
Myers’ Bitparallel Algorithm

Another way to speed up the computation is bitparallelism.

Instead of the matrix (gij), we store differences between adjacent cells:

Vertical delta: ∆vij = gij − gi−1,j

Horizontal delta: ∆hij = gij − gi,j−1

Diagonal delta: ∆dij = gij − gi−1,j−1

Because gi0 = i ja g0j = 0,

gij = ∆v1j + ∆v2j + · · ·+ ∆vij

= i+ ∆hi1 + ∆hi2 + · · ·+ ∆hij

Because of diagonal monotonicity, ∆dij ∈ {0,1} and it can be stored in one
bit. By the following result, ∆hij and ∆vij can be stored in two bits.

Lemma 3.15: ∆hij,∆vij ∈ {−1,0,1} for every i, j that they are defined for.

The proof is left as an exercise.

142



Example 3.16: ‘–’ means −1, ‘=’ means 0 and ‘+’ means +1

r e m a c h i n e
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

m + + + + + = = + + + + + + + + + + + +
1 = 1 = 1 – 0 + 1 = 1 = 1 = 1 = 1 = 1

a + + + + + = + = – = = + + + + + + + +
2 = 2 = 2 – 1 – 0 + 1 + 2 = 2 = 2 = 2

t + + + + + = + = + + = + = + + + + + +
3 = 3 = 3 – 2 – 1 = 1 + 2 + 3 = 3 = 3

c + + + + + = + = + = = + = + = + + + +
4 = 4 = 4 – 3 – 2 – 1 + 2 + 3 + 4 = 4

h + + + + + = + = + = + = – = – = – = =
5 = 5 = 5 – 4 – 3 – 2 – 1 + 2 + 3 + 4

143



In the standard computation of a cell:

• Input is gi−1,j, gi−1,j−1, gi,j−1 and δ(P [i], T [j]).

• Output is gij.

In the corresponding bitparallel computation:

• Input is ∆vin = ∆vi,j−1, ∆hin = ∆hi−1,j and Eq = Eqij = 1− δ(P [i], T [j]).

• Output is ∆vout = ∆vi,j and ∆hout = ∆hi,j.

gi−1,j−1
∆hin

−−−−−−−−→ gi−1,j

∆vin

y

y∆vout

gi,j−1 −−−−−−−−−→
∆hout

gij

The algorithm does not compute the ∆d values but they are useful in the
proofs.

144



The computation rule is defined by the following result.

Lemma 3.17: If Eq = 1 or ∆vin = −1 or ∆hin = −1,
then ∆d = 0, ∆vout = −∆hin and ∆hout = −∆vin.
Otherwise ∆d = 1, ∆vout = 1−∆hin and ∆hout = 1−∆vin.

Proof. We can write the recurrence for gij as

gij = min{gi−1,j−1 + δ(P [i], T [j]), gi,j−1 + 1, gi−1,j + 1}
= gi−1,j−1 + min{1− Eq,∆vin + 1,∆hin + 1}.

Then ∆d = gij − gi−1,j−1 = min{1− Eq,∆vin + 1,∆hin + 1}
which is 0 if Eq = 1 or ∆vin = −1 or ∆hin = −1 and 1 otherwise.

Clearly ∆d = ∆vin + ∆hout = ∆hin + ∆vout.
Thus ∆vout = ∆d−∆hin and ∆hout = ∆d−∆vin. �

145



To enable bitparallel operation, we need two changes:

• The ∆v and ∆h values are “trits” not bits. We encode each of them
with two bits as follows:

Pv =

{
1 if ∆v = +1
0 otherwise Mv =

{
1 if ∆v = −1
0 otherwise

Ph =

{
1 if ∆h = +1
0 otherwise Mh =

{
1 if ∆h = −1
0 otherwise

Then

∆v = Pv −Mv

∆h = Ph−Mh

• We replace arithmetic operations (+, −, min) with Boolean (logical)
operations (∧, ∨, ¬).

146



Now the computation rules can be expressed as follows.

Lemma 3.18: Pvout = Mhin ∨ ¬(Xv ∨ Phin) Mvout = Phin ∧Xv
Phout = Mvin ∨ ¬(Xh ∨ Pvin) Mhout = Pvin ∧Xh

where Xv = Eq ∨Mvin and Xh = Eq ∨Mhin.

Proof. We show the claim for Pv and Mv only. Ph and Mh are symmetrical.

