582670 Algorithms for Bioinformatics

Lecture 3: Greedy Algorithms and Genomic Rearrangements

11.9.2014

Adapted from slides by Alexandru Tomescu,
Leena Salmela, Veli Makinen, Esa Pitkanen

Background

» We now have genomes of several species available

> It is possible to compare genomes of two or more different species
—> Comparative genomics
» Basic observation:

» Closely related species (such as human and mouse) can be almost
identical in terms of genome contents...

> ... but the order of genomic segments can be very different between
species

)

51

Synteny blocks and segments

» Synteny — describes how genomic segments are located on the same
chromosome or close to each other

» Genes, markers (any sequence)
» Shared synteny between two species: genes are located close to each
other in both of the species
» Synteny block (or syntenic block)
> A set of genes or markers that co-occur together in two species
» Synteny segment (or syntenic segment)
» Syntenic block where the order of genes or markers is preserved

51

Synteny blocks and segments

Chromosome i, species B

N I I N N S B I S S S B S S S S B S B B S S .,
i g

| |

| I |

| |
1 Synteny segment

| |

Chromosome j, species C

Homologs of the same gene

/51

Chromosomes

0,2-20um

» Linear chromosomes
» Eukaryotes (mostly)
» Circular chromosomes
> Prokaryotes (mostly) i
» Mitochondria
» Chromosomes are double stranded:
genes can be found on both strands

(orientations)
gene 1

gene 3

51

Example: Human vs mouse genome

» Human and mouse genomes share thousands of homologous genes
but they are
> Arranged in different order
» Located in different chromosomes
» Examples:
» Human chromosome 6 contains elements from six different mouse

chromosomes
» Analysis of X chromosome indicates that rearrangements have
happened primarily within chromosome

6

51

Fig. 5.1. Syntenic blocks conserved between human chromosome Hsa6 and mouse chromosomes. Broken lines indicate regions that
appear in inverted orders in the two organisms. Reprinted, with permission, from Gregory SG et al. (2002) Nature 418:743-750.
Copyright 2002 Nature Publishing Group.

Jones & Pevzner, 2004

7/51

Representing genomic rearrangements

» When comparing genomes, we can find homologous sequences in both
using sequence comparison algorithms (next lecture).

» This gives us a map between sequences in both genomes.

[BRI W

Fig. 5.1. Syntenic blocks conserved between human chromosome Hsa6 and mouse chromosomes. Broken lines indicate regions that
appear in inverted orders in the two organisms. Reprinted, with permission, from Gregory SG et al. (2002) Nature 418:743-750.
Copyright 2002 Nature Publishing Group.

Representing genomic rearrangements

» We assign numbers 1,...,n to the

found homologous sequences Il-luman 5 ?gousg 1
t

» By convention, we number the 5 Eﬁ::s)) 13 g::r;;;%))
seq}Jences in the first gengme by 3 (ngfb) 14 (fnl)
their order of appearance in the 4 (gba) 15 (pax3)
chromosomes 5 (pkir) 9 (il10)

> If the homolog of i is in reverse 6 (at3) -8 (pdc)
ori.entation, it receives number —i 7 (lamcl) -7 (lamcl)
(signed data) 8 (pdc) -6 (at3)

» For example consider human vs 9 (il10)

mouse gene numbering on the right

» List order corresponds to physical
order on chromosomes!

51

Permutations

» The basic data structure in the study of genome rearrangements is
permutation

» A permutation of a sequence of n numbers is a reordering of the
sequence

» For example, 4 1 325 is a permutation of 12345

10/51

Genome rearrangement problem

» Given two genomes (set of markers), how many
» duplications,
> inversions and
» translocations

do we need to transform the first genome to the second?

Minimum number of operations?
What operations? Which order?

11/51

Genome rearrangement problem

duplications?
inversions?
translocations?

51234 12345

— S N .

T

— ([S S .

12 /51

Genome rearrangement problem

T1ToT3T4Ts «——— Permutation of 1,...,5

5123 4-------------- »12345

Keep in mind that the two genomes have been evolved from a common
ancestor genome!

13/51

Genome rearrangements using reversals (inversions) only

> Let's consider a “simpler” problem where we just study reversals
with unsigned data

> A reversal p(i,j) reverses the order of the segment ;7 1 ... 7j_17;
(indexing starts from 1)

» For example, given permutation 5 1 2 3 4 and reversal p(2,4) we get
permutation 5321 4

— I T .
— I T N
Note that we do not care about the exact positions on the genome.

14 /51

Sorting by Reversals problem

» Goal: Find the shortest series of reversals that tranforms a given
permutation to the identity permutation

» Input: Permutation 7 of the numbers 1,...,n
» Output: A series of reversals p1, ..., ps that transforms 7 into
(1,2,...,n).

» Objective: Minimize t.
» The smallest possible value of t is called the reversal distance and is
denoted by d().

