
58093 String Processing Algorithms (Autumn 2015)
Exercises 3 (Tuesday, November 10)

1. Describe how to modify the LSD radix sort algorithm to handle strings of varying lengths. The
time complexity should be the one given in Theorem 1.27.

2. Use the lcp comparison technique to modify the standard insertion sort algorithm so that it sorts
strings in O(ΣLCP (R) + n2) time.

3. Give an example showing that the worst case time complexity of string binary search without
precomputed lcp information is Ω(m log n).

4. Let S[0..n) be a string over an integer alphabet. Show how to build a data structure in O(n) time
and space so that afterwards the Karp–Rabin hash function H(S[i..j)) for the factor S[i..j) can
be computed in constant time for any 0 ≤ i ≤ j ≤ n.

5. Ω(ΣLCP (R)) is a lower bound for string sorting for any algorithm if characters can be accessed
only one at a time. However, for a small alphabet, it is possible to pack several characters into one
machine word. Then multiple characters can be accessed simultaneously and treated as if they
were a single super-character. For example, the string abbaba over the alphabet Σ = {a,b}
can be thought of as the string (ab,ba,ab) over the alphabet Σ2. Algorithms taking advantage
of this are called super-alphabet algorithms.

Develop a super-alphabet version of MSD radix sort. What is the time complexity?


