
Induced Sorting

Define three type of suffixes −, + and ∗ as follows:

C− = {i ∈ [0..n) | Ti > Ti+1}
C+ = {i ∈ [0..n) | Ti < Ti+1}
C∗ = {i ∈ C+ | i− 1 ∈ C−}

Example 5.23:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
type of Ti − − ∗ − − ∗ − − ∗ + − − − −

For every a ∈ Σ and x ∈ {−,+.∗} define

Ca = {i ∈ [0..n] | T [i] = a}
Cx
a = Ca ∩ Cx

Then

C−a = {i ∈ Ca | Ti < an+1}
C+
a = {i ∈ Ca | Ti > an+1}

and thus the suffix array is C0C
−
1 C

+
1 C

−
2 C

+
2 . . . C−σ−1C

+
σ−1.

181

The basic idea of induced sorting is to use information about the order of Ti
to induce the order of the suffix Ti−1 = T [i− 1]Ti. The main steps are:

1. Sort the sets C∗a, a ∈ [1..σ).

2. Use C∗a, a ∈ [1..σ), to induce the order of the sets C−a , a ∈ [1..σ).

3. Use C−a , a ∈ [1..σ), to induce the order of the sets C+
a , a ∈ [1..σ).

The suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 5.24: For all a ∈ [1..σ)

(a) i− 1 ∈ C−a iff i > 0 and T [i− 1] = a and one of the following holds
1. i = n

2. i ∈ C∗
3. i ∈ C− and T [i− 1] ≥ T [i].

(b) i− 1 ∈ C+
a iff i > 0 and T [i− 1] = a and one of the following holds

1. i ∈ C− and T [i− 1] < T [i]
2. i ∈ C+ and T [i− 1] ≤ T [i].

182

To induce −-type suffixes:
1. Set C−a empty for all a ∈ [1..σ).
2. For all suffixes Ti such that i− 1 ∈ C− in lexicographical order,

append i− 1 into C−
T [i−1].

Note that since Ti−1 > Ti by definition of C−, we always have i inserted
before i− 1.

Algorithm 5.25: InduceMinusSuffixes
Input: Lexicographically sorted lists C∗a, a ∈ Σ
Output: Lexicographically sorted lists C−a , a ∈ Σ

(1) for a ∈ Σ do C−a ← ∅
(2) pushback(n− 1, C−

T [n−1])

(3) for a← 1 to σ − 1 do
(4) C ← ∅
(5) while C−a 6= ∅ do
(6) i← popfront(C−a)
(7) pushback(i, C)
(8) if i > 0 and T [i− 1] ≥ a then pushback(i− 1, C−

T [i−1])

(9) C−a ← C
(10) for i ∈ C∗a do pushback(i− 1, C−

T [i−1])

183

Inducing +-type suffixes goes similarly but in reverse order so that again i is
always inserted before i− 1:
1. Set C+

a empty for all a ∈ [1..σ).
2. For all suffixes Ti such that i− 1 ∈ C+ in descending lexicographical

order, append i− 1 into C+
T [i−1].

Algorithm 5.26: InducePlusSuffixes
Input: Lexicographically sorted lists C−a , a ∈ Σ
Output: Lexicographically sorted lists C+

a , a ∈ Σ
(1) for a ∈ Σ do C+

a ← ∅
(2) for a← σ − 1 downto 1 do
(3) C ← ∅
(4) while C+

a 6= ∅ do
(5) i← popback(C+

a)
(6) pushfront(i, C)
(7) if i > 0 and T [i− 1] ≥ a then pushfront(i− 1, C+

T [i−1])

(8) C+
a ← C

(9) for i ∈ C−a in reverse order do
(10) if i > 0 and T [i− 1] < a then pushfront(i− 1, C+

T [i−1])

184

We still need to explain how to sort the ∗-type suffixes. Define

F [i] = min{k ∈ [i+ 1..n] | k ∈ C∗ or k = n}
Si = T [i..F [i]]

S′i = Siσ

where σ is a special symbol larger than any other symbol.

