i

• w = uv, u, v ∈ Σ∗ (w is the concatenation of u and v)

We will use |w| to denote the length of a string w.

7

Individual characters or their positions usually do not matter. The
significant entities are the substrings or factors.

Definition 0.1: Let w = xyz for any x, y, z ∈ Σ∗. Then x is a prefix,
y is a factor (substring), and z is a suffix of w.
If x is both a prefix and a suffix of w, then x is a border of w.

Example 0.2: Let w = bonobo. Then

• ε, b, bo, bon, bono, bonob, bonobo are the prefixes of w

• ε, o, bo, obo, nobo, onobo, bonobo are the suffixes of w

• ε, bo, bonobo are the borders of w

• ε, b, o, n, bo, on, no, ob, bon, ono, nob, obo, bono, onob, nobo, bonob, onobo, bonobo
are the factors of w.

Note that ε and w are always suffixes, prefixes, and borders of w. A
suffix/prefix/border of w is proper if it is not w, and nontrivial if it is not ε
or w.

8

1. String Sorting

The standard ordering for strings is the lexicographical order. It is induced
by an order over the alphabet. We will use the same symbols (≤, <, ≥, 6≤,
etc.) for both the alphabet order and the induced lexicographical order. We
define the lexicographical order using the closely related concept of the
longest common prefix.

Definition 1.1: The length of the longest common prefix of two strings
A[0..m) and B[0..n), denoted by lcp(A,B), is the largest integer
` ≤ min{m,n} such that A[0..`) = B[0..`).

Definition 1.2: Let A and B be two strings over an alphabet with a total
order ≤, and let ` = lcp(A,B). Then A is lexicographically smaller than or
equal to B, denoted by A ≤ B, if and only if

1. either |A| = `

2. or |A| > `, |B| > ` and A[`] < B[`].

9

Ω(n logn) is a well known lower bound for the number of comparisons
needed for sorting a set of n objects by any comparison based algorithm.
This lower bound holds both in the worst case and in the average case.

There are many algorithms that match the lower bound, i.e., sort using
O(n logn) comparisons (worst or average case). Examples include quicksort,
heapsort and mergesort.

If we use one of these algorithms for sorting a set of n strings, it is clear
that the number of symbol comparisons can be more than O(n logn) in the
worst case. Determining the order of A and B needs at least lcp(A,B)
symbol comparisons and lcp(A,B) can be arbitrarily large in general.

On the other hand, the average number of symbol comparisons for two
random strings is O(1). Does this mean that we can sort a set of random
strings in O(n logn) time using a standard sorting algorithm?

10

The following theorem shows that we cannot achieve O(n logn) symbol
comparisons for any set of strings (when σ = no(1)).

Theorem 1.3: Let A be an algorithm that sorts a set of objects using only
comparisons between the objects. Let R = {S1, S2, . . . , Sn} be a set of n
strings over an ordered alphabet Σ of size σ. Sorting R using A requires
Ω(n logn logσ n) symbol comparisons on average, where the average is taken
over the initial orders of R.

• If σ is considered to be a constant, the lower bound is Ω(n(logn)2).

• An intuitive explanation for this result is that the comparisons made by
a sorting algorithm are not random. In the later stages, the algorithm
tends to compare strings that are close to each other in lexicographical
order and thus are likely to have long common prefixes.

11

Proof of Theorem 1.3. Let k = b(logσ n)/2c. For any string α ∈ Σk, let Rα

be the set of strings in R having α as a prefix. Let nα = |Rα|.

Let us analyze the number of symbol comparisons when comparing strings
in Rα against each other.

• Each string comparison needs at least k symbol comparisons.

• No comparison between a string in Rα and a string outside Rα gives
any information about the relative order of the strings in Rα.

• Thus A needs to do Ω(nα lognα) string comparisons and Ω(knα lognα)
symbol comparisons to determine the relative order of the strings in Rα.

Thus the total number of symbol comparisons is Ω
(∑

α∈Σk knα lognα
)

and∑
α∈Σk

knα lognα ≥ k(n−
√
n) log

n−
√
n

σk
≥ k(n−

√
n) log(

√
n− 1)

= Ω (kn logn) = Ω (n logn logσ n) .

Here we have used the facts that σk ≤
√
n, that

∑
α∈Σk nα > n− σk ≥ n−

√
n,

and that
∑

α∈Σk nα lognα > (n−
√
n) log((n−

√
n)/σk) (see exercises). �

12

The preceding lower bound does not hold for algorithms specialized for
sorting strings. To derive a lower bound for algorithms based on symbol
comparisons, we need the following concept.

