Compressed Graphs

We will next describe a simple representation for graphs.

- Let $G = (V, E)$ be a directed graph, where $V = [0..n)$ and $E \subseteq V \times V$ with $|E| = m$.

- We will use adjacency lists to represent the graph. For each $v \in V$, let

 $$S_v = (w \in V : (v, w) \in E)$$

 be the adjacency list for v.

- Let $S[0..m) = S_0S_1...S_{n-1}$ be the concatenation of the adjacency lists. Let $L[0..n)$ be the sizes of the adjacency lists, i.e., $L[v] = |S_v|$.

- Now each $e \in [0..m)$ represents an edge:

 $$\text{target}(e) = \text{access}_{S}(e)$$
 $$\text{source}(e) = \text{search}_{L}(e)$$

- The edges incident to a node v can be listed as follows:

 $$\text{out-edges}(v) = [\text{sum}_{L}(v), \text{sum}_{L}(v + 1))$$
 $$\text{in-edges}(v) = \{\text{select}_{S}(v, i) \mid i \in [0..\text{rank}_{S}(v, m))\}$$
Thus the graph G is represented by:

- A string $S[0..m)$ over the alphabet $V = [0..n)$ with support for operations access, rank and select.
- An array $L[0..n)$ of non-negative integers summing up to m with support for operations sum and search.

Both can be stored in compressed form.

Example 3.16:

$$S = \text{bcd c de d}$$
$$L = 3 \ 1 \ 2 \ 0 \ 1$$

Additional attributes such as weights can be associated to nodes using an array $A[0..n)$ and to edges using an array $B[0..m)$.
Balanced Parentheses

Let $B[0..2n]$ be a bit vector with n 1-bits and n 0-bits. Define

$$excess_B(i) = \text{rank-1}_B(i) - \text{rank-0}_B(i)$$

B is a balanced parentheses (BP) sequence if $excess_B(i) \geq 0$ for all $i \in [0..2n]$. Then each 1-bit can be interpreted as an opening parenthesis “(“ and each 0-bit as a closing parenthesis “)”.

Example 3.17:

$$
\begin{array}{cccccccccccc}
((()) (() () ())) \\
1 1 1 0 0 1 1 0 1 0 1 0 0 0 \\
\text{excess} & 0 & 1 & 2 & 3 & 2 & 1 & 2 & 3 & 2 & 3 & 2 & 3 & 2 & 1 & 0
\end{array}
$$

Interesting operations on BP sequences include finding the matching parenthesis and the nearest enclosing pair of parentheses:

- **find-close**$_B(i) = \min\{j \in [i + 1..n] \mid excess_B(j + 1) = excess_B(i)\}$ for $B[i] = 1$
- **find-open**$_B(j) = \max\{i \in [0..j) \mid excess_B(i) = excess_B(j + 1)\}$ for $B[j] = 0$
- **enclose**$_B(i) = \max\{k \in [0..i) \mid excess_B(k) < excess_B(i)\}$ for $B[i] = 1$

The operations can be supported in constant time using $o(n)$ bits of space in addition to the bit vector. The details are omitted.
Succinct Trees

Any rooted tree of n nodes can be represented as a BP sequence of $2n$ bits:

- A leaf u is represented by $\text{BP}(u) = 10$.
- An internal node v with children u_1, u_2, \ldots, u_k is represented by $\text{BP}(v) = 1\text{BP}(u_1)\text{BP}(u_2)\ldots\text{BP}(u_k)0$.

Example 3.18: (((())(()())))

A pointer to a node v is expressed as the starting position of $\text{BP}(v)$ in the whole sequence. Interesting operations include (the ones on the right assume that the requested node exists):

- $\text{is-leaf}(v) = [\text{access}_B(v + 1) = 0]$
- $\text{parent}(v) = \text{enclose}_B(v)$
- $\text{depth}(v) = \text{excess}_B(v)$
- $\text{first-child}(v) = v + 1$
- $\text{preorder-rank}(v) = \text{rank-1}_B(v)$
- $\text{next-sibling}(v) = \text{find-close}_B(v + 1)$
Sparse bit vectors

Many applications involve sparse bit vectors with few 1-bits. The following is a useful result for analysing them:

Lemma 3.19: Let $B[0..u)$ be a bit vector with $n \leq u/2$ 1-bits. Then $u H_0(B) = n \log(u/n) + O(n)$.

Proof. Since $\ln x \leq x - 1$ for all $x > 0$,

$$
\ln(u/(u-n)) \leq (u/(u-n)) - 1 = n/(u-n).
$$

Noting that $\log x = (\log e) \ln x$, where $\log e \approx 1.44$, we get

$$
u H_0(B) = n \log \frac{u}{n} + (u-n) \log \frac{u}{u-n} \\
\leq n \log \frac{u}{n} + (u-n)(\log e) \frac{n}{u-n} = n \log \frac{u}{n} + n \log e.
$$

□

Thus such bit vectors with support for rank and select can be stored in $u H_0(B) = n \log(u/n) + O(n) + o(u)$ bits. We used this result on slide 138.

Gap encoding is another method for compressing sparse bit vectors: Encode gaps between 1-bits using γ or δ encoding. It can be made to support rank and select too.
Summary

- We have seen how data structures with nontrivial functionality can be implemented in small additional space even when the primary data is in compressed form.

- We have seen how complex data structures can be built using a toolbox of basic components and techniques such as bit vectors with rank and select. This is not unlike traditional data structures but the toolbox is different.

- These data structures are practical: they are used in real world applications in bioinformatics, and there are a couple of libraries with implementations of the basic components (see course home page).

- All the data structures we have seen are static: they do not support operations that modify the data. There are dynamic versions of many of the data structures, including dynamic bit vectors, though the dynamicity often comes at a cost in time and/or space.