By Lemma 3.17,

Pvout = (¬∆d ∧Mhin) ∨ (∆d ∧ ¬Phin)

Mvout = (¬∆d ∧ Phin) ∨ (∆d ∧ 0) = ¬∆d ∧ Phin

Because ∆d = ¬(Eq ∨Mvin ∨Mhin) = ¬(Xv ∨Mhin) = ¬Xv ∧ ¬Mhin,

Pvout = ((Xv ∨Mhin) ∧Mhin) ∨ (¬Xv ∧ ¬Mhin ∧ ¬Phin)

= Mhin ∨ ¬(Xv ∨Mhin ∨ Phin) = Mhin ∨ ¬(Xv ∨ Phin)

Mvout = (Xv ∨Mhin) ∧ Phin = (Xv ∧ Phin) ∨ (Mhin ∧ Phin) = Xv ∧ Phin

All the steps above use just basic laws of Boolean algebra except the last
step, where we use the fact that Mhin and Phin cannot be 1 simultaneously.
�

147



According to Lemma 3.18, the bit representation of the matrix can be
computed as follows.

for i← 1 to m do
Pvi0 ← 1; Mvi0 ← 0

for j ← 1 to n do
Ph0j ← 0; Mh0j ← 0
for i← 1 to m do

Xhij ← Eqij ∨Mhi−1,j

Phij ←Mvi,j−1 ∨ ¬(Xhij ∨ Pvi,j−1)
Mhij ← Pvi,j−1 ∧Xhij

for i← 1 to m do
Xvij ← Eqij ∨Mvi,j−1

Pvij ←Mhi−1,j ∨ ¬(Xvij ∨ Phi−1,j)
Mvij ← Phi−1,j ∧Xvij

This is not yet bitparallel though.

148



To obtain a bitparallel algorithm, the columns Pv∗j, Mv∗j, Xv∗j, Ph∗j, Mh∗j,
Xh∗j and Eq∗j are stored in bitvectors.

Now the second inner loop can be replaced with the code

Xv∗j ← Eq∗j ∨Mv∗,j−1

Pv∗j ← (Mh∗,j << 1) ∨ ¬(Xv∗j ∨ (Ph∗j << 1))
Mv∗j ← (Ph∗j << 1) ∧Xv∗j

A similar attempt with the for first inner loop leads to a problem:

Xh∗j ← Eq∗j ∨ (Mh∗j << 1)
Ph∗j ←Mv∗,j−1 ∨ ¬(Xh∗j ∨ Pv∗,j−1)
Mh∗j ← Pv∗,j−1 ∧Xh∗j

Now the vector Mh∗j is used in computing Xh∗j before Mh∗j itself is
computed! Changing the order does not help, because Xh∗j is needed to
compute Mh∗j.

To get out of this dependency loop, we compute Xh∗j without Mh∗j using
only Eq∗j and Pv∗,j−1 which are already available when we compute Xh∗j.

149



Lemma 3.19: Xhij = ∃` ∈ [1, i] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1).

Proof. We use induction on i.

Basis i = 1: The right-hand side reduces to Eq1j, because ` = 1. By
Lemma 3.18, Xh1j = Eq1j ∨Mh0j, which is Eq1j because Mh0j = 0 for all j.

Induction step: The induction assumption is that Xhi−1,j is as claimed. Now
we have

∃` ∈ [1, i] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1)

= Eqij ∨ ∃` ∈ [1, i− 1] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1)

= Eqij ∨ (Pvi−1,j−1 ∧ ∃` ∈ [1, i− 1] : Eq`j ∧ (∀x ∈ [`, i− 2] : Pvx,j−1))

= Eqij ∨ (Pvi−1,j−1 ∧Xhi−1,j) (ind. assump.)
= Eqij ∨Mhi−1,j (Lemma 3.18)
= Xhij (Lemma 3.18)

�

150



At first sight, we cannot use Lemma 3.19 to compute even a single bit in
constant time, let alone a whole vector Xh∗j. However, it can be done, but
we need more bit operations:

• Let Y denote the xor-operation: 0 Y 1 = 1 Y 0 = 1 and 0 Y 0 = 1 Y 1 = 0.

• A bitvector is interpreted as an integer and we use addition as a bit
operation. The carry mechanism in addition plays a key role. For
example 0001 + 0111 = 1000.

