Induced Sorting

Define three type of suffixes —, 4+ and x as follows:
C™={ie[0.n) | T > Tiy1}
Ct ={i€[0.n)|T; < Tr41}
Cr*={ieCt|i—-1eC}
Example 5.23:

v O 1 2 3 4 5 §) 7 8 9 10 11 12 13 14
T(] m m i s s i s s i i p p i i $
typeof 7, — — *x — — x — — *x 4+ - - - -

For every a € ~ and z € {—, +.x} define
Co = {i € [0..n] | T[i] = a}
% = C,NC"
Then
C,={i€Co| Ty <a"t'}
Cr={ieCy|T;>a""}
and thus the suffix array is CoC;CFC,CS ...C_,CF .

181

The basic idea of induced sorting is to use information about the order of T;
to induce the order of the suffix T;_1 = T'[i — 1]7;. The main steps are:

1. Sort the sets C*, a € [1..0).
2. Use C*, a € [l..0), to induce the order of the sets C, a € [1..0).

3. Use C,, a € [1..0), to induce the order of the sets Cit, a € [1..0).

a !

The suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 5.24: For all a € [1..0)

(@) i—1eC, iff i >0 and T[i — 1] = a and one of the following holds
1. i=n
2. i€ C*
3. i€ C~ and T[i— 1] > T[4].

(b) i— 1€ Cl iffi >0 and T[i — 1] = a and one of the following holds
1. 1€ C™ and T[i — 1] < T3]
2. 5€Ct and T[i — 1] < T[q].

182

To induce —-type suffixes:
1. Set C; empty for all a € [1..0).
2. For all suffixes T; such that i — 1 € C~ in lexicographical order,
append ¢z — 1 into C:F[i—u-
Note that since T;_1 > T; by definition of C—, we always have i inserted
before 7 — 1.

Algorithm 5.25: InduceMinusSuffixes
Input: Lexicographically sorted lists C%, a € >

Output: Lexicographically sorted lists C, a € >
(1) forae X do C, + 0
(2) pushback(n — 1, C;[n_l])
(3) fora<+1too—1do
(4) C+— 0
(5) while C # () do
(6) i + popfront(C;)
(7) pushback(i, C)
(8) if ¢ >0 and T[: — 1] > a then pushback(i — 1,05[1._1])
(9) C -« C

(10) for i € C* do pushback(i — 1, C;[Z._l])

183

Inducing +-type suffixes goes similarly but in reverse order so that again 7 is
always inserted before ¢+ — 1:

1. Set C;f empty for all a € [1..0).

2. For all suffixes T; such that i — 1 € CT in descending lexicographical
order, append i — 1 into C;f[i_l].
Algorithm 5.26: InducePlusSuffixes
Input: Lexicographically sorted lists C, a € >
Output: Lexicographically sorted lists Cj, a € 2
(1) foraec do CF «+ 0
(2) for a < o —1 downto 1 do

(3) C <+ 0
(4) while C;f # @ do
(5) i < popback(C.)
(6) pushfront(i, C)
(7) if © >0 and T[: — 1] > a then pushfront(i — 1, C;f[z._l])
(8) Cr+ C
(9) for ¢ € C; in reverse order do
(10) if i >0 and T[i — 1] < a then pushfront(i — 1,Cf,)

184

We still need to explain how to sort the x-type suffixes. Define
Fli] =min{ke[i+ 1.n] | ke C* or k =n}
S; = T[i..F[]]
S; — SZ'O‘
where o is a special symbol larger than any other symbol.

Lemma 5.27: For any 4,5 € [0.n), T; < T} iff S; < S} or S{ =S} and
Trp < TFpy-

Proof. The claim is trivially true except in the case that S, is a proper

prefix of S; (or vice versa). In that case, S; > S; but S. < S;. and thus T; < T;
by the claim. We will show that this is correct.

Let =j54+|S;|—1and k=i+4+¢—j. Then
e /cC*and thus/—1e€C~. By Lemma 5.24, T[¢] < T[¢ — 1].

o Tlk—1..k] =T[¢—1.4] and thus T[k] < T[k — 1]. If we had k€ CT, we
would have k£ € C*. Since this is not the case, we must have k € C~.

o Let a=TI[{]. Since £ € C;f and k€ C;, we must have T < a"t! < Tj.
e Since Ti..k) =T[j..£) and T} < Ty, we have T; < Tj.
[]
185

Algorithm 5.28: SAIS

Step 0: Choose C.

e Compute the types of suffixes. This can be done in O(n) time based on
Lemma 5.24.

o Set C = Uy »)C; U{n}. Note that |C] < n/2, since for all i € C,
i—leC CC.

Example 5.29:

7 0] 1 2 3 4 5 6 7 38 9 10 11 12 13 14
T[] m m i s s i s s i i p p i i $
typeof 7, — — *x — — % — — x 4+ - = —

Cr ={2,5,8}, C;, =C; =C: =10, C={2,5,8,14}.

186

Step 1: Sort 1.

Sort the strings S}, i € C*. Since the total length of the strings S/ is
O(n), the sorting can be done in O(n) time using LSD radix sort.

Assign lexicographic names N; € [1..|C| — 1] to the string S so that
N; < N; iff SI < S;..

Construct the sequence R = N; N, ... N;O, where 11 < i3 < --- <1 are
the *-type positions.

Construct the suffix array SAr of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

The order of the suffixes of R corresponds to the order of x-type
suffixes of T'. Thus we can construct the lexicographically ordered lists
C* a€[l..0).

Example 5.30:

¢ 0 1 2 3 4 5 6 v 8 9 10 11 12 13 14

T[] m m i s s i s s i i p p i i $

N; 2 2 1 0
R = [issiz][issiz][iippii$z]$ = 2210, SAr = (3,2,1,0), C = (8,5,2)

187

Step 2 Sort T[On]

e Run InduceMinusSuffixes to construct the sorted lists C,, a € [1..0).

a

e Run InducePlusSuffixes to construct the sorted lists C;I, a € [1..0).

a !

e The suffix array is SA =nC;C{C;Cy ...C._,CH ..

Example 5.31:
) 1 2 3 4 5 6 7 8 10 11 12 13 14
T[] m m i s s i s s i p p i i $

9
i
typeof T, — — * — — % — — x + — — — -

Cs = (14) = C; = (13,12)

C;Cr=(13,12,8,5,2) = C,, = (1,0), C; = (11,10), C;y =(7,4,6,3)
= Ot =(8,9,5,2)

= SA = CsC; CiFC.C;Cy = (14,13,12,8,9,5,2,1,0,11,10,7,4,6, 3)

188

Theorem 5.32: Algorithm SAIS constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T.

e In Step 1, to sort the strings sg, 1 € C*, we can replace LSD radix sort
with the following procedure (proof omitted):

Construct the sets C*, a € [1..0) in arbitrary order.
Run InduceMinusSuffixes to construct the lists C, a € [1..0).
Run InducePlusSuffixes to construct the lists C;, a € [1..0).

Remove non-*-type positions from ¢ Cf...CH .

i S\

e With this change, most of the work is done in the induction procedures.
This is very fast in practice, because all the lists C? are accessed
sequentially during the procedures.

189

