
582670 Algorithms for Bioinformatics

Lecture 6: Distance based clustering and phylogeny

02.10.2014

Adapted from slides by Alexandru Tomescu, Leena Salmena and Veli Mäkinen,
which are partly from http://bix.ucsd.edu/bioalgorithms/slides.php

http://bix.ucsd.edu/bioalgorithms/slides.php

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

2 / 37

Phylogenetic tree: Bears

3 / 37

Phylogeny by distance method pipeline

For all pairs of
species, find
the homolo-
gous genes

Compute the
rearrangement
distance for all
pairs of species

Build the phy-
logenetic tree
from the dis-
tances

genome se-
quences of
the species

permutations
representing
the homologs

D(A,B) for all
species A and B

4 / 37

Clustering

I Clustering can be loosely stated as the problem of grouping objects
into sets called clusters, where the members of the cluster are similar
in some sense.

I Hierarchical clustering:
I Iteratively join two closest clusters

forming a tree hierarchy
(agglomerative... also divisive
version exists)

I Distance between clusters can be
e.g. max pair-wise distance
(complete linkage), min (single
linkage), UPGMA (average
linkage), neighbor joining

I Partitional clustering:
I k-means

5 / 37

Distances in a phylogenetic tree

I Distance matrix D = (dij) gives
pairwise distances for leaves of the
phylogenetic tree

I In addition, the phylogenetic tree
will now specify distances between
internal nodes

I Internal nodes represent
commmon ancestor species

I Denote these with dij as well

1 2 3 4 5

6
7

8

Distance dij states how far
apart species i and j are
evolutionary.

6 / 37

Distances in evolutionary context

I Distance dij in evolutionary context satisfy the following conditions:
I Positivity: dij ≥ 0
I Identity: dij = 0 if and only if i = j
I Symmetry: dij = dji for each i , j
I Triangle inequality: dij ≤ dik + dkj for each i , j , k

I Distance satisfying these conditions is called metric
I In addition, evolutionary mechanisms may impose additional

constraints on the distances
I additive and ultrametric distances

7 / 37

Additive trees

I Suppose that every edge in a tree is labeled with a distance dij
I A tree is called additive if for every pair of leaves the distance

between the leaves is the sum of the edge distances on the path
between the leaves.

I Example:

A B C D

A 0 2 4 4
B 2 0 4 4
C 4 4 0 2
D 4 4 2 0

A C

B D

1

1

2 1

1

8 / 37

Ultrametric trees

I A rooted additive tree is called an ultrametric tree if the distances
between any two leaves i and j and their common ancestor k are equal

dik = djk

I dij/2 corresponds to the time elapsed since divergence of i and j from
the common parent

I In other words, edge lengths are measured by a molecular clock with a
constant rate

9 / 37

Ultrametric trees

I Only vertical segments of
the tree have correspondence
to some distance dij

I Horizontal segments act as
connectors

I dik = djk for any two leaves
i , j and any ancestor k of i
and j

T
im

e
5 4 3 12

6

7

8

9

Observation time

d8,9

10 / 37

Identifying ultrametric data

I Without knowing the underlying tree structure, we can identify
distances to be ultrametric by the three-point condition:

I D corresponds to an ultrametric tree if and only if for any three
(current) species we can label them i , j , and k such that the distances
satisfy:

dik = djk ≥ dij

I If we find out that the data is ultrametric, we can utilise a simple
algorithm to find the corresponding tree

11 / 37

UPGMA algorithm

I UPGMA (unweighted pair group method with arithmetic mean)
constructs a phylogenetic tree via clustering

I The algorithm works by at the same time
I Merging two clusters
I Creating a new node on the tree

I The tree is built from leaves towards the root

I UPGMA produces a ultrametric tree

12 / 37

Cluster distances

I Let distance dij between clusters Ci and Cj be

dij =
1

|Ci ||Cj |
∑

p∈Ci ,q∈Cj

dpq,

that is, the average distance between points (species) in the cluster.

