
3. Approximate String Matching
Often in applications we want to search a text for something that is similar
to the pattern but not necessarily exactly the same.

To formalize this problem, we have to specify what does “similar” mean.
This can be done by defining a similarity or a distance measure.

A natural and popular distance measure for strings is the edit distance, also
known as the Levenshtein distance.

121



Edit distance

The edit distance ed(A,B) of two strings A and B is the minimum number of
edit operations needed to change A into B. The allowed edit operations are:

S Substitution of a single character with another character.

I Insertion of a single character.

D Deletion of a single character.

Example 3.1: Let A = Lewensteinn and B = Levenshtein. Then
ed(A,B) = 3.

The set of edit operations can be described

with an edit sequence: NNSNNNINNNND
or with an alignment: Lewens-teinn

Levenshtein-

In the edit sequence, N means No edit.

122



There are many variations and extension of the edit distance, for example:

• Hamming distance allows only the subtitution operation.

• Damerau–Levenshtein distance adds an edit operation:

T Transposition swaps two adjacent characters.

• With weighted edit distance, each operation has a cost or weight.
Cost one for all operations (unit cost) results the standard edit distance.

• Allow insertions and deletions (indels) of factors at a cost that is lower
than the sum of character indels.

We will focus on the basic Levenshtein distance.

Levenshtein distance has the following two useful properties, which are not
shared by all variations (exercise):

• Levenshtein distance is a metric.

• If ed(A,B) = k, there exists an edit sequence and an alignment with k
edit operations, but no edit sequence or alignment with less than k edit
operations. An edit sequence and an alignment with ed(A,B) edit
operations is called optimal.

123



Computing Edit Distance

Given two strings A[1..m] and B[1..n], define the values dij with the
recurrence:

d00 = 0,

di0 = i, 1 ≤ i ≤ m,
d0j = j, 1 ≤ j ≤ n, and

dij = min





di−1,j−1 + δ(A[i], B[j])

di−1,j + 1

di,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n,

where

δ(A[i], B[j]) =

{
1 if A[i] 6= B[j]
0 if A[i] = B[j]

Theorem 3.2: dij = ed(A[1..i], B[1..j]) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n.
In particular, dmn = ed(A,B).

124



Example 3.3: A = ballad, B = handball

d h a n d b a l l
0 1 2 3 4 5 6 7 8

b 1 1 2 3 4 4 5 6 7
a 2 2 1 2 3 4 4 5 6
l 3 3 2 2 3 4 5 4 5
l 4 4 3 3 3 4 5 5 4
a 5 5 4 4 4 4 4 5 5
d 6 6 5 5 4 5 5 5 6

ed(A,B) = dmn = d6,8 = 6.

125



Proof of Theorem 3.2. We use induction with respect to i+ j. For
brevity, write Ai = A[1..i] and Bj = B[1..j].

Basis: d00 = 0 = ed(ε, ε)

di0 = i = ed(Ai, ε) (i deletions)
d0j = j = ed(ε, Bj) (j insertions)

Induction step: We show that the claim holds for dij, 1 ≤ i ≤ m,1 ≤ j ≤ n.
By induction assumption, dpq = ed(Ap, Bq) when p+ q < i+ j.

Let Eij be an optimal edit sequence with the cost ed(Ai, Bj). We have three
cases depending on what the last operation symbol in Eij is:

N or S: Eij = Ei−1,j−1N or Eij = Ei−1,j−1S and
ed(Ai, Bj) = ed(Ai−1, Bj−1)+δ(A[i], B[j]) = di−1,j−1 +δ(A[i], B[j]).

I: Eij = Ei,j−1I and ed(Ai, Bj) = ed(Ai, Bj−1) + 1 = di,j−1 + 1.

D: Eij = Ei−1,jD and ed(Ai, Bj) = ed(Ai−1, Bj) + 1 = di−1,j + 1.

One of the cases above is always true, and since the edit sequence is
optimal, it must be one with the minimum cost, which agrees with the
definition of dij. �

126



The recurrence gives directly a dynamic programming algorithm for
computing the edit distance.

Algorithm 3.4: Edit distance
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)
(1) for i← 0 to m do di0 ← i
(2) for j ← 1 to n do d0j ← j
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) dij ← min{di−1,j−1 + δ(A[i], B[j]), di−1,j + 1, di,j−1 + 1}
(6) return dmn

The time and space complexity is O(mn) in the general alphabet model.

