
Algorithms for Bioinformatics (Autumn 2014)

Exercise 2 (Tue 16.9., 10-12, B222)

1. Simulating improved breakpoint reversal sort.

Perform the improved breakpoint reversal sort algorithm (page 28 at lecture slides) with
π = 3 4 6 5 8 1 7 2 and show all intermediate permutations. Is this the optimal solution
to this instance of reversal sorting problem?

2. Transforming circular genome.

Devise an approximation algorithm to sort a circular genome by reversals (i.e., transform
it to the identity circular permutation). Evaluate the algorithm’s performance guarantee.

3. Implementing improved breakpoint reversal sort.

Write a Python program that implements improved breakpoint reversal sort and analyse
the running time of your implementation.

4. Shortest approximate superstring.

Let S = S1, S2, . . . , Sn ⊆ Σ∗ be a set of strings from alphabet Σ. Given a threshold
parameter k, an approximate superstring of S is defined as a string T such that for each
Si ∈ S it holds dH(Si, T [ji · · · ji + |Si| − 1]) ≤ k for some ji, where dH() denotes the
Hamming distance.

A greedy approximation algorithm for finding the shortest approximate superstring can
be derived as follows. Let an approximate overlap of A = αγ,B = γ′β ∈ S be pair of
strings (γ, γ′) such that dH(γ, γ′) ≤ k and the length of the overlap |γ| = |γ′| is maximum
among all ways to to write A and B in parts A = αγ and B = γ′β. Iterate the following
until there is only one string in set S: (1) Choose A = αγ,B = γ′β ∈ S with maximum
approximate overlap; (2) remove A and B from S and insert αγβ into S.

Simulate the above greedy algorithm with k = 1 on the set
{ACACGATC,ATGACAAA,TAATAAGA,CAGGATCA}.
Is the solution of your simulation a valid approximate superstring? Does the algorithm
always find a valid approximate superstring? If not, give a modification so that it does.


