Induced Sorting

Define three type of suffixes —, 4+ and x as follows:
C™={ie[0.n) | T > Tiy1}
Ct ={i€[0.n)|T; < Tr41}
Cr*={ieCt|i—-1eC}
Example 5.23:

v O 1 2 3 4 5 §) 7 8 9 10 11 12 13 14
T(] m m i s s i s s i i p p i i $
typeof 7, — — *x — — x — — *x 4+ - - - -

For every a € ~ and z € {—, +.x} define
Co = {i € [0..n] | T[i] = a}
% = C,NC"
Then
C,={i€Co| Ty <a"t'}
Cr={ieCy|T;>a""}
and thus the suffix array is CoC;CFC,CS ...C_,CF .
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The basic idea of induced sorting is to use information about the order of T;
to induce the order of the suffix T;_1 = T'[i — 1]7;. The main steps are:

1. Sort the sets C*, a € [1..0).
2. Use C*, a € [l..0), to induce the order of the sets C, a € [1..0).

3. Use C,, a € [1..0), to induce the order of the sets Cit, a € [1..0).

a !

The suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 5.24: For all a € [1..0)

(@) i—1eC, iff i >0 and T[i — 1] = a and one of the following holds
1. i=n
2. i€ C*
3. i€ C~ and T[i— 1] > T[4].

(b) i— 1€ Cl iffi >0 and T[i — 1] = a and one of the following holds
1. 1€ C™ and T[i — 1] < T3]
2. 5€Ct and T[i — 1] < T[q].
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To induce —-type suffixes:
1. Set C; empty for all a € [1..0).
2. For all suffixes T; such that i — 1 € C~ in lexicographical order,
append ¢z — 1 into C:F[i—u-
Note that since T;_1 > T; by definition of C—, we always have i inserted
before 7 — 1.

Algorithm 5.25: InduceMinusSuffixes
Input: Lexicographically sorted lists C%, a € >

Output: Lexicographically sorted lists C, a € >
(1) forae X do C, + 0
(2) pushback(n — 1, C;[n_l])
(3) fora<+1too—1do
(4) C+— 0
(5) while C # () do
(6) i + popfront(C;)
(7) pushback(i, C)
(8) if ¢ >0 and T[: — 1] > a then pushback(i — 1,05[1._1])
(9) C -« C

(10) for i € C* do pushback(i — 1, C;[Z._l])
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Inducing +-type suffixes goes similarly but in reverse order so that again 7 is
always inserted before ¢+ — 1:

1. Set C;f empty for all a € [1..0).

2. For all suffixes T; such that i — 1 € CT in descending lexicographical
order, append i — 1 into C;f[i_l].
Algorithm 5.26: InducePlusSuffixes
Input: Lexicographically sorted lists C, a € >
Output: Lexicographically sorted lists Cj, a € 2
(1) foraec  do CF «+ 0
(2) for a < o —1 downto 1 do

(3) C <+ 0
(4) while C;f # @ do
(5) i < popback(C.)
(6) pushfront(i, C)
(7) if © >0 and T[: — 1] > a then pushfront(i — 1, C;f[z._l])
(8) Cr+ C
(9) for ¢ € C; in reverse order do
(10) if i >0 and T[i — 1] < a then pushfront(i — 1,Cf, )
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We still need to explain how to sort the x-type suffixes. Define
Fli] =min{ke[i+ 1.n] | ke C* or k =n}
S; = T[i..F[]]
S; — SZ'O‘
where o is a special symbol larger than any other symbol.

Lemma 5.27: For any 4,5 € [0.n), T; < T} iff S; < S} or S{ =S} and
Trp < TFpy-

Proof. The claim is trivially true except in the case that S, is a proper

prefix of S; (or vice versa). In that case, S; > S; but S. < S;. and thus T; < T;
by the claim. We will show that this is correct.

Let =j54+|S;|—1and k=i+4+¢—j. Then
e /cC*and thus/—1e€C~. By Lemma 5.24, T[¢] < T[¢ — 1].

o Tlk—1..k] =T[¢—1.4] and thus T[k] < T[k — 1]. If we had k€ CT, we
would have k£ € C*. Since this is not the case, we must have k € C~.

o Let a=TI[{]. Since £ € C;f and k€ C;, we must have T < a"t! < Tj.
e Since Ti..k) =T[j..£) and T} < Ty, we have T; < Tj.
[]
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Algorithm 5.28: SAIS

Step 0: Choose C.

e Compute the types of suffixes. This can be done in O(n) time based on
Lemma 5.24.

o Set C = Uy »)C; U{n}. Note that |C] < n/2, since for all i € C,
i—leC CC.

Example 5.29:

7 0] 1 2 3 4 5 6 7 38 9 10 11 12 13 14
T[] m m i s s i s s i i p p i i $
typeof 7, — — *x — — % — — x 4+ - = —

Cr ={2,5,8}, C;, =C; =C: =10, C={2,5,8,14}.
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Step 1: Sort 1.

Sort the strings S}, i € C*. Since the total length of the strings S/ is
O(n), the sorting can be done in O(n) time using LSD radix sort.

Assign lexicographic names N; € [1..|C| — 1] to the string S so that
N; < N; iff SI < S;..

Construct the sequence R = N; N, ... N;O, where 11 < i3 < --- <1 are
the *-type positions.

Construct the suffix array SAr of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

The order of the suffixes of R corresponds to the order of x-type
suffixes of T'. Thus we can construct the lexicographically ordered lists
C* a€[l..0).

Example 5.30:

¢ 0 1 2 3 4 5 6 v 8 9 10 11 12 13 14

T[] m m i s s i s s i i p p i i $

N; 2 2 1 0
R = [issiz][issiz][iippii$z]$ = 2210, SAr = (3,2,1,0), C = (8,5,2)
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Step 2 Sort T[On]

e Run InduceMinusSuffixes to construct the sorted lists C,, a € [1..0).

a

e Run InducePlusSuffixes to construct the sorted lists C;I, a € [1..0).

a !

e The suffix array is SA =nC;C{C;Cy ...C._,CH ..

Example 5.31:
) 1 2 3 4 5 6 7 8 10 11 12 13 14
T[] m m i s s i s s i p p i i $

9
i
typeof T, — — * — — % — — x + — — — -

Cs = (14) = C; = (13,12)

C;Cr=(13,12,8,5,2) = C,, = (1,0), C; = (11,10), C;y =(7,4,6,3)
= Ot =(8,9,5,2)

= SA = CsC; CiFC.C;Cy = (14,13,12,8,9,5,2,1,0,11,10,7,4,6, 3)
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Theorem 5.32: Algorithm SAIS constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T.

e In Step 1, to sort the strings sg, 1 € C*, we can replace LSD radix sort
with the following procedure (proof omitted):

Construct the sets C*, a € [1..0) in arbitrary order.
Run InduceMinusSuffixes to construct the lists C, a € [1..0).
Run InducePlusSuffixes to construct the lists C;, a € [1..0).

Remove non-*-type positions from ¢ Cf...CH .

i S\

e With this change, most of the work is done in the induction procedures.
This is very fast in practice, because all the lists C? are accessed
sequentially during the procedures.
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