Recursive Suffix Array Construction

Let us now describe linear time algorithms for suffix array construction. We assume that the alphabet of the text $T[0..n]$ is $[1..n]$ and that $T[n] = 0$ (in the examples).

The outline of the algorithms is:

0. Choose a subset $C \subset [0..n]$.

1. Sort the set T_C. This is done as follows:

 (a) Construct a reduced string R of length $|C|$, whose characters are order preserving names of text factors starting at the positions in C.

 (b) Construct the suffix array of R recursively.

2. Sort the set $T[0..n]$ using the order of T_C.

Assume that

- $|C| \leq \alpha n$ for a constant $\alpha < 1$, and
- excluding the recursive call, all steps in the algorithm take linear time.

Then the total time complexity can be expressed as the recurrence $t(n) = O(n) + t(\alpha n)$, whose solution is $t(n) = O(n)$.

To make the scheme work, the set C must satisfy two nontrivial conditions:

1. There exists an appropriate reduced string R.
2. Given sorted T_C the suffix array of T is easy to construct.

Finding sets C that satisfy both conditions is difficult, but there are two different methods leading to two different algorithms:

- DC3 uses difference cover sampling
- SAIS uses induced sorting
Difference Cover Sampling

A difference cover D_q modulo q is a subset of $[0..q)$ such that all values in $[0..q)$ can be expressed as a difference of two elements in D_q modulo q. In other words:

$$[0..q) = \{i - j \mod q \mid i, j \in D_q\}.$$

Example 4.15: $D_7 = \{1, 2, 4\}$

\[
\begin{align*}
1 - 1 &= 0 & 1 - 4 &= -3 \equiv 4 \pmod q \\
2 - 1 &= 1 & 2 - 4 &= -2 \equiv 5 \pmod q \\
4 - 2 &= 2 & 1 - 2 &= -1 \equiv 6 \pmod q \\
4 - 1 &= 3 &
\end{align*}
\]

In general, we want the smallest possible difference cover for a given q.

- For any q, there exist a difference cover D_q of size $O(\sqrt{q})$.
- The DC3 algorithm uses the simplest non-trivial difference cover $D_3 = \{1, 2\}$.

197
A **difference cover sample** is a set \(T_C \) of suffixes, where
\[
C = \{ i \in [0..n] \mid (i \mod q) \in D_q \}.
\]

Example 4.16: If \(T = \text{banana}\$ \) and \(D_3 = \{1, 2\} \),
then \(C = \{1, 2, 4, 5\} \) and \(T_C = \{\text{anana}\$, \text{nana}\$, \text{na}\$, \text{a}\$\} \).

Once we have sorted the difference cover sample \(T_C \), we can compare any two suffixes in \(O(q) \) time. To compare suffixes \(T_i \) and \(T_j \):

- If \(i \in C \) and \(j \in C \), then we already know their order from \(T_C \).

- Otherwise, find \(\ell \) such that \(i + \ell \in C \) and \(j + \ell \in C \). There always exists such \(\ell \in [0..q) \). Then compare:

\[
T_i = T[i..i + \ell)T_{i+\ell} \\
T_j = T[j..j + \ell)T_{j+\ell}
\]

That is, compare first \(T[i..i + \ell) \) to \(T[j..j + \ell) \), and if they are the same, then \(T_{i+\ell} \) to \(T_{j+\ell} \) using the sorted \(T_C \).

Example 4.17: \(D_3 = \{1, 2\} \) and \(C = \{1, 2, 4, 5, \ldots\} \)
\[
T_0 = T[0]T_1 \\
T_1 = T[1]T_2 \\
T_3 = T[3]T_4
\]
Algorithm 4.18: DC3

Step 0: Choose C.

- Use difference cover $D_3 = \{1, 2\}$.
- For $k \in \{0, 1, 2\}$, define $C_k = \{i \in [0..n] \mid i \mod 3 = k\}$.
- Let $C = C_1 \cup C_2$ and $\bar{C} = C_0$.

