582670 Algorithms for Bioinformatics

Lecture 6: Distance based clustering and phylogeny

02.10.2014

Adapted from slides by Alexandru Tomescu, Leena Salmena and Veli Mäkinen, which are partly from http://bix.ucsd.edu/bioalgorithms/slides.php

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

Phylogenetic tree: Bears

Phylogeny by distance method pipeline

Clustering

- Clustering can be loosely stated as the problem of grouping objects into sets called clusters, where the members of the cluster are similar in some sense.
- Hierarchical clustering:
 - Iteratively join two closest clusters forming a tree hierarchy (agglomerative... also divisive version exists)
 - Distance between clusters can be e.g. max pair-wise distance (complete linkage), min (single linkage), UPGMA (average linkage), neighbor joining
- Partitional clustering:
 - k-means

Distances in a phylogenetic tree

- Distance matrix D = (d_{ij}) gives pairwise distances for *leaves* of the phylogenetic tree
- In addition, the phylogenetic tree will now specify distances between internal nodes
 - Internal nodes represent commmon ancestor species
 - Denote these with d_{ij} as well

Distance d_{ij} states how far apart species i and j are evolutionary.

Distances in evolutionary context

► Distance *d_{ij}* in evolutionary context satisfy the following conditions:

- Positivity: $d_{ij} \ge 0$
- Identity: $d_{ij} = 0$ if and only if i = j
- Symmetry: $d_{ij} = d_{ji}$ for each i, j
- Triangle inequality: $d_{ij} \leq d_{ik} + d_{kj}$ for each i, j, k
- Distance satisfying these conditions is called *metric*
- In addition, evolutionary mechanisms may impose additional constraints on the distances
 - additive and ultrametric distances

Additive trees

- ► Suppose that every edge in a tree is labeled with a distance *d_{ij}*
- A tree is called *additive* if for every pair of leaves the distance between the leaves is the sum of the edge distances on the path between the leaves.
- Example:

Ultrametric trees

A rooted additive tree is called an *ultrametric tree* if the distances between any two leaves *i* and *j* and their common ancestor *k* are equal

$$d_{ik} = d_{jk}$$

- d_{ij}/2 corresponds to the time elapsed since divergence of i and j from the common parent
- In other words, edge lengths are measured by a molecular clock with a constant rate

Ultrametric trees

- Only vertical segments of the tree have correspondence to some distance d_{ii}
- Horizontal segments act as connectors
- d_{ik} = d_{jk} for any two leaves
 i, j and any ancestor k of i
 and j

Identifying ultrametric data

- Without knowing the underlying tree structure, we can identify distances to be ultrametric by the three-point condition:
 - ▶ D corresponds to an ultrametric tree if and only if for any three (current) species we can label them *i*, *j*, and *k* such that the distances satisfy:

$$d_{ik} = d_{jk} \ge d_{ij}$$

If we find out that the data is ultrametric, we can utilise a simple algorithm to find the corresponding tree

UPGMA algorithm

- UPGMA (unweighted pair group method with arithmetic mean) constructs a phylogenetic tree via clustering
- The algorithm works by at the same time
 - Merging two clusters
 - Creating a new node on the tree
- The tree is built from leaves towards the root
- UPGMA produces a ultrametric tree

• Let distance d_{ij} between clusters C_i and C_j be

$$d_{ij} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_j} d_{pq},$$

that is, the average distance between points (species) in the cluster.

UPGMA algorithm

- Initialisation
 - Assign each point *i* to its own cluster C_i
 - Define one leaf for each point and place it at height zero
- Iteration
 - Find clusters *i* and *j* for which *d_{ij}* is minimal
 - Define new cluster k by $C_k = C_i \cup C_j$ and compute $d_{k\ell}$ for all ℓ
 - Add a node k with children i and j to the tree. Place k at height $d_{ij}/2$
 - Remove clusters i and j
- Termination
 - When only two clusters *i* and *j* remain, place root at height $d_{ij}/2$

3
 4
 5

1 2 4 5 3

UPGMA implementation

- ▶ In naive implementation, each iteration takes $O(n^2)$ time with n initial points \implies algorithm takes $O(n^3)$ time
- The algorithm can be implemented to take only O(n²) time (see Gronau & Moran, 2006, for a survey)

Problem solved?

- We now have a simple algorithm which finds an ultrametric tree
 - If the data is ultrametric, then there is exactly one ultrametric tree corresponding to the data
 - The tree found is then the "correct" solution to the phylogeny problem if the assumptions hold
- Unfortunately, the data is not ultrametric in practice
 - Measurement errors distort distances
 - Basic assumption of a molecular clock does not hold usually very well

Incorrect reconstruction of non-ultrametric data by UPGMA

Tree which corresponds to non-ultrametric distances

Incorrect ultrametric reconstruction by UPGMA algorithm

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

Checking for additivity

- Recall: a tree is additive if for every pair of leaves the distance between the leaves is the sum of the edge distances on the path between the leaves.
- How can we check that the data is additive?
- Let *i*, *j*, *k*, and ℓ be four **distinct** species
- Compute three sums
 - $d_{ij} + d_{k\ell}$
 - $d_{ik} + d_{j\ell}$
 - $d_{i\ell} + d_{jk}$

Four-point condition

- Sums represented by the middle and right figures cover all edges
- Sum represented by the left figure does not cover all edges
- Four-point condition: i, j, k, and ℓ satisfy the four-point condition if two of the sums d_{ij} + d_{kℓ}, d_{ik} + d_{jℓ}, and d_{iℓ} + d_{jk} are equal and the third one is smaller than these two.
- An n × n matrix D is additive if and only if the four-point condition holds for every 4 elements 1 ≤ i, j, k, ℓ ≤ n.

