Induced Sorting

Define three type of suffixes -, + and * as follows:

$$C^{-} = \{i \in [0..n) \mid T_i > T_{i+1}\}$$

$$C^{+} = \{i \in [0..n) \mid T_i < T_{i+1}\}$$

$$C^{*} = \{i \in C^{+} \mid i - 1 \in C^{-}\}$$

Example 5.23:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T[i]	m	m	i	S	S	i	S	S	i	i	р	р	i	i	\$
type of T_i	_	_	*	_	_	*	_	_	*	+	_	_	_	_	

For every $a \in \Sigma$ and $x \in \{-, +.*\}$ define

$$C_a = \{i \in [0..n] \mid T[i] = a\}$$
$$C_a^x = C_a \cap C^x$$

Then

$$C_a^{-} = \{ i \in C_a \mid T_i < a^{n+1} \}$$

$$C_a^{+} = \{ i \in C_a \mid T_i > a^{n+1} \}$$

and thus the suffix array is $C_0 C_1^- C_1^+ C_2^- C_2^+ \dots C_{\sigma-1}^- C_{\sigma-1}^+$.

The basic idea of induced sorting is to use information about the order of T_i to **induce** the order of the suffix $T_{i-1} = T[i-1]T_i$. The main steps are:

- **1.** Sort the sets C_a^* , $a \in [1..\sigma)$.
- **2.** Use C_a^* , $a \in [1..\sigma)$, to induce the order of the sets C_a^- , $a \in [1..\sigma)$.
- **3.** Use C_a^- , $a \in [1..\sigma)$, to induce the order of the sets C_a^+ , $a \in [1..\sigma)$.

The suffixes involved in the induction steps can be indentified using the following rules (proof is left as an exercise).

Lemma 5.24: For all $a \in [1..\sigma)$ (a) $i - 1 \in C_a^-$ iff i > 0 and T[i - 1] = a and one of the following holds 1. i = n2. $i \in C^*$ 3. $i \in C^-$ and $T[i - 1] \ge T[i]$. (b) $i - 1 \in C_a^+$ iff i > 0 and T[i - 1] = a and one of the following holds 1. $i \in C^-$ and T[i - 1] < T[i]2. $i \in C^+$ and $T[i - 1] \le T[i]$. To induce --type suffixes:

- **1.** Set C_a^- empty for all $a \in [1..\sigma)$.
- **2.** For all suffixes T_i such that $i 1 \in C^-$ in lexicographical order, append i 1 into $C^-_{T[i-1]}$.

Note that since $T_{i-1} > T_i$ by definition of C^- , we always have *i* inserted before i - 1.

Algorithm 5.25: InduceMinusSuffixes Input: Lexicographically sorted lists C_a^* , $a \in \Sigma$ Output: Lexicographically sorted lists C_a^- , $a \in \Sigma$ (1) for $a \in \Sigma$ do $C_a^- \leftarrow \emptyset$ (2) $pushback(n-1, C_{T[n-1]}^-)$ (3) for $a \leftarrow 1$ to $\sigma - 1$ do (4) $C \leftarrow \emptyset$ (5) while $C_a^- \neq \emptyset$ do (6) $i \leftarrow popfront(C_a^-)$ (7) pushback(i, C)(8) if i > 0 and $T[i-1] \ge a$ then $pushback(i-1, C_{T[i-1]}^-)$ (9) $C_a^- \leftarrow C$ (10) for $i \in C_a^*$ do $pushback(i-1, C_{T[i-1]}^-)$ Inducing +-type suffixes goes similarly but in reverse order so that again i is always inserted before i - 1:

- **1.** Set C_a^+ empty for all $a \in [1..\sigma)$.
- **2.** For all suffixes T_i such that $i 1 \in C^+$ in **descending** lexicographical order, append i 1 into $C^+_{T[i-1]}$.

Algorithm 5.26: InducePlusSuffixes

Input: Lexicographically sorted lists C_a^- , $a \in \Sigma$ Output: Lexicographically sorted lists C_a^+ , $a \in \Sigma$ (1) for $a \in \Sigma$ do $C_a^+ \leftarrow \emptyset$ (2) for $a \leftarrow \sigma - 1$ downto 1 do $C \leftarrow \emptyset$ (3)(4) while $C_a^+ \neq \emptyset$ do $i \leftarrow popback(C_a^+)$ (5)(6)pushfront(i, C)if i > 0 and $T[i-1] \ge a$ then $pushfront(i-1, C^+_{T[i-1]})$ (7) (8) $C_a^+ \leftarrow C$ (9) for $i \in C_a^-$ in reverse order do if i > 0 and T[i-1] < a then $pushfront(i-1, C^+_{T[i-1]})$ (10)

We still need to explain how to sort the *-type suffixes. Define

$$F[i] = \min\{k \in [i + 1..n] \mid k \in C^* \text{ or } k = n\}$$

$$S_i = T[i..F[i]]$$

$$S'_i = S_i \sigma$$

where σ is a special symbol larger than any other symbol.

