
58093 String Processing Algorithms (Autumn 2011)
Exercises 4 (22–23 November)

1. Two string x and y are rotations of each other if there exists strings u and v such that x = uv
and y = vu. For example abcde and deabc are rotations of each other. Describe a linear time
algorithm for determining whether given two strings are rotations of each other. (Hint: use a linear
time exact string matching algorithm.)

2. The Knuth–Morris–Pratt algorithm differs from the Morris–Pratt algorithm only in the failure
function, which can be defined as

failKMP[i] = k, where k is the length of the longest proper border of P [0..i) such that
P [k] 6= P [i], or −1 if there is no such border.

(a) Compute both failure functions for the pattern ananassana.

(b) Give an example of a text, where some text character is compared three times by the MP
algorithm but only once by the KMP algorithm when searching for ananassana.

3. Modify Algorithm 3.6 on the lecture notes to compute failKMP instead of failMP.

4. Let us analyze the average case time complexity of the Horspool algorithm, where the average
is taken over all possible patterns of length m and all possible texts of length n for the integer
alphabet Σ = {0, 1, . . . , σ − 1} where σ > 1. This is the same as the expected time complexity
when each pattern and text character is chosen independently and randomly from the uniform
distribution over Σ.

(a) Show that the average time spent in the loop on line 7 is O(1).

(b) Show that the probability that the shift is shorter than min(m,σ/2) is at most 1/2.

(c) Combine the above results to show that the average time complexity is O(n/min(m,σ)).

5. The multiple exact string matching problem is to find the occurrences of multiple patterns
P1, P2, . . . , Pk in a text T . The trivial solution is to find each pattern separately. Show how
the following algorithms can be modified to solve the problem more efficiently:

(a) Shift-And

(b) Karp-Rabin

6. A don’t care character # is a special character that matches any single character. For example, the
pattern #oke#i matches sokeri, pokeri and tokeni.

(a) Modify the Shift-And algorithm to handle don’t care characters.

(b) It may appear that the Morris–Pratt algorithm can handle don’t care characters almost with-
out change: Just make sure that the character comparisons are performed correctly when
don’t care characters are involved. However, such an algorithm would be incorrect. Give an
example demonstrating this.