Checking for additivity: Example

- $d_{AB} + d_{CD} = 6 + 6 = 12$
- $d_{AC} + d_{BD} = 7 + 9 = 16$
- $d_{AD} + d_{BC} = 5 + 11 = 16$

- Two of the sums are equal and the third is smaller
 - \implies Four-point condition holds
 - \implies Matrix is additive

Finding an additive phylogenetic tree

- Additive trees can be found for example by the neighbor joining method (Saitou & Nei, 1987)
- > However, in real data, even additivity usually does not hold very well

Neighbor joining algorithm

Neighbor joining works in a similar fashion to UPGMA

- Find clusters C_1 and C_2 that minimize a function $f(C_1, C_2)$
- Join the two clusters C_1 and C_2 into a new cluster C
- Add a node to the tree corresponding to C
- Assign distances to new branches
- Differences in
 - The choice of function $f(C_1, C_2)$
 - How to assign the distances

Neighbor joining algorithm: Separation of a cluster

• Let $u(C_i)$ be the *separation* of cluster C_i from other clusters defined as

$$u(C_i) = \frac{1}{n-2}\sum_{C_i}d_{ij}$$

where n is the number of clusters.

Neighbor joining algorithm

- Neighbor joining at the same time
 - ▶ Minimizes the distance between clusters C_i and C_j to be joined
 - ▶ Maximizes the separation of both C_i and C_j from other clusters
- Recall that UPGMA only minimizes the distance between the clusters C_i and C_j

Neighbor joining algorithm

- Initialization as in UPGMA
- Iteration
 - Find clusters C_i and C_j for which $d_{ij} u(C_i) u(C_j)$ is minimum
 - Define a new cluster $C_k = C_i \cup C_j$ and compute $d_{k\ell}$ for all ℓ :

$$d_{k\ell}=rac{1}{2}(d_{i\ell}+d_{j\ell}-d_{ij})$$

- Remove clusters C_i and C_j
- Define a node k with edges to i and j
- ▶ Assign length $\frac{1}{2}(d_{ij} + u(C_i) u(C_j))$ to the edge $i \to k$
- Assign length $\frac{1}{2}(d_{ij} + u(C_j) u(C_i))$ to the edge $j \to k$
- Termination
 - When two clusters i and j remain, add an edge between them with weight d_{ij}.

Neighbor joining algorithm: Example

$$\begin{array}{c|c} i & u(C_i) \\ \hline A & (6+7+5)/2 = 9 \\ B & (6+11+9)/2 = 13 \\ C & (7+11+6)/2 = 12 \\ D & (5+9+6)/2 = 10 \end{array}$$

$$i,j$$
 $d_{ij}-u(C_i)-u(C_j)$ A,B $6-9$ -13 $=$ A,C $7-9$ -12 $=$ A,D $5-9$ -10 $=$ B,C $11-13$ 12 $=$ B,D $9-13$ -10 $=$ C,D $6-12$ -10 $=$

Choose either one of the red pairs to join

Neighbor joining algorithm: Example

	А	В	С	D		i	$u(C_i)$
A	0	6	7	5	_	A	(6+7+5)/2=9
В		0	11	9		В	(6+11+9)/2 = 13
C			0	6		С	(7+11+6)/2 = 12
D				0		D	(5+9+6)/2 = 10
<u>i,j</u> A,B	3	<i>d_{ij}—</i> 6 —	<u>u(Ci</u>) 9)	$\frac{u(C_j)}{13 = -16}$		A 5
A,C	:	7 –	9	_	12 = -14		BCD
A,C		5 —	9	_	10 = -14		2 0 2
B,C B.D)	11- 9 -	13 13	_	$\begin{array}{rrr} 12 & = -14 \\ 10 & = -14 \end{array}$	d _{AE}	$=\frac{1}{2}(6+9-13)=1$

This is only the first step!

Neighbor joining algorithm

- ► **Theorem:** If *D* is an additive matrix, neighbor joining algorithm correctly constructs the corresponding additive tree.
- ► A straightforward implementation runs in O(n³) time but there are heuristics with roughly O(n²) time complexity.

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

Study Group 1: Random allocation at lecture (Ask lecturer for your group if you were not present)

- Read pages 368–373 from Jones and Pevzner.
 - Small parsimony problem
 - Dynamic programming for small parsimony
 - Large parsimony problem
- At study group summarize the problems and simulate the algorithm with some example.

Study Group 2: Random allocation at lecture (Ask lecturer for your group if you were not present)

- Read pages 184–187 from Sung: Algorithms in Bioinformatics, CRC Press, 2010 (Especially Lemma 7.13).
 - Correctness of UPGMA algorithm

> At study group, summarize the proof for the correctness of UPGMA.

Study Group 3: Random allocation at lecture (Ask lecturer for your group if you were not present)

- Read pages 190–191 from Durbin et al.: Biological Sequence Analysis, Cambridge University Press, 1998.
 - Correctness of neighbor joining.
 - Note that their notation of D_{ij} equals our $d_{ij} u(C_i) u(C_j)$.
- At study group, summarize the proof for correctness of neighbor joining.