127



The space complexity can be reduced by noticing that each column of the
matrix (dij) depends only on the previous column. We do not need to store
older columns.

A more careful look reveals that, when computing dij, we only need to store
the bottom part of column j − 1 and the already computed top part of
column j. We store these in an array C[0..m] and variables c and d as shown
below:

d0,j−1

dm,j−1

di−1,j

d0,j

dm,j

di−1,j

d0,j

di−1,j−1

c

di,j di,j−1di,j−1

dm,j−1

di,j

ddi−1,j−1

C[0..m]

128



Algorithm 3.5: Edit distance in O(m) space
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)
(1) for i← 0 to m do C[i]← i
(2) for j ← 1 to n do
(3) c← C[0]; C[0]← j
(4) for i← 1 to m do
(5) d← min{c+ δ(A[i], B[j]), C[i− 1] + 1, C[i] + 1}
(6) c← C[i]
(7) C[i]← d
(8) return C[m]

Note that because ed(A,B) = ed(B,A) (exercise), we can always choose A
to be the shorter string so that m ≤ n.

129



It is also possible to find optimal edit sequences and alignments from the
matrix dij.

An edit graph is a directed graph, where the nodes are the cells of the edit
distance matrix, and the edges are as follows:

• If A[i] = B[j] and dij = di−1,j−1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with N.

• If A[i] 6= B[j] and dij = di−1,j−1 + 1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with S.

• If dij = di,j−1 + 1, there is an edge (i, j − 1)→ (i, j) labelled with I.

• If dij = di−1,j + 1, there is an edge (i− 1, j)→ (i, j) labelled with D.

Any path from (0,0) to (m,n) is labelled with an optimal edit sequence.

130



Example 3.6: A = ballad, B = handball

d h a n d b a l l
0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 4 → 5 → 6 → 7 → 8

b

→ ⇒ → → → ⇒
1 1 → 2 → 3 → 4 4 → 5 → 6 → 7

a

→ → → ⇒ ⇒
2 2 1 ⇒ 2 → 3 → 4 4 → 5 → 6

l

→ → → → ⇒ ⇒ → → → ⇒ →
3 3 2 2 ⇒ 3 → 4 → 5 4 → 5

l

→ → → → → → ⇒ ⇒ → → → ⇒
4 4 3 3 3 ⇒ 4 → 5 5 4

a

→ → → → → → → → → → ⇒ ⇒

5 5 4 4 4 4 4 ⇒ 5 5
d

→ → → → → → → → → → → ⇒ ⇒ ⇒

6 6 5 5 4 → 5 5 5 ⇒ 6

There are 7 paths from (0,0) to (6,8) corresponding to 7 different optimal
edit sequences and alignments, including the following three:

IIIINNNNDD SNISSNIS SNSSINSI
----ballad ba-lla-d ball-ad-
handball-- handball handball

131



Approximate String Matching

Now we are ready to tackle the main problem of this part: approximate
string matching.

Problem 3.7: Given a text T [1..n], a pattern P [1..m] and an integer k ≥ 0,
report all positions j ∈ [1..m] such that ed(P, T (j − `...j]) ≤ k for some ` ≥ 0.

The factor T (j − `...j] is called an approximate occurrence of P .

There can be multiple occurrences of different lengths ending at the same
position j, but usually it is enough to report just the end positions.
We ask for the end position rather than the start position because that is
more natural for the algorithms.

132



Define the values gij with the recurrence:

g0j = 0, 0 ≤ j ≤ n,
gi0 = i, 1 ≤ i ≤ m, and

gij = min





gi−1,j−1 + δ(P [i], T [j])

gi−1,j + 1

gi,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n.

Theorem 3.8: For all 0 ≤ i ≤ m, 0 ≤ j ≤ n:
gij = min{ed(P [1..i], T (j − `...j]) | 0 ≤ ` ≤ j} .

In particular, j is an ending position of an approximate occurrence if and
only if gmj ≤ k.

133



Proof. We use induction with respect to i+ j.

Basis:
g00 = 0 = ed(ε, ε)

g0j = 0 = ed(ε, ε) = ed(ε, T (j − 0..j]) (min at ` = 0)
gi0 = i = ed(P [1..i], ε) = ed(P [1..i], T (0− 0..0]) (0 ≤ ` ≤ j = 0)

Induction step: Essentially the same as in the proof of Theorem 3.2.