In the following, for a bitvector B, we will write

B = B[1..m] = B[m]B[m− 1] . . . B[1]

The reverse order of the bits reflects the interpretation as an integer.

151



Lemma 3.20: Denote X = Xh∗j, E = Eq∗j, P = Pv∗,j−1 and let
Y = (((E ∧ P ) + P ) Y P ) ∨ E. Then X = Y .

Proof. By Lemma 3.19, X[i] = 1 iff and only if

a) E[i] = 1 or

b) ∃` ∈ [1, i] : E[` . . . i] = 00 · · ·01 ∧ P [` . . . i− 1] = 11 · · ·1.

and X[i] = 0 iff and only if

c) E1...i = 00 · · ·0 or

d) ∃` ∈ [1, i] : E[` . . . i] = 00 · · ·01 ∧ P [` . . . i− 1] 6= 11 · · ·1.

We prove that Y [i] = X[i] in all of these cases:

a) The definition of Y ends with “∨E” which ensures that Y [i] = 1 in this
case.

152



b) The following calculation shows that Y [i] = 1 in this case:
i `

E[` . . . i] =00...01
P [` . . . i] =b1...11

(E ∧ P )[` . . . i] =00...01
((E ∧ P ) + P )[` . . . i] =b̄0...0c

(((E ∧ P ) + P ) Y P )[` . . . i] =11...1c̄
Y = ((((E ∧ P ) + P ) Y P ) ∨ E)[` . . . i] =11...11

where b is the unknown bit P [i], c is the possible carry bit coming from
the summation of bits 1 . . . , `− 1, and b̄ and c̄ are their negations.

c) Because for all bitvectors B, 0 ∧B = 0 ja 0 +B = B, we get
Y = (((0 ∧ P ) + P ) Y P ) ∨ 0 = (P Y P ) ∨ 0 = 0.

d) Consider the calculation in case b). A key point there is that the carry
bit in the summation travels from position ` to i and produces b̄ to
position i. The difference in this case is that at least one bit P [k],
` ≤ k < i, is zero, which stops the carry at position k. Thus
((E ∧ P ) + P )[i] = b and Y [i] = (b Y b) ∨ 0 = 0.

�
153



As a final detail, we compute the bottom row values gmj using the equalities
gm0 = m ja gmj = gm,j−1 + ∆hmj.

Algorithm 3.21: Myers’ bitparallel algorithm
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P
(1) for c ∈ Σ do B[c]← 0m

(2) for i← 1 to m do B[P [i]][i] = 1
(3) Pv ← 1m; Mv ← 0; g ← m
(4) for j ← 1 to n do
(5) Eq ← B[T [j]]
(6) Xh← (((Eq ∧ Pv) + Pv) Y Pv) ∨ Eq
(7) Ph←Mv ∨ ¬(Xh ∨ Pv)
(8) Mh← Pv ∧Xh
(9) Xv ← Eq ∨Mv

(10) Pv ← (Mh << 1) ∨ ¬(Xv ∨ (Ph << 1))
(11) Mv ← (Ph << 1) ∧Xv
(12) g ← g + Ph[m]−Mh[m]
(13) if g ≤ k then output j

154



In the integer alphabet model, when m ≤ w:

• Pattern preprocessing time is O(m+ σ).

• Search time is O(n).

When m > w, we can store each bit vector in dm/we machine words:

• The worst case search time is O(ndm/we).
• Using Ukkonen’s cut-off heuristic, it is possible reduce the average case
search time to O(ndk/we).

There are also algorithms for bitparallel simulation of a nondeterministic
automaton that recognizes the approximate occurrences of the pattern.

Example 3.22:
P = pattern, k = 3

a t t e r np

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

no errors

1 error

2 errors

3 errors

155



Another way to utilize Lemma 3.15 (∆hij,∆vij ∈ {−1,0,1}) is to use
precomputed tables to process multiple matrix cells at a time.

• There are at most 3m different columns. Thus there exists a
deterministic automaton with 3m states and σ3m transitions that can
find all approximate occurrences in O(n) time. However, the space and
constructions time of the automaton can be too big to be practical.

• There is an algorithm for the packed string model that processes
O(logσ n) characters at a time and O(log2

σ n) matrix cells at a time using
lookup tables of size O(n). This gives time complexity O(mn/ log2

σ n).

• A practical variant uses smaller lookup tables to compute multiple
entries of a column at a time.

