1. A string \(R \) is a repeat in a text \(T \) if \(R \) occurs at least twice in \(T \). A repeat \(R \) is a right-maximal if any extension of \(R \) to the right has fewer occurrences than \(R \), i.e., for all \(c \in \Sigma \), the number of occurrences of \(Rc \) in \(T \) is less than the number of occurrences of \(R \) in \(T \). Show that \(R \) is a right-maximal repeat in \(T \) if and only if the suffix tree of \(T \) has an internal node representing \(R \).

2. Write a pseudocode algorithm for finding all occurrences of a pattern \(P \) in a text \(T \) using the suffix tree of \(T \).

3. The relative Lempel-Ziv (RLZ) factorization of \(S \) with respect to \(T \) is the smallest partitioning \(S_1S_2\ldots S_z = S \) of \(S \) such that each factor \(S_i \) is a factor of \(T \) too. Describe a fast algorithm for computing the RLZ factorization.

4. Hamming distance is the edit distance with substitution as the only allowed edit operation. Let \(ed_H(A, B) \) denote the Hamming distance of two strings \(A \) and \(B \) of the same length.

 (a) Suppose we have preprocessed the strings \(A \) and \(B \) so that the longest common extension for any pair of suffixes can be computed in constant time. Show how the Hamming distance \(ed_H(A, B) \) can be computed in \(O(ed_H(A, B)) \) time.

 (b) Design an \(O(kn) \) worst case time algorithm for approximate string matching with Hamming distance.

5. What is the number of distinct factors in the string \(\text{abracadabra} \)?

6. Give a linear time algorithm for computing the matching statistics of \(S \) with respect to \(T \) from the generalized suffix array of \(S \) and \(T \) and the associated LCP array (without constructing the suffix tree).