
In backward search, we need to compute the range [bi, ei) from the range
[bi+1, ei+1). This is done separately for each end of the range.

Given bi+1, we can compute bi as follows.

• Recall that bi is the first row in M beginning with Pi = P [i..m), i.e., the
number of rows that are lexicographically smaller than Pi.

• C[P [i]] is the number of rows beginning with a symbol smaller than P [i].

• To C[P [i]] we need to add the number of rows that begin with P [i] and
are lexicographically smaller than Pi.

• rankL(P [i], bi+1) is the number of rows that are lexicographically smaller
than Pi+1 and contain P [i] at the last column. Rotating these rows one
step to the right, we obtain the rotations of T that begin with P [i] and
are lexicographically smaller than P [i]Pi+1 = Pi.

• Thus bi = C[P [i]] + rankL(P [i], bi+1).

Computing ei from ei+1 is similar: ei = C[P [i]] + rankL(P [i], ei+1).

209

Algorithm 4.15: Backward Search
Input: array C, function rankL, pattern P
Output: suffix array range [b..e) containg starting positions of P
(1) b← 0; e← n+ 1
(2) for i← m− 1 downto 0 do
(3) c← P [i]
(4) b← C[c] + rankL(c, b)
(5) e← C[c] + rankL(c, e)
(6) return [b..e)

• The array C requires an integer alphabet that is not too large.

• The trivial implementation of the function rankL as an array requires
Θ(σn) space, which is often too much. There are much more space
efficient (but slower) implementations. There are even implementations
with a size that is close to the size of the compressed text. Such an
implementation is the key component in many compressed text indexes.
These are covered in the course Data Compression Techniques.

210

LCP Array Construction

The LCP array is easy to compute in linear time from the suffix array with
the help of a couple of additional arrays:

• For each i ∈ [1..n], let Φ[SA[i]] = SA[i− 1]. Then the suffix TΦ(j) is the
immediate lexicographical predecessor of the suffix Tj.

• For each i ∈ [1..n], let PLCP [SA[i]] = LCP [i]. Then
PLCP [j] = LCP [SA−1[j]] = lcp(Tj, TΦ[j]), i.e., PLCP [j] is the lcp
between Tj and its lexicographical predecessor.

Example 4.16: T = banana$.

i SA[i] LCP [i] TSA[i]
0 6 $
1 5 0 a$
2 3 1 ana$
3 1 3 anana$
4 0 0 banana$
5 4 0 na$
6 2 2 nana$

j SA−1[j] Φ[j] PLCP [j] Tj
0 4 1 0 banana$
1 3 3 3 anana$
2 6 4 2 nana$
3 2 5 1 ana$
4 5 0 0 na$
5 1 6 0 a$
6 0 $

211

The idea is to compute the lcp values by comparing the suffixes, but skip a
prefix based on a known lower bound for the lcp value obtained using the
following result.

Lemma 4.17: For any j ∈ [1..n), PLCP [j] ≥ PLCP [j − 1]− 1

Proof.

• Let ` = PLCP [j − 1] and `′ = LCP [j]. We want to show that `′ ≥ `− 1.
If ` = 0, the claim is trivially true.

• If ` > 0, then for some symbol c, Tj−1 = cTj and TΦ[j−1] = cTΦ[j−1]+1.
Thus TΦ[j−1]+1 < Tj and lcp(Tj, TΦ[j−1]+1) = lcp(Tj−1, TΦ[j−1])− 1 = `− 1.

• If Φ[j] = Φ[j − 1] + 1, then `′ = lcp(Tj, TΦ[j]) = lcp(Tj, TΦ[j−1]+1) = `− 1.

• If Φ[j] 6= Φ[j − 1] + 1, then TΦ[j−1]+1 < TΦ[j] < Tj because TΦ[j] is the
immediate lexicographical predecessor of Tj. Thus
`′ = lcp(Tj, TΦ[j]) ≥ lcp(Tj, TΦ[j−1]+1) = `− 1.

