58093 String Processing Algorithms (Autumn 2011)
Exercises 4 (22-23 November)

1.

Two string = and y are rotations of each other if there exists strings u and v such that x = uv
and y = vu. For example abcde and deabc are rotations of each other. Describe a linear time
algorithm for determining whether given two strings are rotations of each other. (Hint: use a linear
time exact string matching algorithm.)

. The Knuth—Morris—Pratt algorithm differs from the Morris—Pratt algorithm only in the failure

function, which can be defined as

failgmp[i] = k, where k is the length of the longest proper border of P[0..7) such that
P[k] # PJi], or —1 if there is no such border.

(a) Compute both failure functions for the pattern ananassana.

(b) Give an example of a text, where some text character is compared three times by the MP
algorithm but only once by the KMP algorithm when searching for ananassana.

. Modify Algorithm 3.6 on the lecture notes to compute failgmp instead of failyp.

. Let us analyze the average case time complexity of the Horspool algorithm, where the average

is taken over all possible patterns of length m and all possible texts of length n for the integer
alphabet ¥ = {0,1,...,0 — 1} where o > 1. This is the same as the expected time complexity
when each pattern and text character is chosen independently and randomly from the uniform
distribution over .

(a) Show that the average time spent in the loop on line 7 is O(1).
(b) Show that the probability that the shift is shorter than min(m, o/2) is at most 1/2.

(c) Combine the above results to show that the average time complexity is O(n/ min(m, o)).

. The multiple exact string matching problem is to find the occurrences of multiple patterns

P, P, ..., P, in a text T'. The trivial solution is to find each pattern separately. Show how
the following algorithms can be modified to solve the problem more efficiently:

(a) Shift-And

(b) Karp-Rabin
A don’t care character # is a special character that matches any single character. For example, the
pattern #oke#1i matches sokeri, pokeri and tokeni.

(a) Modify the Shift-And algorithm to handle don’t care characters.

(b) It may appear that the Morris—Pratt algorithm can handle don’t care characters almost with-
out change: Just make sure that the character comparisons are performed correctly when
don’t care characters are involved. However, such an algorithm would be incorrect. Give an
example demonstrating this.