134



Example 3.9: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m ⇒
1 1 1 0 1 1 1 1 1 1

a ⇒
2 2 2 1 0 1 2 2 2 2

t ⇒

3 3 3 2 1 1 2 3 3 3
c ⇒

4 4 4 3 2 1 2 3 4 4
h ⇒

5 5 5 4 3 2 1 2 3 4

One occurrence ending at position 6.

135



Algorithm 3.10: Approximate string matching
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P
(1) for i← 0 to m do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) gij ← min{gi−1,j−1 + δ(P [i], T [j]), gi−1,j + 1, gi,j−1 + 1}
(6) if qmj ≤ k then output j

• Time and space complexity is O(mn) in the general alphabet model.

• The space complexity can be reduced to O(m) by storing only one
column as in Algorithm 3.5.

136



Ukkonen’s Cut-off Heuristic

We can speed up the algorithm using the diagonal monotonicity of the
matrix (gij):

A diagonal d, −m ≤ d ≤ n, consists of the cells gij with j − i = d.
Every diagonal in (gij) is monotonically non-decreasing.

Example 3.11: Diagonals -3 and 2.

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m –
1 1 1 0 1 1 1 1 1 1

a –
2 2 2 1 0 1 2 2 2 2

t –
3 3 3 2 1 1 2 3 3 3

c – –
4 4 4 3 2 1 2 3 4 4

h – –
5 5 5 4 3 2 1 2 3 4

137



Lemma 3.12: For every i ∈ [1..m] and every j ∈ [1..n],
gij = gi−1,j−1 or gij = gi−1,j−1 + 1.

Proof. By definition, gij ≤ gi−1,j−1 + δ(P [i], T [j]) ≤ gi−1,j−1 + 1. We show
that gij ≥ gi−1,j−1 by induction on i+ j.

The induction assumption is that gpq ≥ gp−1,q−1 when p ∈ [1..m], q ∈ [1..n] and
p+ q < i+ j. At least one of the following holds:

1. gij = gi−1,j−1 + δ(P [i], T [j]). Then gij ≥ gi−1,j−1.

2. gij = gi−1,j + 1 and i > 1. Then

gij = gi−1,j + 1
ind. assump.

≥ gi−2,j−1 + 1
definition
≥ gi−1,j−1

3. gij = gi,j−1 + 1 and j > 1. Then

gij = gi,j−1 + 1
ind. assump.

≥ gi−1,j−2 + 1
definition
≥ gi−1,j−1

4. gij = gi−1,j + 1 and i = 1. Then gij = 0 + 1 > 0 = gi−1,j−1.

5. gij = gi,j−1 + 1 and j = 1. Then gij = i+ 1 = (i− 1) + 2 = gi−1,j−1 + 2,
which cannot be true. Thus this case can never happen. �

138



We can reduce computation using diagonal monotonicity:

• Whenever the value on a diagonal d grows larger than k, we can discard
d from consideration, because we are only interested in values at most k
on the row m.

• We keep track of the smallest undiscarded diagonal d. Each column is
computed only up to diagonal d+ 1.

Example 3.13: P = strict, T = datastructure, k = 1

g d a t a s t r u c t u r e
0 0 0 0 0 0 0 0 0 0 0 0 0 0

s
1 1 1 1 1 0 1 1 1 1 1 1 1 1

t
2 2 2 1 2 1 0 1 2 2 1 2 2 2

r
2 2 2 1 0 1 2 2 2

i
2 1 1 2 3 3

c
2 2 1 2 3

t
2 1 2

139



The row on the current column corresponding to the smallest undiscarded
diagonal is kept in a variable top.

Algorithm 3.14: Ukkonen’s cut-off algorithm
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P
(1) top← min(k + 1,m)
(2) for i← 0 to top do gi0 ← i
(3) for j ← 1 to n do g0j ← 0
(4) for j ← 1 to n do
(5) for i← 1 to top do
(6) gij ← min{gi−1,j−1 + δ(P [i], T [j]), gi−1,j + 1, gi,j−1 + 1}
(7) while gtop,j > k do top← top− 1
(8) if top = m then output j
(9) else top← top+ 1; gtop,j ← k + 1

140



The time complexity is proportional to the computed area in the
matrix (gij).

• The worst case time complexity is still O(mn) in the general alphabet
model.

• The average case time complexity is O(kn). The proof is not trivial.

There are many other algorithms based on diagonal monotonicity. Some of
them achieve O(kn) worst case time complexity.

141


