
Let us analyze the average case time complexity of the verification phase.

• The best pattern partitioning is as even as possible. Then each pattern
factor has length at least r = bm/(k + 1)c.

• The expected number of exact occurrences of a random string of
length r in a random text of length n is at most n/σr.

• The expected total verification time is at most

O
(
m2(k + 1)n

σr

)
≤ O

(
m3n

σr

)
.

This is O(n) if r ≥ 3 logσm.

• The condition r ≥ 3 logσm is satisfied when (k + 1) ≤ m/(3 logσm+ 1).

Theorem 3.24: The average case time complexity of the
Baeza-Yates–Perleberg algorithm is O(n) when k ≤ m/(3 logσm+ 1)− 1.

153

Many variations of the algorithm have been suggested:

• The filtration can be done with a different multiple exact string
matching algorithm.

• The verification time can be reduced using a technique called
hierarchical verification.

• The pattern can be partitioned into fewer than k + 1 pieces, which are
searched allowing a small number of errors.

A lower bound on the average case time complexity is Ω(n(k + logσm)/m),
and there exists a filtering algorithm matching this bound.

154

Summary: Approximate String Matching

We have seen two main types of algorithms for approximate string matching:

• Basic dynamic programming time complexity is O(mn). The time
complexity can be improved to O(kn) using diagonal monotonicity, and
to O(ndm/we) using bitparallelism.

• Filtering algorithms can improve average case time complexity and are
the fastest in practice when k is not too large. The partitioning into
k + 1 factors is a simple but effective filtering technique.

More advanced techniques have been developed but are not covered here
(except in study groups).

Similar techniques can be useful for other variants of edit distance but not
always straightforwardly.

155

4. Suffix Trees and Arrays

Let T = T [0..n) be the text. For i ∈ [0..n], let Ti denote the suffix T [i..n).
Furthermore, for any subset C ∈ [0..n], we write TC = {Ti | i ∈ C}. In
particular, T[0..n] is the set of all suffixes of T .

Suffix tree and suffix array are search data structures for the set T[0..n].

• Suffix tree is a compact trie for T[0..n].

• Suffix array is an ordered array for T[0..n].

They support fast exact string matching on T :

• A pattern P has an occurrence starting at position i if and only if P is a
prefix of Ti.

• Thus we can find all occurrences of P by a prefix search in T[0..n].

A data structure supporting fast string matching is called a text index.

There are numerous other applications too, as we will see later.

156

The set T[0..n] contains |T[0..n]| = n+ 1 strings of total length
||T[0..n]|| = Θ(n2). It is also possible that ΣLCP (T[0..n]) = Θ(n2), for example,
when T = an or T = XX for any string X.

• A basic trie has Θ(n2) nodes for most texts, which is too much.

• A compact trie with O(n) nodes and an ordered array with n+ 1 entries
have linear size.

• A compact ternary trie has O(n) nodes too. However, the construction
algorithms and some other algorithms we will see are not
straightforward to adapt for it.

Even for a compact trie or an ordered array, we need a specialized
construction algorithm, because any general construction algorithm would
need Ω(ΣLCP (T[0..n])) time.

157

Suffix Tree

The suffix tree of a text T is the compact trie of the set T[0..n] of all suffixes
of T .

We assume that there is an extra character $ 6∈ Σ at the end of the text.
That is, T [n] = $ and Ti = T [i..n] for all i ∈ [0..n]. Then:

• No suffix is a prefix of another suffix, i.e., the set T[0..n] is prefix free.

• All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms.

Example 4.1: T = banana$.

1
3

5

6

2

4

0

$

$

$

na$

na
$

na

na$

banana$

a

158

As with tries, there are many possibilities for implementing the child
operation. We again avoid this complication by assuming that σ is constant.
Then the size of the suffix tree is O(n):

• There are exactly n+ 1 leaves and at most n internal nodes.

• There are at most 2n edges. The edge labels are factors of the text
and can be represented by pointers to the text.

Given the suffix tree of T , all occurrences of P in T can be found in time
O(|P |+ occ), where occ is the number of occurrences.

159

Brute Force Construction

Let us now look at algorithms for constructing the suffix tree. We start with
a brute force algorithm with time complexity Θ(n+ ΣLCP (T[0..n])). Later
we will modify this algorithm to obtain a linear time complexity.

The idea is to add suffixes to the trie one at a time starting from the
longest suffix. The insertion procedure is essentially the same as we saw in
Algorithm 1.2 (insertion into trie) except it has been modified to work on a
compact trie instead of a trie.

