1. **Simulating improved breakpoint reversal sort.**
 Perform the improved breakpoint reversal sort algorithm (page 28 at lecture slides) with $\pi = 3 \ 4 \ 6 \ 5 \ 8 \ 1 \ 7 \ 2$ and show all intermediate permutations. Is this the optimal solution to this instance of reversal sorting problem?

2. **Transforming circular genome.**
 Devise an approximation algorithm to sort a circular genome by reversals (i.e., transform it to the identity circular permutation). Evaluate the algorithm’s performance guarantee.

3. **Implementing improved breakpoint reversal sort.**
 Write a Python program that implements improved breakpoint reversal sort and analyse the running time of your implementation.

4. **Shortest approximate superstring.**
 Let $S = S_1, S_2, \ldots, S_n \subseteq \Sigma^*$ be a set of strings from alphabet Σ. Given a threshold parameter k, an approximate superstring of S is defined as a string T such that for each $S_i \in S$ it holds $d_H(S_i, T[j_i \cdots j_i + |S_i| - 1]) \leq k$ for some j_i, where $d_H(\cdot)$ denotes the Hamming distance.

 A greedy approximation algorithm for finding the shortest approximate superstring can be derived as follows. Let an approximate overlap of $A = \alpha \gamma, B = \gamma' \beta \in S$ be pair of strings (γ, γ') such that $d_H(\gamma, \gamma') \leq k$ and the length of the overlap $|\gamma| = |\gamma'|$ is maximum among all ways to to write A and B in parts $A = \alpha \gamma$ and $B = \gamma' \beta$. Iterate the following until there is only one string in set S: (1) Choose $A = \alpha \gamma, B = \gamma' \beta \in S$ with maximum approximate overlap; (2) remove A and B from S and insert $\alpha \gamma \beta$ into S.

 Simulate the above greedy algorithm with $k = 1$ on the set \{ACACGATC, ATGACAAA, TAATAAGA, CAGGATCA\}.

 Is the solution of your simulation a valid approximate superstring? Does the algorithm always find a valid approximate superstring? If not, give a modification so that it does.