Myers’ Bitparallel Algorithm

Another way to speed up the computation is bitparallelism.

Instead of the matrix \((g_{ij})\), we store differences between adjacent cells:

- Vertical delta: \(\Delta v_{ij} = g_{ij} - g_{i-1,j}\)
- Horizontal delta: \(\Delta h_{ij} = g_{ij} - g_{i,j-1}\)
- Diagonal delta: \(\Delta d_{ij} = g_{ij} - g_{i-1,j}\)

Because \(g_{i0} = i\) ja \(g_{0j} = 0\),

\[
g_{ij} = \Delta v_{1j} + \Delta v_{2j} + \cdots + \Delta v_{ij} = i + \Delta h_{i1} + \Delta h_{i2} + \cdots + \Delta h_{ij}
\]

Because of diagonal monotonicity, \(\Delta d_{ij} \in \{0, 1\}\) and it can be stored in one bit. By the following result, \(\Delta h_{ij}\) and \(\Delta v_{ij}\) can be stored in two bits.

Lemma 3.15: \(\Delta h_{ij}, \Delta v_{ij} \in \{-1, 0, 1\}\) for every \(i, j\) that they are defined for.

The proof is left as an exercise.
Example 3.16: ‘–’ means -1, ‘=’ means 0 and ‘+’ means $+1$

<table>
<thead>
<tr>
<th></th>
<th>r e m a c h i n e</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>$0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0$</td>
</tr>
<tr>
<td>a</td>
<td>$+ + + + + = = + + + + + + + + + + + + +$</td>
</tr>
<tr>
<td>t</td>
<td>$1 = 1 = 1 - 0 + 1 = 1 = 1 = 1 = 1 = 1$</td>
</tr>
<tr>
<td>a</td>
<td>$+ + + + + = + - = = = + + + + + + + +$</td>
</tr>
<tr>
<td>t</td>
<td>$2 = 2 = 2 - 1 - 0 + 1 + 2 + 2 = 2 = 2 = 2$</td>
</tr>
<tr>
<td>a</td>
<td>$+ + + + + = + = + = + = = + + + + + + + +$</td>
</tr>
<tr>
<td>t</td>
<td>$2 = 2 = 2 - 1 - 0 + 1 + 2 = 2 = 2 = 2 = 2$</td>
</tr>
<tr>
<td>a</td>
<td>$+ + + + + = + = + = + = + = + + + + + +$</td>
</tr>
<tr>
<td>t</td>
<td>$3 = 3 = 3 - 2 - 1 = 1 + 2 + 3 = 3 = 3$</td>
</tr>
<tr>
<td>c</td>
<td>$+ + + + + = + = + = + = + = + = + + + +$</td>
</tr>
<tr>
<td>h</td>
<td>$4 = 4 = 4 - 3 - 2 - 1 + 2 + 3 + 4 = 4$</td>
</tr>
<tr>
<td>c</td>
<td>$+ + + + + = + = + = + = + = + = + + + +$</td>
</tr>
<tr>
<td>h</td>
<td>$5 = 5 = 5 - 4 - 3 - 2 - 1 + 2 + 3 + 4 = 4$</td>
</tr>
</tbody>
</table>
In the standard computation of a cell:

- Input is $g_{i-1,j}, g_{i-1,j-1}, g_{i,j-1}$ and $\delta(P[i], T[j])$.
- Output is g_{ij}.

In the corresponding bitparallel computation:

- Input is $\Delta v_{\text{in}} = \Delta v_{i,j-1}, \Delta h_{\text{in}} = \Delta h_{i,j-1}$ and $Eq_{ij} = 1 - \delta(P[i], T[j])$.
- Output is $\Delta v_{\text{out}} = \Delta v_{i,j}$ and $\Delta h_{\text{out}} = \Delta h_{i,j}$.
The computation rule is defined by the following result.

Lemma 3.17: If $Eq = 1$ or $\Delta v^{in} = -1$ or $\Delta h^{in} = -1$, then $\Delta d = 0$, $\Delta v^{out} = -\Delta h^{in}$ and $\Delta h^{out} = -\Delta v^{in}$. Otherwise $\Delta d = 1$, $\Delta v^{out} = 1 - \Delta h^{in}$ and $\Delta h^{out} = 1 - \Delta v^{in}$.