�

212

The algorithm computes first Φ then PLCP and finally LCP . The
computation of PLCP takes advantage of the above lemma.

Algorithm 4.18: LCP array construction
Input: text T [0..n], suffix array SA[0..n], inverse suffix array SA−1[0..n]
Output: LCP array LCP [1..n]
(1) for i ∈ [1..n] do Φ[SA[i]]← SA[i− 1]
(2) `← 0
(3) for j ← 0 to n− 1 do
(4) while T [j + `] = T [Φ[j] + `] do `← `+ 1
(5) PLCP [j]← `
(6) if ` > 0 then `← `− 1
(7) for i ∈ [1..n] do LCP [i]← PLCP [SA[i]]
(8) return LCP

The time complexity is O(n) in the general alphabet model:

• Everything except the while loop on line (4) takes clearly linear time.

• Each round in the loop increments `. Since ` is decremented at most n
times on line (6) and cannot grow larger than n, the loop is executed
O(n) times in total.

213

Suffix Array Construction

Suffix array construction means simply sorting the set of all suffixes.

• Using standard sorting or string sorting the time complexity is
Ω(ΣLCP (T[0..n])).

• Another possibility is to first construct the suffix tree and then traverse
it from left to right to collect the suffixes in lexicographical order. The
time complexity is O(n) in the constant alphabet model.

Specialized suffix array construction algorithms are a better option, though.

214

Prefix Doubling
Our first specialized suffix array construction algorithm is a conceptually
simple algorithm achieving O(n logn) time.

Let T `i denote the text factor T [i..min{i+ `, n+ 1}) and call it an `-factor.
In other words:

• T `i is the factor starting at i and of length ` except when the factor is
cut short by the end of the text.

• T `i is the prefix of the suffix Ti of length `, or Ti when |Ti| < `.

The idea is to sort the sets T `[0..n] for ever increasing values of `.

• First sort T 1
[0..n], which is equivalent to sorting individual characters.

This can be done in O(n logn) time.

• Then, for ` = 1,2,4,8, . . . , use the sorted set T `[0..n] to sort the set T 2`
[0..n]

in O(n) time.

• After O(logn) rounds, ` > n and T `[0..n] = T[0..n], so we have sorted the
set of all suffixes.

215

We still need to specify, how to use the order for the set T `[0..n] to sort the
set T 2`

[0..n]. The key idea is assigning order preserving names (lexicographical
names) for the factors in T `[0..n]. For i ∈ [0..n], let N `

i be an integer in the
range [0..n] such that, for all i, j ∈ [0..n]:

N `
i ≤ N `

j if and only if T `i ≤ T `j .
Then, for ` > n, N `

i = SA−1[i].

For smaller values of `, there can be many ways of satisfying the conditions
and any one of them will do. A simple choice is

N `
i = |{j ∈ [0, n] | T `j < T `i }| .

Example 4.19: Prefix doubling for T = banana$.

N1

4 b
1 a
5 n
1 a
5 n
1 a
0 $

N2

4 ba
2 an
5 na
2 an
5 na
1 a$
0 $

N4

4 bana
3 anan
6 nana
2 ana$
5 na$
1 a$
0 $

N8 = SA−1

4 banana$
3 anana$
6 nana$
2 ana$
5 na$
1 a$
0 $

216

Now, given N `, for the purpose of sorting, we can use

• N `
i to represent T `i

• the pair (N `
i , N

`
i+`) to represent T 2`

i = T `i T
`
i+`.

Thus we can sort T 2`
[0..n] by sorting pairs of integers, which can be done in

O(n) time using LSD radix sort.

Theorem 4.20: The suffix array of a string T [0..n] can be constructed in
O(n logn) time using prefix doubling.

• The technique of assigning order preserving names to factors whose
lengths are powers of two is called the Karp–Miller–Rosenberg naming
technique. It was developed for other purposes in the early seventies
when suffix arrays did not exist yet.

• The best practical variant is the Larsson–Sadakane algorithm, which
uses ternary quicksort instead of LSD radix sort for sorting the pairs,
but still achieves O(n logn) total time.