Example 4.19:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>y</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>o</td>
<td>$</td>
</tr>
</tbody>
</table>

$\bar{C} = C_0 = \{0, 3, 6, 9, 12\}$, $C_1 = \{1, 4, 7, 10\}$, $C_2 = \{2, 5, 8, 11\}$ and $C = \{1, 2, 4, 5, 7, 8, 10, 11\}$.
Step 1: Sort T_C.

- For $k \in \{1, 2\}$, Construct the strings $R_k = (T^3_{3k}, T^3_{3k+3}, T^3_{3k+6}, \ldots, T^3_{\text{max} C_k})$ whose characters are 3-factors of the text, and let $R = R_1R_2$.

- Replace each factor T^3_i in R with an order preserving name $N^3_i \in [1..|R|]$. The names can be computed by sorting the factors with LSD radix sort in $O(n)$ time. Let R' be the result appended with 0.

- Construct the inverse suffix array $SA_{R'}^{-1}$ of R'. This is done recursively using DC3 unless all symbols in R' are unique, in which case $SA_{R'}^{-1} = R'$.

- From $SA_{R'}^{-1}$, we get order preserving names for suffixes in T_C.
 For $i \in C$, let $N_i = SA_{R'}^{-1}[j]$, where j is the position of T^3_i in R.
 For $i \in \overline{C}$, let $N_i = \perp$. Also let $N_{n+1} = N_{n+2} = 0$.

Example 4.20:

<table>
<thead>
<tr>
<th>R'</th>
<th>abb</th>
<th>ada</th>
<th>bba</th>
<th>do$</th>
<th>bba</th>
<th>dab</th>
<th>bad</th>
<th>o$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>$SA_{R'}^{-1}$</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>$T[i]$</td>
<td>y</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>N_i</td>
<td>\perp</td>
<td>1</td>
<td>4</td>
<td>\perp</td>
<td>2</td>
<td>6</td>
<td>\perp</td>
<td>5</td>
</tr>
</tbody>
</table>
Step 2(a): Sort $T_{\bar{C}}$.

- For each $i \in \bar{C}$, we represent T_i with the pair $(T[i], N_{i+1})$. Then

 \[T_i \leq T_j \iff (T[i], N_{i+1}) \leq (T[j], N_{j+1}) \, . \]

 Note that $N_{i+1} \neq \bot$ for all $i \in \bar{C}$.

- The pairs $(T[i], N_{i+1})$ are sorted by LSD radix sort in $O(n)$ time.

Example 4.21:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>y</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>o</td>
<td>$</td>
</tr>
<tr>
<td>N_i</td>
<td>\bot</td>
<td>1</td>
<td>4</td>
<td>\bot</td>
<td>2</td>
<td>6</td>
<td>\bot</td>
<td>5</td>
<td>3</td>
<td>\bot</td>
<td>7</td>
<td>8</td>
<td>\bot</td>
</tr>
</tbody>
</table>

$T_{12} < T_6 < T_9 < T_3 < T_0$ because $(\$,0) < (a,5) < (a,7) < (b,2) < (y,1)$.

201
Step 2(b): Merge T_C and $T_{\overline{C}}$.

- Use comparison based merging algorithm needing $O(n)$ comparisons.
- To compare $T_i \in T_C$ and $T_j \in T_{\overline{C}}$, we have two cases:

 $i \in C_1: T_i \leq T_j \iff (T[i], N_{i+1}) \leq (T[j], N_{j+1})$

 $i \in C_2: T_i \leq T_j \iff (T[i], T[i+1], N_{i+2}) \leq (T[j], T[j+1], N_{j+2})$

 Note that none of the N-values is \perp.

Example 4.22:

\[
\begin{array}{cccccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
 T[i] & y & a & b & b & a & d & a & b & b & a & d & o & $ \\
 N_i & \perp & 1 & 4 & \perp & 2 & 6 & \perp & 5 & 3 & \perp & 7 & 8 & \perp \\
\end{array}
\]

$T_1 < T_6$ because $(a, 4) < (a, 5)$.

$T_3 < T_8$ because $(b, a, 6) < (b, a, 7)$.
Theorem 4.23: Algorithm DC3 constructs the suffix array of a string $T[0..n)$ in $O(n)$ time plus the time needed to sort the characters of T.