Proof. We can write the recurrence for g_{ij} as

$$g_{ij} = \min\{g_{i-1,j-1} + \delta(P[i], T[j]), g_{i,j-1} + 1, g_{i-1,j} + 1\}$$

$$= g_{i-1,j-1} + \min\{1 - Eq, \Delta v^{in} + 1, \Delta h^{in} + 1\}. $$

Then $\Delta d = g_{ij} - g_{i-1,j-1} = \min\{1 - Eq, \Delta v^{in} + 1, \Delta h^{in} + 1\}$ which is 0 if $Eq = 1$ or $\Delta v^{in} = -1$ or $\Delta h^{in} = -1$ and 1 otherwise.

Clearly $\Delta d = \Delta v^{in} + \Delta h^{out} = \Delta h^{in} + \Delta v^{out}$. Thus $\Delta v^{out} = \Delta d - \Delta h^{in}$ and $\Delta h^{out} = \Delta d - \Delta v^{in}$. □
To enable bitparallel operation, we need two changes:

- The Δv and Δh values are “trits” not bits. We encode each of them with two bits as follows:

 \[
 P_v = \begin{cases}
 1 & \text{if } \Delta v = +1 \\
 0 & \text{otherwise}
 \end{cases} \\
 M_v = \begin{cases}
 1 & \text{if } \Delta v = -1 \\
 0 & \text{otherwise}
 \end{cases} \\
 P_h = \begin{cases}
 1 & \text{if } \Delta h = +1 \\
 0 & \text{otherwise}
 \end{cases} \\
 M_h = \begin{cases}
 1 & \text{if } \Delta h = -1 \\
 0 & \text{otherwise}
 \end{cases}
 \]

 Then

 \[
 \Delta v = P_v - M_v \\
 \Delta h = P_h - M_h
 \]

- We replace arithmetic operations ($+$, $-$, min) with Boolean (logical) operations (\land, \lor, \neg).
Now the computation rules can be expressed as follows.

Lemma 3.18:

\[
\begin{align*}
P_v^{\text{out}} &= M_h^{\text{in}} \lor \neg (X_v \lor P_h^{\text{in}}) \\
P_h^{\text{out}} &= M_v^{\text{in}} \lor \neg (X_h \lor P_v^{\text{in}}) \\
M_v^{\text{out}} &= P_h^{\text{in}} \land X_v \\
M_h^{\text{out}} &= P_v^{\text{in}} \land X_h
\end{align*}
\]

where \(X_v = \text{Eq} \lor M_v^{\text{in}} \) and \(X_h = \text{Eq} \lor M_h^{\text{in}} \).

Proof. We show the claim for \(P_v \) and \(M_v \) only. \(P_h \) and \(M_h \) are symmetrical.

By Lemma 3.17,

\[
\begin{align*}
P_v^{\text{out}} &= (\neg \Delta d \land M_h^{\text{in}}) \lor (\Delta d \land \neg P_h^{\text{in}}) \\
M_v^{\text{out}} &= (\neg \Delta d \land P_h^{\text{in}}) \lor (\Delta d \land 0) = \neg \Delta d \land P_h^{\text{in}}
\end{align*}
\]

Because \(\Delta d = \neg(\text{Eq} \lor M_v^{\text{in}} \lor M_h^{\text{in}}) = \neg(X_v \lor M_h^{\text{in}}) = \neg X_v \land \neg M_h^{\text{in}}, \)

\[
\begin{align*}
P_v^{\text{out}} &= ((X_v \lor M_h^{\text{in}}) \land M_h^{\text{in}}) \lor (\neg X_v \land \neg M_h^{\text{in}} \land \neg P_h^{\text{in}}) \\
&= M_h^{\text{in}} \lor \neg (X_v \lor M_h^{\text{in}} \lor P_h^{\text{in}}) \\
&= M_h^{\text{in}} \lor \neg (X_v \lor P_h^{\text{in}}) \\
M_v^{\text{out}} &= (X_v \lor M_h^{\text{in}}) \land P_h^{\text{in}} = X_v \land P_h^{\text{in}}
\end{align*}
\]

All the steps above use just basic laws of Boolean algebra except the last step, where we use the fact that \(M_h^{\text{in}} \) and \(P_h^{\text{in}} \) cannot be 1 simultaneously.