217

Let us return to the first phase of the prefix doubling algorithm: assigning
names N1

i to individual characters. This is done by sorting the characters,
which is easily within the time bound O(n logn), but sometimes we can do
it faster:

• In the general alphabet model, we can use ternary quicksort for time
complexity O(n logσT) where σT is the number of distinct symbols in T .

• In the integer alphabet model with σ = O(nc) for any constant c,
we can use LSD radix sort with radix n for time complexity O(n).

After this, we can replace each character T [i] with N1
i to obtain a new

string T ′:

• The characters of T ′ are integers in the range [0..n].

• The character T ′[n] = 0 is the unique, smallest symbol, i.e., $.

• The suffix arrays of T and T ′ are exactly the same.

Thus we can construct the suffix array using T ′ as the text instead of T .

As we will see next, the suffix array of T ′ can be constructed in linear time.
Then sorting the characters of T to obtain T ′ is the asymptotically most
expensive operation in the suffix array construction of T for any alphabet.

218

Recursive Suffix Array Construction

Let us now describe linear time algorithms for suffix array construction. We
assume that the alphabet of the text T [0..n) is [1..n] and that T [n] = 0 (=$
in the examples).

The outline of the algorithms is:

0. Choose a subset C ⊂ [0..n].

1. Sort the set TC. This is done as follows:

(a) Construct a reduced string R of length |C|, whose characters are
order preserving names of text factors starting at the positions in C.

(b) Construct the suffix array of R recursively.

2. Sort the set T[0..n] using the order of TC.

219

Assume that

• |C| ≤ αn for a constant α < 1, and

• excluding the recursive call, all steps in the algorithm take linear time.

Then the total time complexity can be expressed as the recurrence
t(n) = O(n) + t(αn), whose solution is t(n) = O(n).

To make the scheme work, the set C must satisfy two nontrivial conditions:

1. There exists an appropriate reduced string R.

2. Given sorted TC the suffix array of T is easy to construct.

Finding sets C that satisfy both conditions is difficult, but there are two
different methods leading to two different algorithms:

• DC3 uses difference cover sampling

• SAIS uses induced sorting

220

Difference Cover Sampling

A difference cover Dq modulo q is a subset of [0..q) such that all values in
[0..q) can be expressed as a difference of two elements in Dq modulo q. In
other words:

[0..q) = {i− j mod q | i, j ∈ Dq} .

Example 4.21: D7 = {1,2,4}
1− 1 = 0 1− 4 = −3 ≡ 4 (mod q)
2− 1 = 1 2− 4 = −2 ≡ 5 (mod q)
4− 2 = 2 1− 2 = −1 ≡ 6 (mod q)
4− 1 = 3

In general, we want the smallest possible difference cover for a given q.

• For any q, there exist a difference cover Dq of size O(
√
q).

• The DC3 algorithm uses the simplest non-trivial difference cover
D3 = {1,2}.

221

A difference cover sample is a set TC of suffixes, where

C = {i ∈ [0..n] | (i mod q) ∈ Dq} .

Example 4.22: If T = banana$ and D3 = {1,2},
then C = {1,2,4,5} and TC = {anana$, nana$, na$, a$}.
Once we have sorted the difference cover sample TC, we can compare any
two suffixes in O(q) time. To compare suffixes Ti and Tj:

• If i ∈ C and j ∈ C, then we already know their order from TC.

• Otherwise, find ` such that i+ ` ∈ C and j + ` ∈ C. There always exists
such ` ∈ [0..q). Then compare:

Ti = T [i..i+ `)Ti+`

Tj = T [j..j + `)Tj+`

That is, compare first T [i..i+ `) to T [j..j + `), and if they are the same,
then Ti+` to Tj+` using the sorted TC.

Example 4.23: D3 = {1,2} and C = {1,2,4,5, . . . }
T0 = T [0]T1

T1 = T [1]T2

T0 = T [0]T [1]T2

T2 = T [2]T [3]T4

T0 = T [0]T1

T3 = T [3]T4

222

Algorithm 4.24: DC3

Step 0: Choose C.