160

Let Su denote the string represented by a node u. The suffix tree
representation uses four functions:

child(u, c) is the child v of node u such that the label of the edge
(u, v) starts with the symbol c, and ⊥ if u has no such child.

parent(u) is the parent of u.

depth(u) is the length of Su.

start(u) is the starting position of some occurrence of Su in T .

Then

• Su = T [start(u) . . . start(u) + depth(u)).

• T [start(u) + depth(parent(u)) . . . start(u) + depth(u)) is the label of the
edge (parent(u), u).

161

A locus in the suffix tree is a pair (u, d) where
depth(parent(u)) < d ≤ depth(u). It represents

• the uncompact trie node that would be at depth d along the
edge (parent(u), u), and

• the corresponding string S(u,d) = T [start(u) . . . start(u) + d).

Every factor of T is a prefix of a suffix and thus has a locus along the path
from the root to the leaf representing that suffix.

During the construction, we need to create nodes at an existing locus in the
middle of an edge, splitting the edge into two edges:

CreateNode(u, d) // d < depth(u)
(1) i← start(u); p← parent(u)
(2) create new node v
(3) start(v)← i; depth(v)← d
(4) child(v, T [i+ d])← u; parent(u)← v
(5) child(p, T [i+ depth(p)])← v; parent(v)← p
(6) return v

162

Now we are ready to describe the construction algorithm.

Algorithm 4.2: Brute force suffix tree construction
Input: text T [0..n] (T [n] = $)
Output: suffix tree of T : root, child, parent, depth, start

(1) create new node root; depth(root)← 0
(2) u← root; d← 0 // (u, d) is the active locus
(3) for i← 0 to n do // insert suffix Ti
(4) while d = depth(u) and child(u, T [i+ d]) 6= ⊥ do
(5) u← child(u, T [i+ d]); d← d+ 1
(6) while d < depth(u) and T [start(u) + d] = T [i+ d] do d← d+ 1
(7) if d < depth(u) then // (u, d) is in the middle of an edge
(8) u← CreateNode(u, d)
(9) CreateLeaf(i, u)

(10) u← root; d← 0

CreateLeaf(i, u) // Create leaf representing suffix Ti
(1) create new leaf w
(2) start(w)← i; depth(w)← n− i+ 1
(3) child(u, T [i+ d])← w; parent(w)← u // Set u as parent
(4) return w

163

Suffix Links

The key to efficient suffix tree construction are suffix links:

slink(u) is the node v such that Sv is the longest proper suffix of
Su, i.e., if Su = T [i..j) then Sv = T [i+ 1..j).

Example 4.3: The suffix tree of T = banana$ with internal node suffix links.

1
3

5

6

2

4

0

$

$

$

na$

na
$

na

na$

banana$

a

164

Suffix links are well defined for all nodes except the root.

Lemma 4.4: If the suffix tree of T has a node u representing T [i..j) for any
0 ≤ i < j ≤ n+ 1, then it has a node v representing T [i+ 1..j).

Proof. If u is the leaf representing the suffix Ti, then v is the leaf
representing the suffix Ti+1.

If u is an internal node, then it has two child edges with labels starting with
different symbols, say a and b, which means that T [i..j)a and T [i..j)b are
both factors of T . Then, T [i+ 1..j)a and T [i+ 1..j)b are factors of T too,
and thus there must be a branching node v representing T [i+ 1..j). �

Usually, suffix links are needed only for internal nodes. For root, we define
slink(root) = root.

165

Suffix links are the same as Aho–Corasick failure links but Lemma 4.4
ensures that depth(slink(u)) = depth(u)− 1. This is not the case for an
arbitrary trie or a compact trie.

Suffix links are stored for compact trie nodes only, but we can define and
compute them for any locus (u, d):

slink(u, d)
(1) v ← slink(parent(u))
(2) while depth(v) < d− 1 do
(3) v ← child(v, T [start(u) + depth(v) + 1])
(4) return (v, d− 1)

parent(u)

(u, d)

u
slink(u)

slink(u, d)

slink(parent(u))

166

The same idea can be used for computing the suffix links during or after the
brute force construction.

ComputeSlink(u)
(1) d← depth(u)
(2) v ← slink(parent(u))
(3) while depth(v) < d− 1 do
(4) v ← child(v, T [start(u) + depth(v) + 1])
(5) if depth(v) > d− 1 then // no node at (v, d− 1)
(6) v ← CreateNode(v, d− 1)
(7) slink(u)← v

The procedure CreateNode(v, d− 1) sets slink(v) = ⊥.

