1. Prove
 (a) Lemma 1.14: For \(i \in [2..n] \), \(LCP_R[i] = lcp(S_i, \{S_1, \ldots, S_{i-1}\}) \).
 (b) Lemma 1.15: \(\Sigma LCP(R) \leq \Sigma lcp(R) \leq 2 \cdot \Sigma LCP(R) \).

2. Use the lcp comparison technique to modify the standard insertion sort algorithm so that it sorts strings in \(O(\Sigma LCP(R) + n^2) \) time.

3. Give an example showing that the worst case time complexity of string binary search without precomputed lcp information is \(\Omega(m \log n) \).

4. Let \(S[0..n) \) be a string over an integer alphabet. Show how to build a data structure in \(O(n) \) time and space so that afterwards the Karp–Rabin hash function \(H(S[i..j]) \) for the factor \(S[i..j] \) can be computed in constant time for any \(0 \leq i \leq j \leq n \).

5. \(\Omega(\Sigma LCP(R)) \) is a lower bound for string sorting for any algorithm if characters can be accessed only one at a time. However, for a small alphabet, it is possible to pack several characters into one machine word. Then multiple characters can be accessed simultaneously and treated as if they were a single super-character. For example, the string \(ababa \) over the alphabet \(\Sigma = \{a, b\} \) can be thought of as the string \((ab, ba, ab) \) over the alphabet \(\Sigma^2 \). Algorithms taking advantage of this are called super-alphabet algorithms.

 Develop a super-alphabet version of MSD radix sort. What is the time complexity?