Induced Sorting

Define three type of suffixes −, + and ∗ as follows:

\[C^- = \{ i \in [0..n) \mid T_i > T_{i+1} \} \]
\[C^+ = \{ i \in [0..n) \mid T_i < T_{i+1} \} \]
\[C^* = \{ i \in C^+ \mid i - 1 \in C^- \} \]

Example 5.23:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T[i])</td>
<td>m</td>
<td>m</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>i</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>i</td>
<td>i</td>
</tr>
</tbody>
</table>

Type of \(T_i \) : − − ∗ − − ∗ − − ∗ + − − − −

For every \(a \in \Sigma \) and \(x \in \{-,+,\ast\} \) define

\[C_a = \{ i \in [0..n] \mid T[i] = a \} \]
\[C_a^x = C_a \cap C_a^x \]

Then

\[C_a^- = \{ i \in C_a \mid T_i < a^{n+1} \} \]
\[C_a^+ = \{ i \in C_a \mid T_i > a^{n+1} \} \]

and thus the suffix array is \(C_0 C_1^- C_1^+ C_2^- C_2^+ \ldots C_{\sigma-1}^- C_{\sigma-1}^+ \).
The basic idea of induced sorting is to use information about the order of T_i to induce the order of the suffix $T_{i-1} = T[i-1]T_i$. The main steps are:

1. Sort the sets C^*_a, $a \in [1..\sigma)$.
2. Use C^*_a, $a \in [1..\sigma)$, to induce the order of the sets C^-_a, $a \in [1..\sigma)$.
3. Use C^-_a, $a \in [1..\sigma)$, to induce the order of the sets C^+_a, $a \in [1..\sigma)$.

The suffixes involved in the induction steps can be indentified using the following rules (proof is left as an exercise).

Lemma 5.24: For all $a \in [1..\sigma)$

(a) $i - 1 \in C^-_a$ iff $i > 0$ and $T[i-1] = a$ and one of the following holds
 1. $i = n$
 2. $i \in C^*$
 3. $i \in C^-$ and $T[i-1] \geq T[i]$.

(b) $i - 1 \in C^+_a$ iff $i > 0$ and $T[i-1] = a$ and one of the following holds
 1. $i \in C^-$ and $T[i-1] < T[i]$
 2. $i \in C^+$ and $T[i-1] \leq T[i]$.

182
To induce \(-\) type suffixes:

1. Set \(C_{a}^{-}\) empty for all \(a \in [1..\sigma)\).
2. For all suffixes \(T_i\) such that \(i - 1 \in C^{-}\) in lexicographical order, append \(i - 1\) into \(C_{T[i-1]}^{-}\).

Note that since \(T_{i-1} > T_i\) by definition of \(C^{-}\), we always have \(i\) inserted before \(i - 1\).

Algorithm 5.25: InduceMinusSuffixes

Input: Lexicographically sorted lists \(C_{a}^{*}, a \in \Sigma\)
Output: Lexicographically sorted lists \(C_{a}^{-}, a \in \Sigma\)

(1) for \(a \in \Sigma\) do \(C_{a}^{-} \leftarrow \emptyset\)
(2) \(\text{pushback}(n - 1, C_{T[n-1]}^{-})\)
(3) for \(a \leftarrow 1\) to \(\sigma - 1\) do
(4) \(C \leftarrow \emptyset\)
(5) while \(C_{a}^{-} \neq \emptyset\) do
(6) \(i \leftarrow \text{popfront}(C_{a}^{-})\)
(7) \(\text{pushback}(i, C)\)
(8) if \(i > 0\) and \(T[i - 1] \geq a\) then \(\text{pushback}(i - 1, C_{T[i-1]}^{-})\)
(9) \(C_{a}^{-} \leftarrow C\)
(10) for \(i \in C_{a}^{*}\) do \(\text{pushback}(i - 1, C_{T[i-1]}^{-})\)
Inducing $+$-type suffixes goes similarly but in reverse order so that again i is always inserted before $i - 1$:

1. Set C^+_a empty for all $a \in [1..\sigma)$.
2. For all suffixes T_i such that $i - 1 \in C^+$ in **descending** lexicographical order, append $i - 1$ into $C^+_T[i-1]$.

Algorithm 5.26: InducePlusSuffixes

Input: Lexicographically sorted lists C^-_a, $a \in \Sigma$

Output: Lexicographically sorted lists C^+_a, $a \in \Sigma$

(1) for $a \in \Sigma$ do $C^+_a \leftarrow \emptyset$
(2) for $a \leftarrow \sigma - 1$ downto 1 do
(3) $C \leftarrow \emptyset$
(4) while $C^+_a \neq \emptyset$ do
(5) \quad $i \leftarrow \text{popback}(C^+_a)$
(6) \quad $\text{pushfront}(i, C)$
(7) \quad if $i > 0$ and $T[i - 1] \geq a$ then $\text{pushfront}(i - 1, C^+_T[i-1])$
(8) $C^+_a \leftarrow C$
(9) for $i \in C^-_a$ in reverse order do
(10) \quad if $i > 0$ and $T[i - 1] < a$ then $\text{pushfront}(i - 1, C^+_T[i-1])$
We still need to explain how to sort the ∗-type suffixes. Define

\[F[i] = \min\{k \in [i + 1..n] \mid k \in C^* \text{ or } k = n\} \]

\[S_i = T[i..F[i]] \]

\[S'_i = S_i \sigma \]

where \(\sigma \) is a special symbol larger than any other symbol.

Lemma 5.27: For any \(i, j \in [0..n) \), \(T_i < T_j \) iff \(S'_i < S'_j \) or \(S'_i = S'_j \) and \(T_{F[i]} < T_{F[j]} \).