Lemma 5.27: For any i, j ∈ [0..n), Ti < Tj iff S′i < S′j or S′i = S′j and
TF [i] < TF [j].

Proof. The claim is trivially true except in the case that Sj is a proper
prefix of Si (or vice versa). In that case, Si > Sj but S′i < S′j and thus Ti < Tj
by the claim. We will show that this is correct.

Let ` = j + |Sj| − 1 and k = i+ `− j. Then

• ` ∈ C∗ and thus `− 1 ∈ C−. By Lemma 5.24, T [`] < T [`− 1].

• T [k − 1..k] = T [`− 1..`] and thus T [k] < T [k − 1]. If we had k ∈ C+, we
would have k ∈ C∗. Since this is not the case, we must have k ∈ C−.

• Let a = T [`]. Since ` ∈ C+
a and k ∈ C−a , we must have Tk < an+1 < T`.

• Since T [i..k) = T [j..`) and Tk < T`, we have Ti < Tj.

�

185

Algorithm 5.28: SAIS

Step 0: Choose C.

• Compute the types of suffixes. This can be done in O(n) time based on
Lemma 5.24.

• Set C = ∪a∈[1..σ)C
∗
a ∪ {n}. Note that |C| ≤ n/2, since for all i ∈ C,

i− 1 ∈ C− ⊆ C̄.

Example 5.29:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
type of Ti − − ∗ − − ∗ − − ∗ + − − − −

C∗i = {2,5,8}, C∗m = C∗p = C∗s = ∅, C = {2,5,8,14}.

186

Step 1: Sort TC.

• Sort the strings S′i, i ∈ C∗. Since the total length of the strings S′i is
O(n), the sorting can be done in O(n) time using LSD radix sort.

• Assign lexicographic names Ni ∈ [1..|C| − 1] to the string S′i so that
Ni ≤ Nj iff S′i ≤ S′j.

• Construct the sequence R = Ni1Ni2 . . . Nk0, where i1 < i3 < · · · < ik are
the *-type positions.

• Construct the suffix array SAR of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

• The order of the suffixes of R corresponds to the order of ∗-type
suffixes of T . Thus we can construct the lexicographically ordered lists
C∗a, a ∈ [1..σ).

Example 5.30:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
Ni 2 2 1 0

R = [issiz][issiz][iippii$z]$ = 2210, SAR = (3,2,1,0), C∗i = (8,5,2)

187

Step 2 Sort T[0..n].

• Run InduceMinusSuffixes to construct the sorted lists C−a , a ∈ [1..σ).

• Run InducePlusSuffixes to construct the sorted lists C+
a , a ∈ [1..σ).

• The suffix array is SA = nC−1 C
+
1 C

−
2 C

+
2 . . . C−σ−1C

+
σ−1.

Example 5.31:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
type of Ti − − ∗ − − ∗ − − ∗ + − − − −

C$ = (14)⇒ C−i = (13,12)
C−i C

∗
i = (13,12,8,5,2)⇒ C−m = (1,0), C−p = (11,10), C−s = (7,4,6,3)

⇒ C+
i = (8,9,5,2)

⇒ SA = C$C
−
i C

+
i C

−
mC

−
p C
−
s = (14,13,12,8,9,5,2,1,0,11,10,7,4,6,3)

188

Theorem 5.32: Algorithm SAIS constructs the suffix array of a string
T [0..n) in O(n) time plus the time needed to sort the characters of T .

• In Step 1, to sort the strings S′i, i ∈ C∗, we can replace LSD radix sort
with the following procedure (proof omitted):
1. Construct the sets C∗a, a ∈ [1..σ) in arbitrary order.
2. Run InduceMinusSuffixes to construct the lists C−a , a ∈ [1..σ).
3. Run InducePlusSuffixes to construct the lists C−a , a ∈ [1..σ).

4. Remove non-*-type positions from C+
1 C

+
2 . . . C+

σ−1.

• With this change, most of the work is done in the induction procedures.
This is very fast in practice, because all the lists Cx

a are accessed
sequentially during the procedures.

189