156



Baeza-Yates–Perleberg Filtering Algorithm

A filtering algorithm for approximate string matching searches the text for
factors having some property that satisfies the following conditions:

1. Every approximate occurrence of the pattern has this property.

2. Strings having this property are reasonably rare.

3. Text factors having this property can be found quickly.

Each text factor with the property is a potential occurrence, which is then
verified for whether it is an actual approximate occurrence.

The Karp–Rabin algorithm is a filtering algorithm for exact string matching.
The property we are looking for in that case is having the same fingerprint
as the pattern.

Filtering algorithms can achieve linear or even sublinear average case time
complexity.

157



The following lemma shows the property used by the Baeza-Yates–Perleberg
algorithm and proves that it satisfies the first condition.

Lemma 3.23: Let P1P2 . . . Pk+1 = P be a partitioning of the pattern P into
k + 1 nonempty factors. Any string S with ed(P, S) ≤ k contains Pi as a
factor for some i ∈ [1..k + 1].

Proof. Each single symbol edit operation can change at most one of the
pattern factors Pi. Thus any set of at most k edit operations leaves at least
one of the factors untouched. �

158



The algorithm has two phases:

Filtration: Search the text T for exact occurrences of the pattern factors Pi.
Using the Aho–Corasick algorithm this takes O(n) time in the constant
alphabet model.

Verification: An area of length O(m) surrounding each potential occurrence
found in the filtration phase is searched using the standard dynamic
programming algorithm in O(m2) time.

The worst case time complexity is O(m2n), which can be reduced to O(mn)
by combining any overlapping areas to be searched.

159



Let us analyze the average case time complexity of the verification phase.

• The best pattern partitioning is as even as possible. Then each pattern
factor has length at least r = bm/(k + 1)c.

• The expected number of exact occurrences of a random string of
length r in a random text of length n is at most n/σr.

• The expected total verification time is at most

O
(

(k + 1) · n
σr
·m2

)
≤ O

(
m3n

σr

)
.

This is O(n) if r ≥ 3 logσm.

• The condition r ≥ 3 logσm is satisfied when (k + 1) ≤ m/(3 logσm+ 1).

Theorem 3.24: The average case time complexity of the
Baeza-Yates–Perleberg algorithm is O(n) when k ≤ m/(3 logσm+ 1)− 1.

160



Many variations of the algorithm have been suggested:

• The filtration can be done with a different multiple exact string
matching algorithm.

• The verification time can be reduced using a technique called
hierarchical verification.

• The pattern can be partitioned into fewer than k + 1 pieces, which are
searched allowing a small number of errors.

A lower bound on the average case time complexity is Ω(n(k + logσm)/m),
and there exists a filtering algorithm matching this bound.

161



Summary: Approximate String Matching

We have seen two main types of algorithms for approximate string matching:

• Basic dynamic programming time complexity is O(mn). The time
complexity can be improved to O(kn) using diagonal monotonicity, and
to O(ndm/we) using bitparallelism.

• Filtering algorithms can improve average case time complexity and are
the fastest in practice when k is not too large. The partitioning into
k + 1 factors is a simple but effective filtering technique.

More advanced techniques have been developed but are not covered here
(except in study groups).

Similar techniques can be useful for other variants of edit distance but not
always straightforwardly.

162



Selected Literature

• Survey

Navarro: A guided tour to approximate string matching. ACM
Computing Reviews, 33(1), 2001, 31–88.

• Edit distance

Levenshtein: Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics–Doklady, 10(8), 1996,
707–710. (Original in Russian in Doklady Akademii Nauk SSSR,
163(4), 1965, 845–848.)

• Dynamic programming

Wagner & Fischer: The string-to-string correction problem.
Journal of the ACM, 21(1), 1975, 168–173.

and many other independent discoveries.

163



• Approximate string matching

Sellers: The theory and computation of evolutionary distances:
pattern recognition. Journal of Algorithms, 1(4), 1980, 359–373.

• Ukkonen’s cut-off algorithm

Ukkonen: Finding approximate patterns in strings. Journal of
Algorithms, 6(1), 1985, 132–137.

• Myers’ bitparallel algorithm

Myers: A fast bit-vector algorithm for approximate string
matching based on dynamic programming. Journal of the ACM,
46(3), 1999, 395–415.

• Baeza-Yates–Perleberg filtering algorithm

Baeza–Yates & Perleberg: Fast and practical approximate string
matching. Information processing Letters, 59(1), 1996, 21–27.

164


