1. [3+3+3+3 points] Define the following concepts:
 (a) run-length encoding
 (b) LF-mapping

 What is the main difference between the following pairs:
 (c) Kraft’s inequality versus McMillan’s inequality
 (d) grammar compression versus Lempel–Ziv compression

 A few lines for each part is sufficient.

2. [12 points] Let \{a, b, c, d\} be the alphabet with the probability distribution

 \[
 \begin{array}{c|cccc}
 \text{symbol} & a & b & c & d \\
 \hline
 \text{probability} & \frac{1}{4} & \frac{1}{4} & \frac{3}{8} & \frac{1}{8}
 \end{array}
 \]

 A string \(T\) of length 3 has been encoded using exact arithmetic coding and the resulting code is 100010. What is \(T\)? Give the intermediate steps in the decoding process.

3. [12 points] Describe the basic principles of adaptive compression models. What are the strengths and weaknesses compared to semiadaptive models? Be as complete as possible.

4. [6+6 points] Let \(L = oydbbbbaaad\$\) be the Burrows–Wheeler transform for a text \(T\). The order of the symbols is \(\$ < a < b < d < o < y\). The last character of \(T\) is \$.

 (a) What is \(T\)?

 (b) Give a Huffman wavelet tree of \(L\).

 Give enough intermediate steps to show how you arrived at the solutions.

5. [12 points] Let \(S\) be a set of \(n\) integers in the range \(U = [0..u]\). We want to store \(S\) so that the following operations are supported:

 - predecessor\((i)\) is the largest element of \(S\) that is smaller than \(i\). If \(S\) contains no elements smaller than \(i\), the result is the smallest element in \(S\).
 - successor\((i)\) is the smallest element of \(S\) that is larger than \(i\). If \(S\) contains no elements larger than \(i\), the result is the largest element in \(S\).

 For example, if \(U = [0..100]\) and \(S = \{7, 19, 20, 56, 65\}\), then predecessor\((5) = 7\), predecessor\((20) = 19\), successor\((5) = 7\) and successor\((20) = 56\).

 Describe how to store \(S\) in \(u + o(u)\) bits so that predecessor and successor operations are supported in constant time. Give a pseudocode for the operations.