• Use difference cover D3 = {1,2}.
• For k ∈ {0,1,2}, define Ck = {i ∈ [0..n] | i mod 3 = k}.
• Let C = C1 ∪ C2 and C̄ = C0.

Example 4.25: i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $

C̄ = C0 = {0,3,6,9,12}, C1 = {1,4,7,10}, C2 = {2,5,8,11} and
C = {1,2,4,5,7,8,10,11}.

223

Step 1: Sort TC.

• For k ∈ {1,2}, Construct the strings Rk = (T 3
k , T

3
k+3, T

3
k+6, . . . , T

3
maxCk

)
whose characters are 3-factors of the text, and let R = R1R2.

• Replace each factor T 3
i in R with an order preserving name N3

i ∈ [1..|R|].
The names can be computed by sorting the factors with LSD radix sort
in O(n) time. Let R′ be the result appended with 0.

• Construct the inverse suffix array SA−1
R′ of R′. This is done recursively

using DC3 unless all symbols in R′ are unique, in which case SA−1
R′ = R′.

• From SA−1
R′ , we get order preserving names for suffixes in TC.

For i ∈ C, let Ni = SA−1
R′ [j], where j is the position of T 3

i in R.
For i ∈ C̄, let Ni = ⊥. Also let Nn+1 = Nn+2 = 0.

Example 4.26: R abb ada bba do$ bba dab bad o$
R′ 1 2 4 7 4 6 3 8 0

SA−1
R′ 1 2 5 7 4 6 3 8 0

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥ 0 0

224

Step 2(a): Sort TC̄.

• For each i ∈ C̄, we represent Ti with the pair (T [i], Ni+1). Then

Ti ≤ Tj ⇐⇒ (T [i], Ni+1) ≤ (T [j], Nj+1) .

Note that Ni+1 6= ⊥ for all i ∈ C̄.

• The pairs (T [i], Ni+1) are sorted by LSD radix sort in O(n) time.

Example 4.27:

i 0 1 2 3 4 5 6 7 8 9 10 11 12
T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T12 < T6 < T9 < T3 < T0 because ($,0) < (a,5) < (a,7) < (b,2) < (y,1).

225

Step 2(b): Merge TC and TC̄.

• Use comparison based merging algorithm needing O(n) comparisons.

• To compare Ti ∈ TC and Tj ∈ TC̄, we have two cases:

i ∈ C1 : Ti ≤ Tj ⇐⇒ (T [i], Ni+1) ≤ (T [j], Nj+1)

i ∈ C2 : Ti ≤ Tj ⇐⇒ (T [i], T [i+ 1], Ni+2) ≤ (T [j], T [j + 1], Nj+2)

Note that none of the N-values is ⊥.

Example 4.28:

i 0 1 2 3 4 5 6 7 8 9 10 11 12
T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T1 < T6 because (a,4) < (a,5).
T3 < T8 because (b, a,6) < (b, a,7).

226

Theorem 4.29: Algorithm DC3 constructs the suffix array of a string
T [0..n) in O(n) time plus the time needed to sort the characters of T .

There are many variants:

• DC3 is an optimal algorithm under several parallel and external memory
computation models, too. There exists both parallel and external
memory implementations of DC3.

• Using a larger value of q, we obtain more space efficient algorithms. For
example, using q = logn, the time complexity is O(n logn) and the
space needed in addition to the text and the suffix array is O(n/

√
logn).