13 / 37

UPGMA algorithm

I Initialisation
I Assign each point i to its own cluster Ci

I Define one leaf for each point and place it at height zero

I Iteration
I Find clusters i and j for which dij is minimal
I Define new cluster k by Ck = Ci ∪ Cj and compute dk` for all `
I Add a node k with children i and j to the tree. Place k at height dij/2
I Remove clusters i and j

I Termination
I When only two clusters i and j remain, place root at height dij/2

14 / 37

UPGMA example

3

4

5

1 42 35

1 2

6,82
1 d

9

8

7

6

15 / 37

UPGMA example

3

4

5

1 42 35

1 2

6

6,82
1 d

9

8

7

d1
2 1,2

16 / 37

UPGMA example

3

4

5

1 42 35

1 2

6

7

6,82
1 d

9

8

d1
2 4,5

17 / 37

UPGMA example

3

4

5

1 42 35

1 2

6

7

8 6,82
1 d

9

d1
2 3,7

18 / 37

UPGMA example

3

4

5

1 42 35

1 2

6

7

8

9

d1
2 6,8

19 / 37

UPGMA implementation

I In naive implementation, each iteration takes O(n2) time with n
initial points =⇒ algorithm takes O(n3) time

I The algorithm can be implemented to take only O(n2) time (see
Gronau & Moran, 2006, for a survey)

20 / 37

Problem solved?

I We now have a simple algorithm which finds an ultrametric tree
I If the data is ultrametric, then there is exactly one ultrametric tree

corresponding to the data
I The tree found is then the “correct” solution to the phylogeny problem

if the assumptions hold

I Unfortunately, the data is not ultrametric in practice
I Measurement errors distort distances
I Basic assumption of a molecular clock does not hold usually very well

21 / 37

Incorrect reconstruction of non-ultrametric data by
UPGMA

1

2

3

4

Tree which corresponds to
non-ultrametric distances

1 4 2 3

Incorrect ultrametric
reconstruction by UPGMA
algorithm

22 / 37

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

23 / 37

Checking for additivity

I Recall: a tree is additive if for every pair of leaves the distance
between the leaves is the sum of the edge distances on the path
between the leaves.

I How can we check that the data is additive?

I Let i , j , k , and ` be four distinct species
I Compute three sums

I dij + dk`
I dik + dj`
I di` + djk

j

i
k

l
j

i
k

l
j

i
k

l

d d

d

d

d

d

ij
kl

ik

jl

il

jk

24 / 37

Four-point condition

j

i
k

l
j

i
k

l
j

i
k

l

d d

d

d

d

d

ij
kl

ik

jl

il

jk

I Sums represented by the middle and right figures cover all edges

I Sum represented by the left figure does not cover all edges

I Four-point condition: i , j , k , and ` satisfy the four-point condition if
two of the sums dij + dk`, dik + dj`, and di` + djk are equal and the
third one is smaller than these two.

I An n × n matrix D is additive if and only if the four-point condition
holds for every 4 elements 1 ≤ i , j , k , ` ≤ n.

25 / 37

Checking for additivity: Example

A B C D

A 0 6 7 5
B 0 11 9
C 0 6
D 0

I dAB + dCD = 6 + 6 = 12

I dAC + dBD = 7 + 9 = 16

I dAD + dBC = 5 + 11 = 16

I Two of the sums are equal and the third is smaller
=⇒ Four-point condition holds
=⇒ Matrix is additive

26 / 37

Finding an additive phylogenetic tree

I Additive trees can be found for example by the neighbor joining
method (Saitou & Nei, 1987)

I However, in real data, even additivity usually does not hold very well

27 / 37

Neighbor joining algorithm

I Neighbor joining works in a similar fashion to UPGMA
I Find clusters C1 and C2 that minimize a function f (C1,C2)
I Join the two clusters C1 and C2 into a new cluster C
I Add a node to the tree corresponding to C
I Assign distances to new branches

I Differences in
I The choice of function f (C1,C2)
I How to assign the distances

28 / 37

Neighbor joining algorithm: Separation of a cluster

I Let u(Ci) be the separation of cluster Ci from other clusters defined as

u(Ci) =
1

n − 2

∑
Cj

dij

where n is the number of clusters.

