
582670 Algorithms for Bioinformatics

Lecture 3: Greedy Algorithms and Genomic Rearrangements

11.9.2014

Adapted from slides by Alexandru Tomescu,
Leena Salmela, Veli Mäkinen, Esa Pitkänen

Background

I We now have genomes of several species available

I It is possible to compare genomes of two or more different species
=⇒ Comparative genomics

I Basic observation:
I Closely related species (such as human and mouse) can be almost

identical in terms of genome contents...
I ... but the order of genomic segments can be very different between

species

2 / 51

Synteny blocks and segments

I Synteny – describes how genomic segments are located on the same
chromosome or close to each other

I Genes, markers (any sequence)

I Shared synteny between two species: genes are located close to each
other in both of the species

I Synteny block (or syntenic block)
I A set of genes or markers that co-occur together in two species

I Synteny segment (or syntenic segment)
I Syntenic block where the order of genes or markers is preserved

3 / 51

Synteny blocks and segments

Chromosome j, species C

Chromosome i, species B

Synteny segment

Synteny block

Homologs of the same gene

4 / 51

Chromosomes

I Linear chromosomes
I Eukaryotes (mostly)

I Circular chromosomes
I Prokaryotes (mostly)
I Mitochondria

I Chromosomes are double stranded:
genes can be found on both strands
(orientations)

gene 1

gene 2

gene 3 5 / 51

Example: Human vs mouse genome

I Human and mouse genomes share thousands of homologous genes
but they are

I Arranged in different order
I Located in different chromosomes

I Examples:
I Human chromosome 6 contains elements from six different mouse

chromosomes
I Analysis of X chromosome indicates that rearrangements have

happened primarily within chromosome

6 / 51

Jones & Pevzner, 2004

7 / 51

Representing genomic rearrangements

I When comparing genomes, we can find homologous sequences in both
using sequence comparison algorithms (next lecture).

I This gives us a map between sequences in both genomes.

8 / 51

Representing genomic rearrangements

I We assign numbers 1, . . . , n to the
found homologous sequences

I By convention, we number the
sequences in the first genome by
their order of appearance in the
chromosomes

I If the homolog of i is in reverse
orientation, it receives number −i
(signed data)

I For example consider human vs
mouse gene numbering on the right

I List order corresponds to physical
order on chromosomes!

Human Mouse
1 (gnat2) 12 (inpp1)
2 (nras) 13 (cd28)
3 (ngfb) 14 (fn1)
4 (gba) 15 (pax3)
5 (pklr) -9 (il10)
6 (at3) -8 (pdc)
7 (lamc1) -7 (lamc1)
8 (pdc) -6 (at3)
9 (il10) . . .

. . .

9 / 51

Permutations

I The basic data structure in the study of genome rearrangements is
permutation

I A permutation of a sequence of n numbers is a reordering of the
sequence

I For example, 4 1 3 2 5 is a permutation of 1 2 3 4 5

10 / 51

Genome rearrangement problem

I Given two genomes (set of markers), how many
I duplications,
I inversions and
I translocations

do we need to transform the first genome to the second?

Minimum number of operations?
What operations? Which order?

11 / 51

Genome rearrangement problem

5 1 2 3 4 1 2 3 4 5

duplications?
inversions?
translocations?

12 / 51

Genome rearrangement problem

π1π2π3π4π5

5 1 2 3 4 1 2 3 4 5

Permutation of 1,...,5

Keep in mind that the two genomes have been evolved from a common
ancestor genome!

13 / 51

Genome rearrangements using reversals (inversions) only

I Let’s consider a “simpler” problem where we just study reversals
with unsigned data

I A reversal p(i , j) reverses the order of the segment πiπi+1 . . . πj−1πj
(indexing starts from 1)

I For example, given permutation 5 1 2 3 4 and reversal ρ(2, 4) we get
permutation 5 3 2 1 4

Note that we do not care about the exact positions on the genome.