227

Induced Sorting

Define two types of suffixes, − and +, as follows:

C− = {i ∈ [0..n) | Ti > Ti+1}
C+ = {i ∈ [0..n) | Ti < Ti+1}

Furthermore, for each run of consecutive suffixes of the same type, define
the leftmost suffix as a ∗ suffix:

C−∗ = {i ∈ C− | i− 1 ∈ C+}
C+∗ = {i ∈ C+ | i− 1 ∈ C−}

Example 4.30:
i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
type of Ti − + − − + − + − − + + −

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

228

For every a ∈ Σ and x ∈ {−,+,−∗,+∗} define
Ca = {i ∈ [0..n) | T [i] = a}
Cx
a = Ca ∩ Cx

The two types of suffixes starting with the same character are
lexicographically separated:

Lemma 4.31: For all a ∈ Σ,

C−a = {i ∈ Ca | Ti < a∞}
C+
a = {i ∈ Ca | Ti > a∞}

Thus, if i ∈ C−a and j ∈ C+
a , then Ti < Tj. Hence the suffix array is

nC1C2 . . . Cσ−1 = nC−1 C
+
1 C

−
2 C

+
2 . . . C−σ−1C

+
σ−1.

229

The basic idea of induced sorting is to use information about the order of Ti
to induce the order of the suffix Ti−1 = T [i− 1]Ti. The main steps are:

1. Sort the sets C−∗a , a ∈ [1..σ).

2. Use C−∗a , a ∈ [1..σ), to induce the order of the sets C+
a , a ∈ [1..σ).

3. Use C+∗
a ⊆ C+

a , a ∈ [1..σ), to induce the order of the sets C−a , a ∈ [1..σ).

The suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 4.32: For all a ∈ [1..σ)

(a) i− 1 ∈ C−a iff i > 0 and T [i− 1] = a and one of the following holds

1. i = n

2. i ∈ C+∗

3. i ∈ C− and T [i− 1] ≥ T [i].

(b) i− 1 ∈ C+
a iff i > 0 and T [i− 1] = a and one of the following holds

1. i ∈ C−∗
2. i ∈ C+ and T [i− 1] ≤ T [i].

230

To induce C− suffixes:

1. Set C−a empty for all a ∈ [1..σ).

2. For all suffixes Ti such that i− 1 ∈ C− in lexicographical order,
append i− 1 into C−

T [i−1].

By Lemma 4.32(a), Step 2 can be done by checking the relevant conditions
for all i ∈ nC−1 C+∗

1 C−2 C
+∗
2

Algorithm 4.33: InduceMinusSuffixes
Input: Lexicographically sorted lists C+∗

a , a ∈ Σ
Output: Lexicographically sorted lists C−a , a ∈ Σ
(1) for a ∈ Σ do C−a ← ∅
(2) pushback(n− 1, C−

T [n−1])

(3) for a← 1 to σ − 1 do
(4) for i ∈ C−a do // include elements added during the loop
(5) if i > 0 and T [i− 1] ≥ a then pushback(i− 1, C−

T [i−1])

(6) for i ∈ C+∗
a do pushback(i− 1, C−

T [i−1])

Note that since Ti−1 > Ti by definition of C−, we always have i inserted
before i− 1.

231

Inducing +-type suffixes goes similarly but in reverse order so that again i is
always inserted before i− 1:

1. Set C+
a empty for all a ∈ [1..σ).

2. For all suffixes Ti such that i− 1 ∈ C+ in descending lexicographical
order, append i− 1 into C+

T [i−1].

Algorithm 4.34: InducePlusSuffixes
Input: Lexicographically sorted lists C−∗a , a ∈ Σ
Output: Lexicographically sorted lists C+

a , a ∈ Σ
(1) for a ∈ Σ do C+

a ← ∅
(2) for a← σ − 1 downto 1 do
(3) for i ∈ C+

a in reverse order do // include elements added during loop
(4) if i > 0 and T [i− 1] ≤ a then pushfront(i− 1, C+

T [i−1])

(5) for i ∈ C−∗a do pushfront(i− 1, C+
T [i−1])

232

We still need to explain how to sort the −∗-type suffixes. For this we need
the following definition and result:

F [i] = min{k ∈ [i+ 1..n] | k ∈ C−∗ or k = n}
Si = T [i..F [i]]

Lemma 4.35: For any i, j ∈ [0..n), Ti < Tj iff Si < Sj or Si = Sj and
TF [i] < TF [j].