\[\square\]
According to Lemma 3.18, the bit representation of the matrix can be computed as follows.

\[
\begin{align*}
\text{for } i & \leftarrow 1 \text{ to } m \text{ do} \\
P_{v0} & \leftarrow 1; \ M_{v0} \leftarrow 0 \\
\text{for } j & \leftarrow 1 \text{ to } n \text{ do} \\
P_{h0j} & \leftarrow 0; \ M_{h0j} \leftarrow 0 \\
\text{for } i & \leftarrow 1 \text{ to } m \text{ do} \\
X_{hij} & \leftarrow E_{qij} \lor M_{h_{i-1,j}} \\
P_{hi} & \leftarrow M_{v_{i,j-1}} \lor (X_{hij} \lor P_{v_{i,j-1}}) \\
M_{hi} & \leftarrow P_{v_{i,j-1}} \land X_{hij} \\
\text{for } i & \leftarrow 1 \text{ to } m \text{ do} \\
X_{vij} & \leftarrow E_{qij} \lor M_{v_{i,j-1}} \\
P_{vij} & \leftarrow M_{h_{i-1,j}} \lor (X_{vij} \lor P_{h_{i-1,j}}) \\
M_{vij} & \leftarrow P_{h_{i-1,j}} \land X_{vij}
\end{align*}
\]

This is not yet bitparallel though.
To obtain a bitparallel algorithm, the columns Pv_{*j}, Mv_{*j}, Xv_{*j}, Ph_{*j}, Mh_{*j}, Xh_{*j} and Eq_{*j} are stored in bitvectors.

Now the second inner loop can be replaced with the code

$$Xv_{*j} \leftarrow Eq_{*j} \lor Mv_{*,j-1}$$
$$Pv_{*j} \leftarrow (Mh_{*,j} << 1) \lor \neg(Xv_{*j} \lor (Ph_{*j} << 1))$$
$$Mv_{*j} \leftarrow (Ph_{*j} << 1) \land Xv_{*j}$$

A similar attempt with the for first inner loop leads to a problem:

$$Xh_{*j} \leftarrow Eq_{*j} \lor (Mh_{*j} << 1)$$
$$Ph_{*j} \leftarrow Mv_{*,j-1} \lor \neg(Xh_{*j} \lor P_{v*,j-1})$$
$$Mh_{*j} \leftarrow P_{v*,j-1} \land Xh_{*j}$$

Now the vector Mh_{*j} is used in computing Xh_{*j} before Mh_{*j} itself is computed! Changing the order does not help, because Xh_{*j} is needed to compute Mh_{*j}.

To get out of this dependency loop, we compute Xh_{*j} without Mh_{*j} using only Eq_{*j} and $P_{v*,j-1}$ which are already available when we compute Xh_{*j}. 125
Lemma 3.19: $Xh_{ij} = \exists \ell \in [1, i] : Eq_{\ell j} \land (\forall x \in [\ell, i - 1] : Pv_{x,j-1})$.

Proof. We use induction on i.

Basis $i = 1$: The right-hand side reduces to Eq_{1j}, because $\ell = 1$. By Lemma 3.18, $Xh_{1j} = Eq_{1j} \lor Mh_{0j}$, which is Eq_{1j} because $Mh_{0j} = 0$ for all j.

Induction step: The induction assumption is that $Xh_{i-1,j}$ is as claimed. Now we have

$$
\exists \ell \in [1, i] : Eq_{\ell j} \land (\forall x \in [\ell, i - 1] : Pv_{x,j-1}) \\
= Eq_{ij} \lor \exists \ell \in [1, i - 1] : Eq_{\ell j} \land (\forall x \in [\ell, i - 1] : Pv_{x,j-1}) \\
= Eq_{ij} \lor (Pv_{i-1,j-1} \land \exists \ell \in [1, i - 1] : Eq_{\ell j} \land (\forall x \in [\ell, i - 2] : Pv_{x,j-1})) \\
= Eq_{ij} \lor (Pv_{i-1,j-1} \land Xh_{i-1,j}) \quad \text{(ind. assump.)} \\
= Eq_{ij} \lor Mh_{i-1,j} \quad \text{(Lemma 3.18)} \\
= Xh_{ij} \quad \text{(Lemma 3.18)}
$$
At first sight, we cannot use Lemma 3.19 to compute even a single bit in constant time, not to mention a whole vector Xh_{*j}. However, it can be done, but we need more bit operations:

- Let \oplus denote the xor-operation: $0 \oplus 1 = 1 \oplus 0 = 1$ and $0 \oplus 0 = 1 \oplus 1 = 0$.