There are many variants:

- DC3 is an optimal algorithm under several parallel and external memory computation models, too. There exists both parallel and external memory implementations of DC3.

- Using a larger value of q, we obtain more space efficient algorithms. For example, using $q = \log n$, the time complexity is $O(n \log n)$ and the space needed in addition to the text and the suffix array is $O(n/\sqrt{\log n})$.

Induced Sorting

Define three type of suffixes $-$, $+$ and $*$ as follows:

\[
C^- = \{i \in [0..n) \mid T_i > T_{i+1}\}
\]
\[
C^+ = \{i \in [0..n) \mid T_i < T_{i+1}\}
\]
\[
C^* = \{i \in C^+ \mid i - 1 \in C^-\}
\]

Example 4.24:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>m</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>i</td>
<td>p</td>
<td>p</td>
<td>p</td>
<td>i</td>
<td>i</td>
<td>$</td>
</tr>
</tbody>
</table>

Type of T_i: $-$ $-$ $*$ $-$ $-$ $*$ $-$ $-$ $*$ $+$ $-$ $-$ $-$ $-$

For every $a \in \Sigma$ and $x \in \{-, +, *\}$ define

\[
C_a = \{i \in [0..n) \mid T[i] = a\}
\]
\[
C_a^x = C_a \cap C^x
\]

Then

\[
C_a^- = \{i \in C_a \mid T_i < a^\infty\}
\]
\[
C_a^+ = \{i \in C_a \mid T_i > a^\infty\}
\]

and thus, if $i \in C_a^-$ and $j \in C_a^+$, then $T_i < T_j$. Hence the suffix array is

\[nC_1 C_2 \ldots C_{\sigma-1} = nC_1^- C_1^+ C_2^- C_2^+ \ldots C_{\sigma-1}^- C_{\sigma-1}^+.\]
The basic idea of induced sorting is to use information about the order of T_i to induce the order of the suffix $T_{i-1} = T[i-1]T_i$. The main steps are:

1. Sort the sets $C_a^*, a \in [1..\sigma)$.
2. Use C_a^*, $a \in [1..\sigma)$, to induce the order of the sets $C_a^-, a \in [1..\sigma)$.
3. Use C_a^-, $a \in [1..\sigma)$, to induce the order of the sets $C_a^+, a \in [1..\sigma)$.

The suffixes involved in the induction steps can be identified using the following rules (proof is left as an exercise).

Lemma 4.25: For all $a \in [1..\sigma)$

(a) $i - 1 \in C_a^-$ iff $i > 0$ and $T[i-1] = a$ and one of the following holds

1. $i = n$
2. $i \in C^*$
3. $i \in C^-$ and $T[i-1] \geq T[i]$.

(b) $i - 1 \in C_a^+$ iff $i > 0$ and $T[i-1] = a$ and one of the following holds

1. $i \in C^-$ and $T[i-1] < T[i]$
2. $i \in C^+$ and $T[i-1] \leq T[i]$.
To induce C^- suffixes:

1. Set C^-_a empty for all $a \in [1..\sigma)$.

2. For all suffixes T_i such that $i - 1 \in C^-$ in lexicographical order, append $i - 1$ into $C^-_{T[i-1]}$.

By Lemma 4.25(a), Step 2 can be done by checking the relevant conditions for all $i \in nC^-_1C^*_1C^-_2C^*_2\ldots$.

Algorithm 4.26: InduceMinusSuffixes

Input: Lexicographically sorted lists C^*_a, $a \in \Sigma$

Output: Lexicographically sorted lists C^-_a, $a \in \Sigma$

(1) for $a \in \Sigma$ do $C^-_a \leftarrow \emptyset$

(2) pushback($n - 1, C^-_{T[n-1]}$)

(3) for $a \leftarrow 1$ to $\sigma - 1$ do

(4) for $i \in C^-_a$ do // include elements added during the loop

(5) if $i > 0$ and $T[i - 1] \geq a$ then pushback($i - 1, C^-_{T[i-1]}$)