Proof. The claim is trivially true except in the case that Si is a proper
prefix of Sj (or vice versa). In that case, Si < Sj and thus Ti < Tj by the
claim. We will show that this is correct.

Let k = F [i], ` = j + k − i and a = T [k]. Then

• k ∈ C−∗ and thus k − 1 ∈ C+. Since Tk < a∞ < Tk−1 by Lemma 4.31, we
must have T [k − 1] > T [k].

• T [`− 1..`] = T [k − 1..k] and thus T [`− 1] > T [`]. If we had ` ∈ C−, we
would have ` ∈ C−∗. Since this is not the case, we must have ` ∈ C+.

• Since k ∈ C−a and ` ∈ C+
a , we must have Tk < a∞ < T`.

• Since T [i..k) = T [j..`) and Tk < T`, we have Ti < Tj.

�
233

Algorithm 4.36: SAIS

Step 0: Choose C.

• Compute the types of suffixes. This can be done in O(n) time based on
Lemma 4.32.

• Set C = ∪a∈[1..σ)C
−∗
a . Note that |C| ≤ n/2, since for all i ∈ C,

i− 1 ∈ C+ ⊆ C̄.

Example 4.37:
i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
type of Ti − + − − + − + − − + + −

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

C−∗b = {2,7}, C−∗d = {5}, C−∗o = {11}, C = {2,5,7,11}.

234

Step 1: Sort TC.

• Sort the strings Si, i ∈ C−∗. Since the total length of the strings Si is
O(n), the sorting can be done in O(n) time using LSD radix sort.

• Assign order preserving names Ni ∈ [1..|C|] to the string Si so that
Ni ≤ Nj iff Si ≤ Sj.

• Construct the sequence R = Ni1Ni2 . . . Nk0, where i1 < i3 < · · · < ik are
the -*-type positions.

• Construct the suffix array SAR of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

• The order of the suffixes of R corresponds to the order of −∗-type
suffixes of T . Thus we can construct the lexicographically ordered lists
C−∗a , a ∈ [1..σ).

Example 4.38: i 0 1 2 3 4 5 6 7 8 9 10 11 12
T [i] y a b b a d a b b a d o $
Ni 1 3 2 4

R = [bbad][dab][bbado][o$]$ = 13240, SAR = (4,0,2,1,3), C−∗b = (2,7)

235

Step 2: Sort T[0..n].

• Run InducePlusSuffixes to construct the sorted lists C+
a , a ∈ [1..σ).

• Run InduceMinusSuffixes to construct the sorted lists C−a , a ∈ [1..σ).

• The suffix array is SA = nC−1 C
+
1 C

−
2 C

+
2 . . . C−σ−1C

+
σ−1.

Example 4.39:
i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
type of Ti − + − − + − + − − + + −
C+
y = C−∗y = C+

o = ∅, C−∗o = {11} ⇒ C+
d = {10},

C+
d = {10} ⇒ C+

a = {9}, C−∗d = {5} ⇒ C+
a = {4,9}, C+

b = ∅,
C−∗b = {2,7} ⇒ C+

a {1,6,4,9}, C+
a {1,6,4,9} ⇒ C+∗

a = {1,6,4,9}
n = 12 ⇒ C−o = {11}, C−a = ∅,
C+∗
a = {1,6,4,9} ⇒ C−y = {0}, C−d = {5}, C−b = {3,8},

C−b = {3,8} ⇒ C−b = {3,8,2,7}, C−b = {. . . ,2,7}, C−d = {5}, C+∗
d = ∅,

C−d = {10}, C+∗
o = ∅, C−y = {0}, C+∗

y = ∅
SA = nC−a C

+
a C

−
b C

+
b C

−
d C

+
d C

−
o C

+
o C

−
y C

+
y = (12,1,6,4,9,3,8,2,7,5,10,11,0)

236

Theorem 4.40: Algorithm SAIS constructs the suffix array of a string
T [0..n) in O(n) time plus the time needed to sort the characters of T .