- A bitvector is interpreted as an integer and we use addition as a bit operation. The carry mechanism in addition plays a key role. For example $0001 + 0111 = 1000$.

In the following, for a bitvector B, we will write

$$B = B[1..m] = B[m]B[m - 1] \ldots B[1]$$

The reverse order of the bits reflects the interpretation as an integer.
Lemma 3.20: Denote $X = Xh_{*j}$, $E = Eq_{*j}$, $P = Pv_{*,j−1}$ and let $Y = (((E \land P) + P) \lor P) \lor E$. Then $X = Y$.

Proof. By Lemma 3.19, $X[i] = 1$ iff and only if

a) $E[i] = 1$ or

b) $\exists \ell \in [1, i] : E[\ell \ldots i] = 00 \ldots 01 \land P[\ell \ldots i − 1] = 11 \ldots 1$.

and $X[i] = 0$ iff and only if

 c) $E_{1\ldots i} = 00 \ldots 0$ or

d) $\exists \ell \in [1, i] : E[\ell \ldots i] = 00 \ldots 01 \land P[\ell \ldots i − 1] \neq 11 \ldots 1$.

We prove that $Y[i] = X[i]$ in all of these cases:

a) The definition of Y ends with “$\lor E$” which ensures that $Y[i] = 1$ in this case.
b) The following calculation shows that \(Y[i] = 1 \) in this case:

\[
\begin{align*}
E[\ell \ldots i] &= 00 \ldots 01 \\
P[\ell \ldots i] &= b1 \ldots 11 \\
(E \land P)[\ell \ldots i] &= 00 \ldots 01 \\
((E \land P) + P)[\ell \ldots i] &= \overline{b}0 \ldots 0c \\
(((E \land P) + P) \lor P)[\ell \ldots i] &= 11 \ldots 1\overline{c} \\
Y &= (((((E \land P) + P) \lor P) \lor E)[\ell \ldots i] &= 11 \ldots 11
\end{align*}
\]

where \(b \) is the unknown bit \(P[i] \), \(c \) is the possible carry bit coming from the summation of bits \(1 \ldots, \ell - 1 \), and \(\overline{b} \) and \(\overline{c} \) are their negations.

c) Because for all bitvectors \(B \), \(0 \land B = 0 \) ja \(0 + B = B \), we get

\[
Y = (((0 \land P) + P) \lor P) \lor 0 = (P \lor P) \lor 0 = 0.
\]

d) Consider the calculation in case b). A key point there is that the carry bit in the summation travels from position \(\ell \) to \(i \) and produces \(\overline{b} \) to position \(i \). The difference in this case is that at least one bit \(P[k] \), \(\ell \leq k < i \), is zero, which stops the carry at position \(k \). Thus

\[
((E \land P) + P)[i] = b \quad \text{and} \quad Y[i] = 0.
\]
As a final detail, we compute the bottom row values g_{mj} using the equalities $g_{m0} = m$ ja $g_{mj} = g_{m,j-1} + \Delta h_{mj}$.

Algorithm 3.21: Myers’ bitparallel algorithm

Input: text $T[1..n]$, pattern $P[1..m]$, and integer k

Output: end positions of all approximate occurrences of P

1. for $c \in \Sigma$ do $B[c] \leftarrow 0^m$
2. for $i \leftarrow 1$ to m do $B[P[i]][i] = 1$
3. $Pv \leftarrow 1^m$; $Mv \leftarrow 0$; $g \leftarrow m$
4. for $j \leftarrow 1$ to n do
5. $Eq \leftarrow B[T[j]]$
6. $Xh \leftarrow (((Eq \land Pv) + Pv) \lor Pv) \lor Eq$
7. $Ph \leftarrow Mv \lor \neg(Xh \lor Pv)$
8. $Mh \leftarrow Pv \land Xh$
9. $Xv \leftarrow Eq \lor Mv$
10. $Pv \leftarrow (Mh << 1) \lor \neg(Xv \lor (Ph << 1))$
11. $Mv \leftarrow (Ph << 1) \land Xv$
12. $g \leftarrow g + Ph[m] - Mh[m]$
13. if $g \leq k$ then output j
On an integer alphabet, when $m \leq w$:

- Pattern preprocessing time is $O(m + \sigma)$.
- Search time is $O(n)$.