29 / 37

Neighbor joining algorithm

I Neighbor joining at the same time
I Minimizes the distance between clusters Ci and Cj to be joined
I Maximizes the separation of both Ci and Cj from other clusters

I Recall that UPGMA only minimizes the distance between the clusters
Ci and Cj

30 / 37

Neighbor joining algorithm

I Initialization as in UPGMA
I Iteration

I Find clusters Ci and Cj for which dij − u(Ci)− u(Cj) is minimum
I Define a new cluster Ck = Ci ∪ Cj and compute dk` for all `:

dk` =
1

2
(di` + dj` − dij)

I Remove clusters Ci and Cj

I Define a node k with edges to i and j
I Assign length 1

2 (dij + u(Ci)− u(Cj)) to the edge i → k
I Assign length 1

2 (dij + u(Cj)− u(Ci)) to the edge j → k

I Termination
I When two clusters i and j remain, add an edge between them with

weight dij .

31 / 37

Neighbor joining algorithm: Example

A B C D

A 0 6 7 5
B 0 11 9
C 0 6
D 0

i u(Ci)

A (6 + 7 + 5)/2 = 9
B (6 + 11 + 9)/2 = 13
C (7 + 11 + 6)/2 = 12
D (5 + 9 + 6)/2 = 10

i , j dij−u(Ci)− u(Cj)

A,B 6 − 9 − 13 = −16
A,C 7 − 9 − 12 = −14
A,D 5 − 9 − 10 = −14
B,C 11− 13 − 12 = −14
B,D 9 − 13 − 10 = −14

C,D 6 − 12 − 10 = −16

Choose either one of the red
pairs to join

32 / 37

Neighbor joining algorithm: Example

A B C D

A 0 6 7 5
B 0 11 9
C 0 6
D 0

i u(Ci)

A (6 + 7 + 5)/2 = 9
B (6 + 11 + 9)/2 = 13
C (7 + 11 + 6)/2 = 12
D (5 + 9 + 6)/2 = 10

i , j dij−u(Ci)− u(Cj)

A,B 6 − 9 − 13 = −16
A,C 7 − 9 − 12 = −14
A,D 5 − 9 − 10 = −14
B,C 11− 13 − 12 = −14
B,D 9 − 13 − 10 = −14
C,D 6 − 12 − 10 = −16

E

B

A

DC

1

5

dAE = 1
2(6 + 9− 13) = 1

dBE = 1
2(6 + 13− 9) = 5

This is only the first step!

32 / 37

Neighbor joining algorithm

I Theorem: If D is an additive matrix, neighbor joining algorithm
correctly constructs the corresponding additive tree.

I A straightforward implementation runs in O(n3) time but there are
heuristics with roughly O(n2) time complexity.

33 / 37

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

34 / 37

Study Group 1: Random allocation at lecture
(Ask lecturer for your group if you were not present)

I Read pages 368–373 from Jones and Pevzner.
I Small parsimony problem
I Dynamic programming for small parsimony
I Large parsimony problem

I At study group summarize the problems and simulate the algorithm
with some example.

35 / 37

Study Group 2: Random allocation at lecture
(Ask lecturer for your group if you were not present)

I Read pages 184–187 from Sung: Algorithms in Bioinformatics, CRC
Press, 2010 (Especially Lemma 7.13).

I Correctness of UPGMA algorithm

I At study group, summarize the proof for the correctness of UPGMA.

36 / 37

Study Group 3: Random allocation at lecture
(Ask lecturer for your group if you were not present)

I Read pages 190–191 from Durbin et al.: Biological Sequence
Analysis, Cambridge University Press, 1998.

I Correctness of neighbor joining.
I Note that their notation of Dij equals our dij − u(Ci)− u(Cj).

I At study group, summarize the proof for correctness of neighbor
joining.

37 / 37

	Distance-based clustering, UPGMA
	Neighbor joining
	Study group assignments