14 / 51

Sorting by Reversals problem

I Goal: Find the shortest series of reversals that tranforms a given
permutation to the identity permutation

I Input: Permutation π of the numbers 1, . . . , n

I Output: A series of reversals ρ1, . . . , ρt that transforms π into
(1, 2, . . . , n).

I Objective: Minimize t.

I The smallest possible value of t is called the reversal distance and is
denoted by d(π).

I Reversal distance for a pair of chromosomes:
I Find synteny blocks in both
I Number synteny blocks in the first chromosome to identity
I Set π to corresponding matching of second chromosome’s blocks

against the first

15 / 51

A simple reversal sort

I Our first approach to solve the sorting by reversals problem resembles
selection sort:

I Examine each position i of the permutation from left to right
I At each position, if πi 6= i , do a reversal such that πi = i

I This is a greedy approach: we try to choose the option that looks
“best” at the current step.

I It finds a solution that is valid but often not optimal.

16 / 51

Simple reversal sort: example

5 1 2 3 4 =⇒ 1 5 2 3 4 =⇒ 1 2 5 3 4 =⇒ 1 2 3 5 4 =⇒ 1 2 3 4 5

I Reversal series: ρ(1, 2), ρ(2, 3), ρ(3, 4), ρ(4, 5)

I Is d(5 1 2 3 4) then 4?

5 1 2 3 4 =⇒ 4 3 2 1 5 =⇒ 1 2 3 4 5

I d(5 1 2 3 4) = 2

17 / 51

Simple reversal sort: example

5 1 2 3 4 =⇒ 1 5 2 3 4 =⇒ 1 2 5 3 4 =⇒ 1 2 3 5 4 =⇒ 1 2 3 4 5

I Reversal series: ρ(1, 2), ρ(2, 3), ρ(3, 4), ρ(4, 5)

I Is d(5 1 2 3 4) then 4?

5 1 2 3 4 =⇒ 4 3 2 1 5 =⇒ 1 2 3 4 5

I d(5 1 2 3 4) = 2

17 / 51

How good is simple reversal sort?

I Not so good actually

I It has to do at most n − 1 reversals with permutation of length n
I In our previous example, the algorithm returned a solution that is as

large as (n − 1)/2 times the optimal result d(π) = 2
I For example, if we extend the example for n = 1001, the result can be

as bad as 500× d(π)

18 / 51

Approximation algorithms and approximation ratios

I Simple reversal sort is an approximation algorithm. It only produces
an approximate solution.

I A(π): approximate solution returned by algorithm A
I OPT (π): optimal solution

I The approximation ratio of (minimization) algorithm A is the
maximum approximation ratio over all inputs of size n:

max
|π|=n

A(π)

OPT (π)

I The approximation ratio for simple reversal sort is thus at least
(n − 1)/2

I The approximation ratio tells how much off the solution given by the
algorithm can in worst case be from the optimal solution

19 / 51

Approximation ratios for maximization problems

I Previous slide gave the approximation ratio for a minimization
problem like reversal distance.

I For a maximization problem (e.g. motif finding, maximizing score)
the approximation ratio of an algorithm is defined as the minimum
approximation ratio over all inputs of size n:

min
|π|=n

A(π)

OPT (π)

20 / 51

Computing reversals with breakpoints

I Let’s investigate a better way to sort by reversals
I First some concepts related to permutation π1π2 . . . πn−1πn

I Breakpoint: two elements πi and πi+1 are a breakpoint if they are not
consecutive numbers

I Adjacency: if πi and πi+1 are consecutive they are an adjacency

21 / 51

Breakpoints and adjacencies

The permutation 54312678 contains

I three breakpoints: begin-5, 31, 26

I six adjacencies: 54, 43, 12, 67, 78, 8-end

543 12 6780 9

Breakpoints

22 / 51

Breakpoints

I Each breakpoint in permutation needs to be removed to get to the
identity permutation (= our target)

I Identity permutation does not contain any breakpoints

I First and last positions special cases

I Note that each reversal can remove at most two breakpoints

I Denote the number of breakpoints by b(π)