(6) for $i \in C^*_a$ do pushback($i - 1, C^-_{T[i-1]}$)

Note that since $T_{i-1} > T_i$ by definition of C^-, we always have i inserted before $i - 1$.
Inducing \(+\)-type suffixes goes similarly but in reverse order so that again \(i\) is always inserted before \(i - 1\):

\begin{enumerate}
\item Set \(C_a^+\) empty for all \(a \in [1..\sigma]\).
\item For all suffixes \(T_i\) such that \(i - 1 \in C^+\) in \textbf{descending} lexicographical order, append \(i - 1\) into \(C^+_{T[i-1]}\).
\end{enumerate}

\textbf{Algorithm 4.27: InducePlusSuffixes}

\begin{flushleft}
\textbf{Input:} Lexicographically sorted lists \(C_a^-\), \(a \in \Sigma\)
\textbf{Output:} Lexicographically sorted lists \(C_a^+\), \(a \in \Sigma\)
\begin{enumerate}
\item for \(a \in \Sigma\) do \(C_a^+ \leftarrow \emptyset\)
\item for \(a \leftarrow \sigma - 1\) downto 1 do \\
\quad for \(i \in C_a^+\) in reverse order do // include elements added during loop \\
\quad\quad if \(i > 0\) and \(T[i-1] \leq a\) then \textbf{pushfront}(\(i - 1, C^+_{T[i-1]}\)) \\
\item for \(i \in C_a^-\) in reverse order do \\
\quad if \(i > 0\) and \(T[i-1] < a\) then \textbf{pushfront}(\(i - 1, C^+_{T[i-1]}\))
\end{enumerate}
\end{flushleft}
We still need to explain how to sort the ∗-type suffixes. Define

\[F[i] = \min\{k \in [i + 1..n] \mid k \in C^* \text{ or } k = n\} \]

\[S_i = T[i..F[i]] \]

\[S'_i = S_i \sigma \]

where \(\sigma \) is a special symbol larger than any other symbol.

Lemma 4.28: For any \(i, j \in [0..n) \), \(T_i < T_j \) iff \(S'_i < S'_j \) or \(S'_i = S'_j \) and \(T_{F[i]} < T_{F[j]} \).

Proof. The claim is trivially true except in the case that \(S_j \) is a proper prefix of \(S_i \) (or vice versa). In that case, \(S_i > S_j \) but \(S'_i < S'_j \) and thus \(T_i < T_j \) by the claim. We will show that this is correct.

Let \(\ell = F[j] \) and \(k = i + \ell - j \). Then

- \(\ell \in C^* \) and thus \(\ell - 1 \in C^- \). By Lemma 4.25(b), \(T[\ell - 1] > T[\ell] \).
- \(T[k - 1..k] = T[\ell - 1..\ell] \) and thus \(T[k - 1] > T[k] \). If we had \(k \in C^+ \), we would have \(k \in C^* \). Since this is not the case, we must have \(k \in C^- \).
- Let \(a = T[\ell] \). Since \(\ell \in C_a^+ \) and \(k \in C_a^- \), we must have \(T_k < a^\infty < T_{\ell} \).
- Since \(T[i..k] = T[j..\ell] \) and \(T_k < T_{\ell} \), we have \(T_i < T_j \).

\[\Box \]
Algorithm 4.29: SAIS

Step 0: Choose C.

- Compute the types of suffixes. This can be done in $O(n)$ time based on Lemma 4.25.
- Set $C = \bigcup_{a \in [1..\sigma)} C_a^* \cup \{n\}$. Note that $|C| \leq n/2$, since for all $i \in C$, $i - 1 \in C^- \subseteq \bar{C}$.

Example 4.30:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>m</td>
<td>m</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>i</td>
<td>p</td>
<td>p</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
</tbody>
</table>

Type of T_i $-$ $-$ $*$ $-$ $-$ $*$ $-$ $-$ $*$ $+$ $-$ $-$ $-$ $-$

$C_i^* = \{2, 5, 8\}$, $C_m^* = C_p^* = C_s^* = \emptyset$, $C = \{2, 5, 8, 14\}$.
Step 1: Sort T_C.