» Reversal distance for a pair of chromosomes:
» Find synteny blocks in both
» Number synteny blocks in the first chromosome to identity
» Set 7 to corresponding matching of second chromosome’s blocks
against the first

15/51

A simple reversal sort

» Our first approach to solve the sorting by reversals problem resembles
selection sort:
» Examine each position i of the permutation from left to right
» At each position, if 7; # i, do a reversal such that 7; =/

» This is a greedy approach: we try to choose the option that looks
“best” at the current step.

» It finds a solution that is valid but often not optimal.

16 /51

Simple reversal sort: example

51234 = 15234 — 12534 —= 12354 = 12345

» Reversal series: p(1,2), p(2,3), p(3,4), p(4,5)
> Is d(5 12 3 4) then 47

17 /51

Simple reversal sort: example
51234 = 15234 — 12534 —= 12354 = 12345
» Reversal series: p(1,2), p(2,3), p(3,4), p(4,5)

> Is d(5 12 3 4) then 47

51234 — 43215 = 12345

> d(51234)=2

17 /51

How good is simple reversal sort?

» Not so good actually

» It has to do at most n — 1 reversals with permutation of length n

> In our previous example, the algorithm returned a solution that is as
large as (n — 1)/2 times the optimal result d(7) = 2

» For example, if we extend the example for n = 1001, the result can be
as bad as 500 x d(w)

18 /51

Approximation algorithms and approximation ratios

» Simple reversal sort is an approximation algorithm. It only produces
an approximate solution.

» A(m): approximate solution returned by algorithm A
» OPT(m): optimal solution

» The approximation ratio of (minimization) algorithm A is the
maximum approximation ratio over all inputs of size n:

max 7“4(71-)

||=n OPT(W)

» The approximation ratio for simple reversal sort is thus at least
(n—1)/2

» The approximation ratio tells how much off the solution given by the
algorithm can in worst case be from the optimal solution

19/51

Approximation ratios for maximization problems

» Previous slide gave the approximation ratio for a minimization
problem like reversal distance.

» For a maximization problem (e.g. motif finding, maximizing score)
the approximation ratio of an algorithm is defined as the minimum
approximation ratio over all inputs of size n:

A(r)

min ————

|x|=n OPT (7)

20 /51

Computing reversals with breakpoints

» Let's investigate a better way to sort by reversals
» First some concepts related to permutation w17 ... T, 17,

» Breakpoint: two elements 7; and 741 are a breakpoint if they are not
consecutive numbers
» Adjacency: if m; and m;;1 are consecutive they are an adjacency

21/51

Breakpoints and adjacencies

The permutation 54312678 contains
> three breakpoints: begin-5, 31, 26
> six adjacencies: 54, 43, 12, 67, 78, 8-end

0

543

6789

\

Breakpoints

22 /51

Breakpoints

v

Each breakpoint in permutation needs to be removed to get to the
identity permutation (= our target)
> Identity permutation does not contain any breakpoints

v

First and last positions special cases

v

Note that each reversal can remove at most two breakpoints

v

Denote the number of breakpoints by b(7)

1543]|12|678| b(r)=3

23 /51

Breakpoint reversal sort

» Idea: Try to remove as many breakpoints as possible (max 2) in every
step

1. while b(7) > 0 do

2: Choose reversal p that removes most breakpoints
3: Perform reversal p to

4: Qutput 7

5: return

24 /51

Breakpoint removal: example

123456738

25 /51

Breakpoint removal

» The previous algorithm needs refinement to be correct

» Consider the following permutation
15672348

» There is no reversal that decreases the number of breakpoints!

26 /51

Breakpoint removal

> Reversal can always decrease breakpoint count if permutation

contains decreasing strips

» Strip: maximal segment without breakpoints

156723438
— —

15674328

123476538
A

—— Increasing strip

«—— Decreasing strip
(including segments of
length 1, except 1 and
n if they are located at
their correct locations)

Improved breakpoint reversal sort

1: while b(7) > 0 do
2: if 7 has a decreasing strip then

3 Apply reversal p such that it removes most BPs
4. else

5 Reverse an increasing strip

6 Output 7

28 /51

Is improved BP removal enough?

> The algorithm works pretty well:
> A reversal removes at most two breakpoints
= Optimal solution cannot be better than b(r)/2
» Improved BP removal performs at most 2 - b() reversals
= The result is at most four times worse than the optimal
— The approximation ratio of improved BP removal is at most 4.
> Is this good?

» We considered only reversals

» What about translocations?

29 /51

Translocations via reversals

N

123456738

J

15678234

123456738

Translocation of 2,3,4

p(2,8)
p(2,4)

p(5,8)

30/51

Genome rearrangements with reversals

» With unsigned data, the problem of sorting by reversal is NP-complete

» An algorithm has been developed that achieves 1.375-approximation
(Berman et al. ESA 2002)
» However, the reversal distance in signed data can be computed
quickly!
> It takes linear time w.r.t. the length of the permutation (Bader, Moret,

Yan 2001)
» We will not cover that algorithm here but give some insight into

central concepts leading to it

31/51

Cycle decomposition

> Let's represent permutation 7 =1 2 4 5 3 with the following graph

/\f\/,;zsﬁ‘\

O==1==2==4==5=—3=—6

where edges correspond to adjacencies (identity, permutation)