The algorithm uses the suffix link of the parent, which must have been
computed before. Otherwise the order of computation does not matter.

167

The creation of a new node on line (6) is never needed in a fully
constructed suffix tree, but during the brute force algorithm the necessary
node may not exist yet:

• If a new internal node ui was created during the insertion of the suffix
Ti, there exists an earlier suffix Tj, j < i that branches at ui into a
different direction than Ti.

• Then slink(ui) represents a prefix of Tj+1 and thus exists at least as a
locus on the path labelled Tj+1. However, it might not become a
branching node until the insertion of Ti+1.

• In such a case, ComputeSlink(ui) creates slink(ui) a moment before it
would otherwise be created by the brute force construction.

168

McCreight’s Algorithm

McCreight’s suffix tree construction is a simple modification of the brute
force algorithm that computes the suffix links during the construction and
uses them as short cuts:

• Consider the situation, where we have just added a leaf wi representing
the suffix Ti as a child to a node ui. The next step is to add wi+1 as a
child to a node ui+1.

• The brute force algorithm finds ui+1 by traversing from the root.
McCreight’s algorithm takes a short cut to slink(ui).

slink(ui)
ui

wi
wi+1

ui+1

• This is safe because slink(ui) represents a prefix of Ti+1.

169

Algorithm 4.5: McCreight
Input: text T [0..n] (T [n] = $)
Output: suffix tree of T : root, child, parent, depth, start, slink

(1) create new node root; depth(root)← 0; slink(root)← root
(2) u← root; d← 0 // (u, d) is the active locus
(3) for i← 0 to n do // insert suffix Ti
(4) while d = depth(u) and child(u, T [i+ d]) 6= ⊥ do
(5) u← child(u, T [i+ d]); d← d+ 1
(6) while d < depth(u) and T [start(u) + d] = T [i+ d] do d← d+ 1
(7) if d < depth(u) then // (u, d) is in the middle of an edge
(8) u← CreateNode(u, d)
(9) CreateLeaf(i, u)

(10) if slink(u) = ⊥ then ComputeSlink(u)
(11) u← slink(u); d← d− 1

170

Theorem 4.6: Let T be a string of length n over an alphabet of constant
size. McCreight’s algorithm computes the suffix tree of T in O(n) time.

Proof. Insertion of a suffix Ti takes constant time except in two points:

• The while loops on lines (4)–(6) traverse from the node slink(ui) to
ui+1. Every round in these loops increments d. The only place where d
decreases is on line (11) and even then by one. Since d can never
exceed n, the total time on lines (4)–(6) is O(n).

• The while loop on lines (3)–(4) during a call to ComputeSlink(ui)
traverses from the node slink(parent(ui)) to slink(ui). Let d′i be the
depth of parent(ui). Clearly, d′i+1 ≥ d′i − 1, and every round in the while
loop during ComputeSlink(ui) increases d′i+1. Since d′i can never be
larger than n, the total time in the loop on lines (3)–(4) in
ComputeSlink is O(n).

�

171

There are other linear time algorithms for suffix tree construction:

• Weiner’s algorithm was the first. It inserts the suffixes into the tree in
the opposite order: Tn, Tn−1, . . . , T0.

• Ukkonen’s algorithm constructs suffix tree first for T [0..1) then for
T [0..2), etc.. The algorithm is structured differently, but performs
essentially the same tree traversal as McCreight’s algorithm.

• All of the above are linear time only for constant alphabet size.
Farach’s algorithm achieves linear time for an integer alphabet of
polynomial size. The algorithm is complicated and unpractical.

• Practical linear time construction for an integer alphabet is possible via
suffix array.

172

Applications of Suffix Tree

Let us have a glimpse of the numerous applications of suffix trees.

Exact String Matching

As already mentioned earlier, given the suffix tree of the text, all occ
occurrences of a pattern P can be found in time O(|P |+ occ).

Even if we take into account the time for constructing the suffix tree, this is
asymptotically as fast as Knuth–Morris–Pratt for a single pattern and
Aho–Corasick for multiple patterns.

However, the primary use of suffix trees is in indexed string matching, where
we can afford to spend a lot of time in preprocessing the text, but must
then answer queries very quickly.

173

Approximate String Matching

Several approximate string matching algorithms achieving O(kn) worst case
time complexity are based on suffix trees.