Lemma 5.27: For any $i, j \in [0..n)$, $T_i < T_j$ iff $S'_i < S'_j$ or $S'_i = S'_j$ and $T_{F[i]} < T_{F[j]}$.

Proof. The claim is trivially true except in the case that S_j is a proper prefix of S_i (or vice versa). In that case, $S_i > S_j$ but $S'_i < S'_j$ and thus $T_i < T_j$ by the claim. We will show that this is correct.

Let $\ell = j + |S_j| - 1$ and $k = i + \ell - j$. Then

- $\ell \in C^*$ and thus $\ell 1 \in C^-$. By Lemma 5.24, $T[\ell] < T[\ell 1]$.
- $T[k-1..k] = T[\ell 1..\ell]$ and thus T[k] < T[k-1]. If we had $k \in C^+$, we would have $k \in C^*$. Since this is not the case, we must have $k \in C^-$.
- Let $a = T[\ell]$. Since $\ell \in C_a^+$ and $k \in C_a^-$, we must have $T_k < a^{n+1} < T_\ell$.
- Since $T[i..k) = T[j..\ell)$ and $T_k < T_\ell$, we have $T_i < T_j$.

Algorithm 5.28: SAIS

Step 0: Choose *C*.

- Compute the types of suffixes. This can be done in $\mathcal{O}(n)$ time based on Lemma 5.24.
- Set $C = \bigcup_{a \in [1..\sigma)} C_a^* \cup \{n\}$. Note that $|C| \le n/2$, since for all $i \in C$, $i-1 \in C^- \subseteq \overline{C}$.

Example 5.29:

 $i \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14$ $T[i] \quad m \quad m \quad i \quad s \quad s \quad i \quad s \quad s \quad i \quad i \quad p \quad p \quad i \quad i \quad \$$ type of $T_i \quad - \quad - \quad * \quad - \quad - \quad * \quad - \quad - \quad * \quad + \quad - \quad - \quad - \quad - \quad -$

 $C_i^* = \{2, 5, 8\}, \ C_m^* = C_p^* = C_s^* = \emptyset, \ C = \{2, 5, 8, 14\}.$

Step 1: Sort T_C .

- Sort the strings S'_i , $i \in C^*$. Since the total length of the strings S'_i is $\mathcal{O}(n)$, the sorting can be done in $\mathcal{O}(n)$ time using LSD radix sort.
- Assign lexicographic names $N_i \in [1..|C|-1]$ to the string S'_i so that $N_i \leq N_j$ iff $S'_i \leq S'_j$.
- Construct the sequence $R = N_{i_1}N_{i_2} \dots N_k 0$, where $i_1 < i_3 < \dots < i_k$ are the *-type positions.
- Construct the suffix array SA_R of R. This is done recursively unless all symbols in R are unique, in which case a simple counting sort is sufficient.
- The order of the suffixes of R corresponds to the order of *-type suffixes of T. Thus we can construct the lexicographically ordered lists C^{*}_a, a ∈ [1..σ).

Example 5.30:

 Step 2 Sort $T_{[0..n]}$.

- Run InduceMinusSuffixes to construct the sorted lists C_a^- , $a \in [1..\sigma)$.
- Run InducePlusSuffixes to construct the sorted lists C_a^+ , $a \in [1..\sigma)$.
- The suffix array is $SA = nC_1^-C_1^+C_2^-C_2^+\dots C_{\sigma-1}^-C_{\sigma-1}^+$.

Example 5.31:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T[i]	m	m	i	S	S	i	S	S	i	i	р	р	i	i	\$
type of T_i	_	_	*	_	_	*	_	_	*	+	_				

 $C_{\$} = (14) \Rightarrow C_i^- = (13, 12)$ $C_i^- C_i^* = (13, 12, 8, 5, 2) \Rightarrow C_m^- = (1, 0), \ C_p^- = (11, 10), \ C_s^- = (7, 4, 6, 3)$ $\Rightarrow C_i^+ = (8, 9, 5, 2)$ $\Rightarrow SA = C_{\$}C_i^- C_i^+ C_m^- C_p^- C_s^- = (14, 13, 12, 8, 9, 5, 2, 1, 0, 11, 10, 7, 4, 6, 3)$

188

Theorem 5.32: Algorithm SAIS constructs the suffix array of a string T[0..n) in $\mathcal{O}(n)$ time plus the time needed to sort the characters of T.

- In Step 1, to sort the strings S'_i , $i \in C^*$, we can replace LSD radix sort with the following procedure (proof omitted):
 - **1.** Construct the sets C_a^* , $a \in [1..\sigma)$ in arbitrary order.
 - **2.** Run InduceMinusSuffixes to construct the lists C_a^- , $a \in [1..\sigma)$.
 - **3.** Run InducePlusSuffixes to construct the lists C_a^- , $a \in [1..\sigma)$.
 - **4.** Remove non-*-type positions from $C_1^+ C_2^+ \ldots C_{\sigma-1}^+$.
- With this change, most of the work is done in the induction procedures. This is very fast in practice, because all the lists C^x_a are accessed sequentially during the procedures.