Proof. The claim is trivially true except in the case that \(S_j \) is a proper prefix of \(S_i \) (or vice versa). In that case, \(S_i > S_j \) but \(S'_i < S'_j \) and thus \(T_i < T_j \) by the claim. We will show that this is correct.

Let \(\ell = j + |S_j| - 1 \) and \(k = i + \ell - j \). Then

- \(\ell \in C^* \) and thus \(\ell - 1 \in C^- \). By Lemma 5.24, \(T[\ell] < T[\ell - 1] \).
- \(T[k - 1..k] = T[\ell - 1..\ell] \) and thus \(T[k] < T[k - 1] \). If we had \(k \in C^+ \), we would have \(k \in C^* \). Since this is not the case, we must have \(k \in C^- \).
- Let \(a = T[\ell] \). Since \(\ell \in C^+_a \) and \(k \in C^-_a \), we must have \(T_k < a^{n+1} < T_\ell \).
- Since \(T[i..k] = T[j..\ell] \) and \(T_k < T_\ell \), we have \(T_i < T_j \).
Algorithm 5.28: SAIS

Step 0: Choose C.

- Compute the types of suffixes. This can be done in $O(n)$ time based on Lemma 5.24.
- Set $C = \bigcup_{a \in [1..\sigma)} C_a^* \cup \{n\}$. Note that $|C| \leq n/2$, since for all $i \in C$, $i - 1 \in C^- \subseteq \overline{C}$.

Example 5.29:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>m</td>
<td>m</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>i</td>
<td>p</td>
<td>p</td>
<td>i</td>
<td>i</td>
<td>$$</td>
</tr>
<tr>
<td>type of $T[i]$</td>
<td>$-$</td>
<td>$-$</td>
<td>$*$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$*$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

$C_i^* = \{2, 5, 8\}$, $C_m^* = C_p^* = C_s^* = \emptyset$, $C = \{2, 5, 8, 14\}$.
Step 1: Sort T_C.

- Sort the strings $S'_i, i \in C^*$. Since the total length of the strings S'_i is $O(n)$, the sorting can be done in $O(n)$ time using LSD radix sort.

- Assign lexicographic names $N_i \in [1..|C| - 1]$ to the string S'_i so that $N_i \leq N_j$ iff $S'_i \leq S'_j$.

- Construct the sequence $R = N_{i_1}N_{i_2} \ldots N_{i_k}0$, where $i_1 < i_2 < \ldots < i_k$ are the $*$-type positions.

- Construct the suffix array SA_R of R. This is done recursively unless all symbols in R are unique, in which case a simple counting sort is sufficient.

- The order of the suffixes of R corresponds to the order of $*$-type suffixes of T. Thus we can construct the lexicographically ordered lists $C^*_a, a \in [1..\sigma)$.

Example 5.30:

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|-----|---|---|---|---|---|---|---|---|---|---|----|----|----|----|
| $T[i]$ | m | m | i | s | s | i | s | i | p | p | i | i | i | i |
| N_i | 2 | 2 | 1 | 0 |

$R = [issiz][issiz][iipppiiz]$ = 2210, $SA_R = (3, 2, 1, 0), \ C^{*}_i = (8, 5, 2)$
Step 2 Sort $T_{[0..n]}$.

- Run InduceMinusSuffixes to construct the sorted lists $C_a^-, a \in [1..\sigma)$.
- Run InducePlusSuffixes to construct the sorted lists $C_a^+, a \in [1..\sigma)$.
- The suffix array is $SA = nC_1^-C_1^+C_2^-C_2^+ \ldots C_{\sigma-1}^-C_{\sigma-1}^+$.

Example 5.31:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>m m i s s s i s s i i p p i i i $</td>
<td></td>
</tr>
<tr>
<td>type of T_i</td>
<td>$\ast \ast$</td>
<td>$\ast \ast \ast$</td>
<td>$\ast \ast \ast \ast$</td>
<td>$\ast \ast \ast \ast \ast$</td>
<td>$\ast \ast \ast \ast$</td>
<td>$\ast \ast \ast \ast \ast$</td>
<td>$\ast \ast \ast \ast \ast$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$C_\$ = (14) $\Rightarrow C_i^- = (13, 12)$

$C_i^-C_i^* = (13, 12, 8, 5, 2) $\Rightarrow C_m^- = (1, 0)$, $C_p^- = (11, 10)$, $C_s^- = (7, 4, 6, 3)$

$\Rightarrow C_i^+ = (8, 9, 5, 2)$

$\Rightarrow SA = C_\$C_i^-C_i^+C_m^-C_p^-C_s^- = (14, 13, 12, 8, 9, 5, 2, 1, 0, 11, 10, 7, 4, 6, 3)$
Theorem 5.32: Algorithm SAIS constructs the suffix array of a string $T[0..n)$ in $O(n)$ time plus the time needed to sort the characters of T.

- In Step 1, to sort the strings S'_i, $i \in C^*$, we can replace LSD radix sort with the following procedure (proof omitted):
 1. Construct the sets C^*_a, $a \in [1..\sigma)$ in arbitrary order.
 2. Run InduceMinusSuffixes to construct the lists C^-_a, $a \in [1..\sigma)$.
 3. Run InducePlusSuffixes to construct the lists C^-_a, $a \in [1..\sigma)$.
 4. Remove non-*-type positions from $C^+_1C^+_2\ldots C^+_\sigma-1$.

- With this change, most of the work is done in the induction procedures. This is very fast in practice, because all the lists C^x_a are accessed **sequentially** during the procedures.