1. Let $T = \text{lallilla}\$.

 (a) Give the suffix tree of T including suffix links.
 (b) Give the suffix array of T together with the LCP array.

2. The reverse of a string $S[0..m]$ is the string $S^R = S[m-1]S[m-2]..S[0]$. Describe an algorithm for finding the longest factor S of T such that the reverse S^R is a factor of T too. The algorithm should work in linear time on a constant alphabet.

3. What is the number of distinct factors in the string abracadabra?

4. Give a linear time algorithm for computing the matching statistics of S with respect to T from the generalized suffix array of S and T and the associated LCP array (without constructing the suffix tree).

5. Let $L = \text{rttrra}$ be the Burrows–Wheeler transform of a text T.

 (a) What is T?
 (b) Simulate backward search on T for the pattern $P = \text{ari}$.

Please give feedback by filling the feedback form at https://ilmo.cs.helsinki.fi/kurssit/servlet/Valinta?kieli=en