543 12 678 b(π) = 3

23 / 51

Breakpoint reversal sort

I Idea: Try to remove as many breakpoints as possible (max 2) in every
step

1: while b(π) > 0 do
2: Choose reversal ρ that removes most breakpoints
3: Perform reversal ρ to π
4: Output π
5: return

24 / 51

Breakpoint removal: example

8 2 7 6 5 1 4 3 b(π) = 6

2 8 7 6 5 1 4 3 b(π) = 5

2 3 4 1 5 6 7 8 b(π) = 3

4 3 2 1 5 6 7 8 b(π) = 2

1 2 3 4 5 6 7 8 b(π) = 0

25 / 51

Breakpoint removal

I The previous algorithm needs refinement to be correct

I Consider the following permutation

1 5 6 7 2 3 4 8

I There is no reversal that decreases the number of breakpoints!

26 / 51

Breakpoint removal

I Reversal can always decrease breakpoint count if permutation
contains decreasing strips

I Strip: maximal segment without breakpoints

1 5 6 7 2 3 4 8

1 5 6 7 4 3 2 8

1 2 3 4 7 6 5 8

Increasing strip

Decreasing strip
(including segments of
length 1, except 1 and
n if they are located at
their correct locations)

27 / 51

Improved breakpoint reversal sort

1: while b(π) > 0 do
2: if π has a decreasing strip then
3: Apply reversal ρ such that it removes most BPs
4: else
5: Reverse an increasing strip
6: Output π

28 / 51

Is improved BP removal enough?

I The algorithm works pretty well:
I A reversal removes at most two breakpoints

=⇒ Optimal solution cannot be better than b(π)/2
I Improved BP removal performs at most 2 · b(π) reversals

=⇒ The result is at most four times worse than the optimal
=⇒ The approximation ratio of improved BP removal is at most 4.

I Is this good?

I We considered only reversals

I What about translocations?

29 / 51

Translocations via reversals

1 2 3 4 5 6 7 8

Translocation of 2,3,4

1 5 6 7 8 2 3 4
ρ(2, 8)

1 4 3 2 8 7 6 5
ρ(2, 4)

1 2 3 4 8 7 6 5
ρ(5, 8)

1 2 3 4 5 6 7 8

30 / 51

Genome rearrangements with reversals

I With unsigned data, the problem of sorting by reversal is NP-complete

I An algorithm has been developed that achieves 1.375-approximation
(Berman et al. ESA 2002)

I However, the reversal distance in signed data can be computed
quickly!

I It takes linear time w.r.t. the length of the permutation (Bader, Moret,
Yan 2001)

I We will not cover that algorithm here but give some insight into
central concepts leading to it

31 / 51

Cycle decomposition

I Let’s represent permutation π = 1 2 4 5 3 with the following graph

0 1 2 4 5 3 6
where edges correspond to adjacencies (identity, permutation π)

32 / 51

Cycle decomposition

I Cycle decomposition: a set of cycles that
I have edges with alternating colors
I do not share edges with other cycles (=cycles are edge disjoint)
I every edge belongs to some cycle

0 1 2 4 5 3 6

1 2 4 5

33 / 51

Estimating reversal distance by cycle decomposition

I Let c(π) be the maximum number of cycles in a cycle decomposition
of π

I The following formula allows estimation of d(π)
I d(π) ≥ n + 1− c(π), where n is the permutation length

0 1 2 4 5 3 6

1 2 4 5 d(π) ≥ 5 + 1− 4 = 2

34 / 51

Cycle decompositions

I Cycle decomposition is NP-complete for unsigned permutations

I However, with signed data cycle decomposition becomes a trivial task
(the cycles are vertex disjoint)

35 / 51

Cycle decomposition with signed data

I Consider the following permutation that includes orientation of the
markers

I +1 -5 -3 -2 +4

I We modify this representation to include both endpoints of each
marker:

I 0 1a 1b 5b 5a 3b 3a 2b 2a 4a 4b 6

36 / 51

Graph representation of π and identity permutation

0 1a 1b 5b 5a 3b 3a 2b 2a 4a 4b 6

d(π) ≥ n + 1− c(π) = 5 + 1− 3 = 3

37 / 51

Reversal step 1 (ad hoc greedy algorithm)

0 1a 1b 5b 5a 3b 3a 2b 2a 4a 4b 6
+1 -5 -3 -2 +4

Step 1

0 1a 1b 2a 2b 3a 3b 5a 5b 4a 4b 6
+1 +2 +3 +5 +4

38 / 51

Reversal steps 2,3,4

0 1a 1b 2a 2b 3a 3b 5a 5b 4a 4b 6
+1 +2 +3 +5 +4

Step 2

0 1a 1b 2a 2b 3a 3b 4b 4a 5b 5a 6
+1 +2 +3 -4 -5

Step 3,4

0 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6
+1 +2 +3 +4 +5

3 ≤ d(π) ≤ 4 39 / 51

Reversal distance with signed data

However, the exact reversal distance in signed data can be computed
quickly!

I It takes linear time w.r.t. the length of permutation (Bader, Moret,
Yan 2001)

I The algorithm is quite involved

40 / 51

Multiple chromosomes

I In unichromosomal genomes, inversion (reversal) is the most common
operation

I In multichromosomal genomes, inversions, translocations, fissions and
fusions are most common

41 / 51

Fusions and fissions

I Fusion: merging of two chromosomes

I Fission: chromosome is split into two chromosomes

I Both events can be represented with a translocation

42 / 51

Fusion

Fusion

43 / 51

Fission

Fission

44 / 51

Algorithms for general genomic distance problem

I Hannenhalli, Pevzner: Transforming Men into Mice (polynomial
algorithm for genomic distance problem), 36th Annual IEEE
Symposium on Foundations of Computer Science, 1995.

45 / 51

Human and mouse revisited

I Human and mouse are separated by about 75-83 million years of
evolutionary history

I Only a few hundred rearrangements have happened after speciation
from the common ancestor

I Pevzner and Tesler identified in 2003 for 281 synteny blocks a
rearrangement from mouse to human with

I 149 inversions
I 93 translocations
I 9 fissions

46 / 51

Discussion

I Genome rearrangement events are very rare compared to e.g. point
mutations

I We can study rearrangements events further back in the evolutionary
history

I Rearrangements are easier to detect in comparison to many other
genomic events

I We cannot detect homologs 100% correctly so the input permutation
can contain errors

47 / 51

Outline

Biological background

Permutations and genomic rearrangements

Sorting by reversals

Simple reversal sort

Breakpoints

Cycle decomposition

Multiple chromosomes

Study group assignments

48 / 51

Study Group 1: (random allocation at lecture)

I Read pages 230-232 from Sung: Algorithms in Bioinformatics: A
Practical Introduction, CRC Press 2010

I 2-approximation for sorting an unsigned permutation
I Copies distributed at the lecture.

I In the study group
I Go through the reasoning in the proof of Lemma 9.2.
I Simulate the 2-approximation algorithm on the permutation

1 6 5 7 8 4 2 3 9

How many reversals does the 2-approximation algorithm need? Is this
optimal?

49 / 51

Study Group 2: (if you did not get material at the lecture)

I Read pages 136 and 137 from Jones & Pevzner
I Greedy approach to motif finding

I At study group, solve Problem 5.18
I Desing an input for the GreedyMotifSearch algorithm that causes the

algorithm to output an incorrect result

50 / 51

Study Group 3: (random allocation at lecture)

I Read pages 15, 16, 19-22 (sect. 2.3) from Vazirani: Approximation
algorithms, Springer 2001

I Shortest superstring and its greedy approximation through set cover
I Copies distributed at the lecture.

I At the study group:
I present the reduction to set cover with some example
I go through the proof of Lemma 2.11

51 / 51

	Biological background
	Permutations and genomic rearrangements
	Sorting by reversals
	Simple reversal sort
	Breakpoints
	Cycle decomposition
	Multiple chromosomes
	Study group assignments