Definition 1.4: Let S be a string and R = {S1, S2, . . . , Sn} a set of strings.
The distinguishing prefix of S in R is the shortest prefix of S that separates
it from the (other) members of R. Let dpR(S) denote the length of the
distinguishing prefix, and let dp(R) =

∑
T∈R dpR(T) be the total length of

distuinguishing prefixes in R.

Example 1.5: Distuingishing prefixes:

a akkoselliseen
järjesty kseen
järjestä
m erkkijonot
n ämä

Here dp(R) = 1 + 8 + 8 + 1 + 1 = 19.

13

Theorem 1.6: Let R = {S1, S2, . . . , Sn} be a set of n strings. Sorting R into
the lexicographical order by any algorithm based on symbol comparisons
requires Ω(dp(R) + n logn) symbol comparisons.

Proof. The algorithm must examine every symbol in the duistinguishing
prefixes. This gives a lower bound Ω(dp(R)).

On the other hand, the general sorting lower bound Ω(n logn) must hold
here too.

The result follows from combining the two lower bounds. �

• Note that the expected value of dp(R) for a random set of n strings is
O(n logσ n). The lower bound then becomes Ω(n logn).

We will next see that there are algorithms that match this lower bound.
Such algorithms can sort a random set of strings in O(n logn) time.

14

String Quicksort (Multikey Quicksort)

Quicksort is one of the fastest general purpose sorting algorithms in
practice.

Here is a variant of quicksort that partitions the input into three parts
instead of the usual two parts.

Algorithm 1.7: TernaryQuicksort(R)

Input: (Multi)set R in arbitrary order.
Output: R in increasing order.

(1) if |R| ≤ 1 then return R
(2) select a pivot x ∈ R
(3) R< ← {s ∈ R | s < x}
(4) R= ← {s ∈ R | s = x}
(5) R> ← {s ∈ R | s > x}
(6) R< ← TernaryQuicksort(R<)
(7) R> ← TernaryQuicksort(R>)
(8) return R< ·R= ·R>

15

In the normal, binary quicksort, we would have two subsets R≤ and R≥, both
of which may contain elements that are equal to the pivot.

• Binary quicksort is slightly faster in practice for sorting sets.

• Ternary quicksort can be faster for sorting multisets with many
duplicate keys (exercise).

The time complexity of both the binary and the ternary quicksort depends
on the selection of the pivot (exercise).

In the following, we assume an optimal pivot selection.

16

String quicksort is similar to ternary quicksort, but it partitions using a single
character position. String quicksort is also known as multikey quicksort.

Algorithm 1.8: StringQuicksort(R, `)
Input: Set R of strings and the length ` of their common prefix.
Output: R in increasing lexicographical order.

(1) if |R| ≤ 1 then return R
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) select pivot X ∈ R
(4) R< ← {S ∈ R | S[`] < X[`]}
(5) R= ← {S ∈ R | S[`] = X[`]}
(6) R> ← {S ∈ R | S[`] > X[`]}
(7) R< ← StringQuicksort(R<, `)
(8) R= ← StringQuicksort(R=, `+ 1)
(9) R> ← StringQuicksort(R>, `)

(10) return R⊥ · R< · R= · R>

In the initial call, ` = 0.

17

Example 1.9: A possible partitioning, when ` = 2.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al i gnment
al g orithm
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

Theorem 1.10: String quicksort sorts a set R of n strings in
O(dp(R) + n logn) time.

• Thus string quicksort is an optimal symbol comparison based algorithm.

• String quicksort is also fast in practice.

18

Proof of Theorem 1.10. The time complexity is dominated by the symbol
comparisons on lines (4)–(6). We charge the cost of each comparison either
on a single symbol or on a string depending on the result of the comparison:

S[`] = X[`]: Charge the comparison on the symbol S[`].

• Now the string S is placed in the set R=. The recursive call on R=

increases the common prefix length to `+ 1. Thus S[`] cannot be
involved in any future comparison and the total charge on S[`] is 1.

• The algorithm never accesses symbols outside the distinguishing
prefixes. Thus the total number of symbol comparisons resulting
equality is at most dp(R).

S[`] 6= X[`]: Charge the comparison on the string S.

• Now the string S is placed in the set R< or R>. Assuming an
optimal choice of the pivot X, the size of either set is at most |R|/2.

• Every comparison charged on S halves the size of the set containing
S, and hence the total charge accumulated by S is at most logn.

• Thus the total number of symbol comparisons resulting inequality is
at most O(n logn). �

19

Radix Sort

The Ω(n logn) sorting lower bound does not apply to algorithms that use
stronger operations than comparisons. A basic example is counting sort for
sorting integers.