Filtering algorithms that reduce approximate string matching to exact string
matching such as partitioning the pattern into k + 1 factors, can use suffix
trees in the filtering phase.

Another approach is to generate all strings in the k-neighborhood of the
pattern, i.e., all strings within edit distance k from the pattern and search
for them in the suffix tree.

The best practical algorithms for indexed approximate string matching are
hybrids of the last two approaches. For example, partition the pattern into
` ≤ k + 1 factors and find approximate occurrences of the factors with edit
distance bk/`c using the neighborhood method in the filtering phase.

174

Text Statistics

Suffix tree is useful for computing all kinds of statistics on the text. For
example:

• Every locus in the suffix tree represents a factor of the text and, vice
versa, every factor is represented by some locus. Thus the number of
distinct factors in the text is exactly the number of distinct locuses,
which can be computed by a traversal of the suffix tree in O(n) time
even though the resulting value is typically Θ(n2).

• The longest repeating factor of the text is the longest string that
occurs at least twice in the text. It is represented by the deepest
internal node in the suffix tree.

175

Generalized Suffix Tree

A generalized suffix tree of two strings S and T is the suffix tree of the string
S£T$, where £ and $ are symbols that do not occur elsewhere in S and T .

Each leaf is marked as an S-leaf or a T -leaf according to the starting
position of the suffix it represents. Using a depth first traversal, we
determine for each internal node if its subtree contains only S-leafs, only
T -leafs, or both. The deepest node that contains both represents the
longest common factor of S and T . It can be computed in linear time.

The generalized suffix tree can also be defined for more than two strings.

176

AC Automaton for the Set of Suffixes

As already mentioned, a suffix tree with suffix links is essentially an
Aho–Corasick automaton for the set of all suffixes.

• We saw that it is possible to follow suffix link / failure transition from
any locus, not just from suffix tree nodes.

• Following such an implicit suffix link may take more than a constant
time, but the total time during the scanning of a string with the
automaton is linear in the length of the string. This can be shown with
a similar argument as in the construction algorithm.

Thus suffix tree is asymptotically as fast to operate as the AC automaton,
but needs much less space.

177

Matching Statistics

The matching statistics of a string S[0..n) with respect to a string T is an
array MS[0..n), where MS[i] is a pair (`i, pi) such that

1. S[i..i+ `i) is the longest prefix of Si that is a factor of T , and

2. T [pi..pi + `i) = S[i..i+ `i).

Matching statistics can be computed by using the suffix tree of T as an
AC-automaton and scanning S with it.

• If before reading S[i] we are at the locus (v, d) in the automaton, then
S[i− d..i) = T [j..j + d), where j = start(v). If reading S[i] causes a
failure transition, then MS[i− d] = (d, j).

• Following the failure transition decrements d and thus increments i− d
by one. Following a normal transition/edge, increments both i and d by
one, and thus i− d stays the same. Thus all entries are computed.

From the matching statistics, we can easily compute the longest common
factor of S and T . Because we need the suffix tree only for T , this saves
space compared to a generalized suffix tree.

Matching statistics are also used in some approximate string matching
algorithms.

178

Longest Common Extension

The longest common extension (LCE) query asks for the length of the
longest common prefix of two suffixes of a text T :

LCE(i, j) := lcp(Ti, Tj)

• The lowest common ancestor (LCA) of two nodes u and v in a tree is
the deepest node that is an ancestor of both u and v. Any tree can be
preprocessed in linear time so that the LCA of any two nodes can be
computed in constant time. The details are omitted here.

• A LCE query can be implemented as a LCA query on the suffix tree of
T :

LCE(i, j) = LCA(wi, wj)

where wi and wj are the leaves that represent the suffixes Ti and Tj.
Thus, given the suffix tree augmented with a precomputed LCA data
structure, LCE queries can be answered in constant time.

Some O(kn) worst case time approximate string matching algorithms are
based on LCE queries.

179

Longest Palindrome

A palindrome is a string that is its own reverse. For example,
saippuakauppias is a palindrome.

We can use the LCA preprocessed generalized suffix tree of a string T and
its reverse TR to find the longest palindrome in T in linear time.

• Let ki be the length of the longest common extension of Ti+1 and TRn−i,
which can be computed in constant time. Then T [i− ki..i+ ki] is the
longest odd length palindrome with the middle at i.

• We can find the longest odd length palindrome by computing ki for all
i ∈ [0..n) in O(n) time.

• The longest even length palindrome can be found similarly in O(n)
time. The longest palindrome overall is the longer of the two.

180