32/51

Cycle decomposition

» Cycle decomposition: a set of cycles that

> have edges with alternating colors
» do not share edges with other cycles (=cycles are edge disjoint)
> every edge belongs to some cycle

/\ﬁ\

Q=1 2==4 b5==3=—=06

l==2 4=—=5

33/51

Estimating reversal distance by cycle decomposition

» Let c(7) be the maximum number of cycles in a cycle decomposition
of m
» The following formula allows estimation of d()
» d(m) > n+1— c(r), where n is the permutation length

/\ﬁ\

Q==1 2==4 bH==3==0

1l==2 4==5 dir) >5+1-4=2

34/51

Cycle decompositions

» Cycle decomposition is NP-complete for unsigned permutations

» However, with signed data cycle decomposition becomes a trivial task
(the cycles are vertex disjoint)

35/51

Cycle decomposition with signed data

» Consider the following permutation that includes orientation of the
markers
> +1-5-3-2 +4
» We modify this representation to include both endpoints of each
marker:
» 0 lalbbbba3b3a2b2a4adb6

36

51

Graph representation of 7 and identity permutation

-\ N
O=1a 1b=5b b5a=3b 3a=2b 2a=4a 4b=6

dir)>n+1—¢c(nr)=5+1-3=3

37/51

Reversal step 1 (ad hoc greedy algorithm)

o TN

O=1a 1b=5b b5a=3b 3a=2b 2a—4a 4b = 6
+1 -5 -3 - +4

erl
/\f\f\/;;::\

O=1a 1b=2a 2b=3a 3b=5a 5bb=4a 4b=6
+1 +2 +3 +5 +4

38 /51

Reversal steps 2,3,4

/\f\f\/;;::\

O=1a 1b=2a 2b=3a 3b=5a b5b=4a 4b=6
+1 +2 +3 +5 +4

O=1a 1b=2a 2b=3a 3b=4b 4a=5b b5ba=6
+1 +2 +3 -4 -5
Vip 3,4

N VN VN VN VN -\
O=1a 1b=2a 2b=3a 3b=4a 4b=5a b5b=6

+1 +2 +3 +4 +5
3<d(m) <4

39/51

Reversal distance with signed data

However, the exact reversal distance in signed data can be computed
quickly!
» It takes linear time w.r.t. the length of permutation (Bader, Moret,
Yan 2001)

» The algorithm is quite involved

40 /51

Multiple chromosomes

» In unichromosomal genomes, inversion (reversal) is the most common
operation

» In multichromosomal genomes, inversions, translocations, fissions and
fusions are most common

41 /51

Fusions and fissions

» Fusion: merging of two chromosomes
» Fission: chromosome is split into two chromosomes

» Both events can be represented with a translocation

42 /51

Fusion

e L
O . .

1 Fusion

—- I N N

43 /51

Fission

T .

Fission

44 /51

Algorithms for general genomic distance problem

» Hannenhalli, Pevzner: Transforming Men into Mice (polynomial
algorithm for genomic distance problem), 36th Annual IEEE
Symposium on Foundations of Computer Science, 1995.

45 /51

Human and mouse revisited

» Human and mouse are separated by about 75-83 million years of
evolutionary history

» Only a few hundred rearrangements have happened after speciation
from the common ancestor

» Pevzner and Tesler identified in 2003 for 281 synteny blocks a
rearrangement from mouse to human with

» 149 inversions
» 93 translocations
» 9 fissions

46 /51

Discussion

» Genome rearrangement events are very rare compared to e.g. point
mutations
» We can study rearrangements events further back in the evolutionary
history
> Rearrangements are easier to detect in comparison to many other
genomic events
» We cannot detect homologs 100% correctly so the input permutation
can contain errors

47 /51

Outline

Study group assignments

48 /51

Study Group 1: (random allocation at lecture)

» Read pages 230-232 from Sung: Algorithms in Bioinformatics: A
Practical Introduction, CRC Press 2010

» 2-approximation for sorting an unsigned permutation
» Copies distributed at the lecture.

> In the study group

» Go through the reasoning in the proof of Lemma 9.2.
» Simulate the 2-approximation algorithm on the permutation

165784239

How many reversals does the 2-approximation algorithm need? Is this
optimal?

49 /51

Study Group 2: (if you did not get material at the lecture)

» Read pages 136 and 137 from Jones & Pevzner
» Greedy approach to motif finding
» At study group, solve Problem 5.18

» Desing an input for the GreedyMotifSearch algorithm that causes the
algorithm to output an incorrect result

50 /51

Study Group 3: (random allocation at lecture)

» Read pages 15, 16, 19-22 (sect. 2.3) from Vazirani: Approximation
algorithms, Springer 2001

> Shortest superstring and its greedy approximation through set cover
» Copies distributed at the lecture.

» At the study group:

> present the reduction to set cover with some example
» go through the proof of Lemma 2.11

51/51

	Biological background
	Permutations and genomic rearrangements
	Sorting by reversals
	Simple reversal sort
	Breakpoints
	Cycle decomposition
	Multiple chromosomes
	Study group assignments