Algorithm 1.11: CountingSort(R)
Input: (Multi)set R = {k1, k2, . . . kn} of integers from the range [0..σ).
Output: R in nondecreasing order in array J[0..n).

(1) for i← 0 to σ − 1 do C[i]← 0
(2) for i← 1 to n do C[ki]← C[ki] + 1
(3) sum← 0
(4) for i← 0 to σ − 1 do // cumulative sums
(5) tmp← C[i]; C[i]← sum; sum← sum+ tmp
(6) for i← 1 to n do // distribute
(7) J[C[ki]]← ki; C[ki]← C[ki] + 1
(8) return J

• The time complexity is O(n+ σ).

• Counting sort is a stable sorting algorithm, i.e., the relative order of
equal elements stays the same.

20

Similarly, the Ω(dp(R) + n logn) lower bound does not apply to string
sorting algorithms that use stronger operations than symbol comparisons.
Radix sort is such an algorithm for integer alphabets.

Radix sort was developed for sorting large integers, but it treats an integer
as a string of digits, so it is really a string sorting algorithm (more on this in
the exercises).

There are two types of radix sorting:

MSD radix sort starts sorting from the beginning of strings (most
significant digit).

LSD radix sort starts sorting from the end of strings (least
significant digit).

21

The LSD radix sort algorithm is very simple.

Algorithm 1.12: LSDRadixSort(R)

Input: Set R = {S1, S2, . . . , Sn} of strings of length m over the alphabet [0..σ).
Output: R in increasing lexicographical order.

(1) for `← m− 1 to 0 do CountingSort(R,`)
(2) return R

• CountingSort(R,`) sorts the strings in R by the symbols at position `
using counting sort (with ki is replaced by Si[`]). The time complexity is
O(|R|+ σ).

• The stability of counting sort is essential.

Example 1.13: R = {cat, him, ham, bat}.

cat
him
ham
bat

=⇒

hi m
ha m
ca t
ba t

=⇒

h a m
c a t
b a t
h i m

=⇒

b at
c at
h am
h im

22

The algorithm assumes that all strings have the same length m, but it can
be modified to handle strings of different lengths (exercise).

Theorem 1.14: LSD radix sort sorts a set R of strings over the alphabet
[0..σ) in O(||R||+mσ) time, where ||R|| is the total length of the strings in
R and m is the length of the longest string in R.

• The weakness of LSD radix sort is that it uses Ω(||R||) time even when
dp(R) is much smaller than ||R||.

• It is best suited for sorting short strings and integers.

23

MSD radix sort resembles string quicksort but partitions the strings into σ
parts instead of three parts.

Example 1.15: MSD radix sort partitioning.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al g orithm
al i gnment
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

24

Algorithm 1.16: MSDRadixSort(R, `)
Input: Set R = {S1, S2, . . . , Sn} of strings over the alphabet [0..σ)

and the length ` of their common prefix.
Output: R in increasing lexicographical order.

(1) if |R| < σ then return StringQuicksort(R, `)
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) (R0,R1, . . . ,Rσ−1)← CountingSort(R, `)
(4) for i← 0 to σ − 1 do Ri ←MSDRadixSort(Ri, `+ 1)
(5) return R⊥ · R0 · R1 · · ·Rσ−1

• Here CountingSort(R,`) not only sorts but also returns the partitioning
based on symbols at position `. The time complexity is still O(|R|+ σ).

• The recursive calls eventually lead to a large number of very small sets,
but counting sort needs Ω(σ) time no matter how small the set is. To
avoid the potentially high cost, the algorithm switches to string
quicksort for small sets.

25

Theorem 1.17: MSD radix sort sorts a set R of n strings over the
alphabet [0..σ) in O(dp(R) + n logσ) time.

Proof. Consider a call processing a subset of size k ≥ σ:

• The time excluding the recursive call but including the call to counting
sort is O(k + σ) = O(k). The k symbols accessed here will not be
accessed again.

• The algorithm does not access any symbols outside the distinguishing
prefixes. Thus the total time spent in this kind of calls is O(dp(R)).

This still leaves the time spent in the calls for a subsets of size k < σ, which
are handled by string quicksort. No string is included in two such calls.
Therefore, the total time over all calls is O(dp(R) + n logσ).

�

• There exists a more complicated variant of MSD radix sort with time
complexity O(dp(R) + σ).

• Ω(dp(R)) is a lower bound for any algorithm that must access symbols
one at a time.

• In practice, MSD radix sort is very fast, but it is sensitive to
implementation details.

26