- Sort the strings S'_i, $i \in C^*$. Since the total length of the strings S'_i is $O(n)$, the sorting can be done in $O(n)$ time using LSD radix sort.

- Assign order preserving names $N_i \in [1..|C| - 1]$ to the string S'_i so that $N_i \leq N_j$ iff $S'_i \leq S'_j$.

- Construct the sequence $R = N_{i_1}N_{i_2}\ldots N_{i_k}0$, where $i_1 < i_3 < \cdots < i_k$ are the *-type positions.

- Construct the suffix array SA_R of R. This is done recursively unless all symbols in R are unique, in which case a simple counting sort is sufficient.

- The order of the suffixes of R corresponds to the order of *-type suffixes of T. Thus we can construct the lexicographically ordered lists C^*_a, $a \in [1..\sigma)$.

Example 4.31:

| i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|-----|---|---|---|---|---|---|---|---|---|---|----|----|----|----|
| $T[i]$ | m | m | i | s | s | i | s | s | i | p | p | i | i | $|
| N_i | 2 | 2 | 1 | 0 |

$R = [iissi\sigma][iissi\sigma][iippii\sigma] = 2210$, $SA_R = (3, 2, 1, 0)$, $C^*_i = (8, 5, 2)$

210
Step 2: Sort $T[0..n]$.

- Run InduceMinusSuffixes to construct the sorted lists C^-_a, $a \in [1..\sigma)$.
- Run InducePlusSuffixes to construct the sorted lists C^+_a, $a \in [1..\sigma)$.
- The suffix array is $SA = nC^-_1 C^+_1 C^-_2 C^+_2 \ldots C^-_{\sigma-1} C^+_{\sigma-1}$.

Example 4.32:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T[i]$</td>
<td>m</td>
<td>m</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>i</td>
<td>p</td>
<td>p</td>
<td>i</td>
<td>i</td>
<td>$</td>
</tr>
</tbody>
</table>

| type of T_i | − | − | * | − | − | * | − | − | * | + | − | − | − | − | − |

$n = 14 \Rightarrow C^-_i = (13, 12)
\quad C^-_i C^*_i = (13, 12, 8, 5, 2) \Rightarrow C^-_m = (1, 0), C^-_p = (11, 10), C^-_s = (7, 4, 6, 3)
\Rightarrow C^+_i = (8, 9, 5, 2)
\Rightarrow SA = C^+_i C^-_i C^-_m C^-_p C^-_s = (14, 13, 12, 8, 9, 5, 2, 1, 0, 11, 10, 7, 4, 6, 3)
Theorem 4.33: Algorithm SAIS constructs the suffix array of a string $T[0..n)$ in $\mathcal{O}(n)$ time plus the time needed to sort the characters of T.

- In Step 1, to sort the strings $S'_i, i \in C^*$, SAIS does not actually use LSD radix sort but the following procedure:
 1. Construct the sets $C^*_a, a \in [1..\sigma)$ in arbitrary order.
 2. Run InduceMinusSuffixes to construct the lists $C^-_a, a \in [1..\sigma)$.
 3. Run InducePlusSuffixes to construct the lists $C^-_a, a \in [1..\sigma)$.
 4. Remove non-\(*\)-type positions from $C^+_1 C^+_2 \ldots C^+_{\sigma-1}$.

With this change, most of the work is done in the induction procedures. This is very fast in practice, because all the lists C^x_a are accessed **sequentially** during the procedures.

- The currently fastest suffix sorting implementation in practice is probably divsufsort by Yuta Mori. It sorts the \(*\)-type suffixes non-recursively in $\mathcal{O}(n \log n)$ time and then continues as SAIS.
Summary: Suffix Trees and Arrays

The most important data structures for string processing:

- Designed for indexed exact string matching.
- Used in efficient solutions to a huge variety of different problems.

Construction algorithms are among the most important algorithms for string processing:

- Linear time for constant and integer alphabet.

Often augmented with additional data structures:

- suffix links, LCA preprocessing
- LCP array, RMQ preprocessing, BWT, ...