When $m > w$, we can store each bit vector in $\lceil m/w \rceil$ machine words:

- The worst case search time is $O(n \lceil m/w \rceil)$.
- Using Ukkonen’s cut-off heuristic, it is possible reduce the average case search time to $O(n \lceil k/w \rceil)$.

There are also algorithms based on bitparallel simulation of a nondeterministic automaton.

Example 3.22: $P = \text{pattern}$, $k = 3$

- The algorithm of Wu and Manber uses a bit vector for each row. It can be seen as an extension of Shift-And. The search time complexity is $O(kn\lceil m/w \rceil)$.

- The algorithm of Baeza-Yates and Navarro uses a bit vector for each diagonal, packed into one long bitvector. The search time complexity is $O(n\lceil km/w \rceil)$.
Baeza-Yates–Perleberg Filtering Algorithm

A filtering algorithm for approximate string matching searches the text for factors having some **property** that satisfies the following conditions:

1. Every approximate occurrence of the pattern has this property.
2. Strings having this property are reasonably rare.
3. Text factors having this property can be found quickly.

Each text factor with the property is a **potential occurrence**, which is then **verified** for whether it is an actual approximate occurrence.

Filtering algorithms can achieve linear or even sublinear **average case time complexity**.
The following lemma shows the property used by the Baeza-Yates–Perleberg algorithm and proves that it satisfies the first condition.

Lemma 3.23: Let $P_1 P_2 \ldots P_{k+1} = P$ be a partitioning of the pattern P into $k + 1$ nonempty factors. Any string S with $ed(P, S) \leq k$ contains P_i as a factor for some $i \in [1..k + 1]$.

Proof. Each single symbol edit operation can change at most one of the pattern factors P_i. Thus any set of at most k edit operations leaves at least one of the factors untouched. □
The algorithm has two phases:

Filtration: Search the text T for exact occurrences of the pattern factors P_i. Using the Aho–Corasick algorithm this takes $O(n)$ time for a constant alphabet.

Verification: An area of length $O(m)$ surrounding each potential occurrence found in the filtration phase is searched using the standard dynamic programming algorithm in $O(m^2)$ time.

The worst case time complexity is $O(m^2n)$, which can be reduced to $O(mn)$ by combining any overlapping areas to be searched.
Let us analyze the average case time complexity of the verification phase.

- The best pattern partitioning is as even as possible. Then each pattern factor has length at least \(r = \lfloor m/(k + 1) \rfloor \).

- The expected number of exact occurrences of a random string of length \(r \) in a random text of length \(n \) is at most \(n/\sigma^r \).

- The expected total verification time is at most

\[
\mathcal{O}\left(\frac{m^2(k + 1)n}{\sigma^r} \right) \leq \mathcal{O}\left(\frac{m^3n}{\sigma^r} \right).
\]

This is \(\mathcal{O}(n) \) if \(r \geq 3 \log_{\sigma} m \).

- The condition \(r \geq 3 \log_{\sigma} m \) is satisfied when \((k + 1) \leq m/(3 \log_{\sigma} m + 1) \).

Theorem 3.24: The average case time complexity of the Baeza-Yates–Perleberg algorithm is \(\mathcal{O}(n) \) when \(k \leq m/(3 \log_{\sigma} m + 1) - 1 \).
Many variations of the algorithm have been suggested:

- The filtration can be done with a different multiple exact string matching algorithm:
 - The first algorithm of this type by Wu and Manber used an extension of the Shift-And algorithm.
 - An extension of BDM achieves $O(nk(\log_\sigma m)/m)$ average case search time. This is sublinear for small enough k.
 - An extension of the Horspool algorithm is very fast in practice for small k and large σ.

- Using a technique called hierarchical verification, the average verification time for a single potential occurrence can be reduced to $O((m/k)^2)$.

A filtering algorithm by Chang and Marr has average case time complexity $O(n(k + \log_\sigma m)/m)$, which is optimal.