• In Step 1, to sort the strings Si, i ∈ C∗, SAIS does not actually use LSD
radix sort but the following procedure:

1. Construct the sets C−∗a , a ∈ [1..σ) in arbitrary order.

2. Run InducePlusSuffixes to construct the lists C+
a , a ∈ [1..σ).

3. Run InduceMinusSuffixes to construct the lists C−a , a ∈ [1..σ).

4. Remove non-*-type positions from C−1 C
−
2 . . . C

−
σ−1.

With this change, most of the work is done in the induction procedures.
This is very fast in practice, because all the lists Cx

a are accessed
sequentially during the procedures.

• The currently fastest suffix sorting implementation in practice is
probably divsufsort by Yuta Mori. It sorts the *-type suffixes
non-recursively in O(n logn) time and then continues as SAIS.

237

Summary: Suffix Trees and Arrays

The most important data structures for string processing:

• Designed for indexed exact string matching.

• Used in efficient solutions to a huge variety of different problems.

Construction algorithms are among the most important algorithms for string
processing:

• Linear time for constant and integer alphabet models.

Often augmented with additional data structures:

• suffix links, LCA preprocessing

• LCP array, RMQ preprocessing, BWT, ...

More and more often suffix trees and arrays are replaced by compressed text
indexes, often based on the BWT.

238

Selected Literature

• Survey

Apostolico, Crochemore, Farach-Colton, Galil & Muthukrishnan:
40 years of suffix trees. Communications of the ACM, 59(4),
2016, 66–73.

• Suffix tree construction

Weiner: Linear pattern matching algorithms. Proc. 14th Annual
IEEE Symposium on Switching and Automata Theory, IEEE
1973, 1–11.

McCreight: A space-economical suffix tree construction
algorithm. Journal of the ACM, 23(2), 1976, 262–272.

Ukkonen: On-line construction of suffix trees. Algorithmica
14(3), 1995, 249–260.

Farach: Optimal suffix tree construction with large alphabets.
Proc. 38th IEEE Symposium on Foundations of Computer
Science, IEEE 1997, 137–143.

239

• Suffix array

Manber & Myers: Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing, 22(5), 1993, 935–948.

• Enhanced suffix array

Kasai, Lee, Arimura, Arikawa, Park: Linear-time
longest-common-prefix computation in suffix arrays and its
applications. Proc. 12th Symposium on Combinatorial Pattern
Matching. LNCS 2089, Springer, 2001, 181–192.

Abouelhoda, Kurtz & Ohlebusch: Replacing suffix trees with
enhanced suffix arrays. Journal of Discrete Algorithms, 2(1),
2004, 53–86.

240

• Burrows–Wheeler transform

Burrows & Wheeler: A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment
Corporation, 1994.

• Backward search

Ferragina & Manzini: Indexing compressed text. Journal of the
ACM, 52(4), 2005, 552–581.

241

• LCP array construction

Kasai, Lee, Arimura, Arikawa, Park: Linear-time
longest-common-prefix computation in suffix arrays and its
applications. Proc. 12th Symposium on Combinatorial Pattern
Matching. LNCS 2089, Springer, 2001, 181–192.

Kärkkäinen, Manzini &Puglisi: Permuted longest-common-prefix
array. Proc. 20th Symposium on Combinatorial Pattern
Matching. LNCS 5577, Springer, 2009, 181–192.

• Suffix array construction: survey

Puglisi, Smyth & Turpin: A taxonomy of suffix array
construction algorithms. ACM Computing Surveys, 39(2),
Article 4, 2007.

242

• Suffix array construction: prefix doubling

Manber & Myers: Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing, 22(5), 1993, 935–948.

Larsson & Sadakane: Faster suffix sorting. Theoretical
Computer Science, 387(3), 2007, 258–272.

• Suffix array construction: difference cover sampling

Kärkkäinen, Sanders & Burkhardt: Linear work suffix array
construction. Journal of the ACM, 53(6), 2006, 918–936.

• Suffix array construction: induced sorting

Ko & Aluru: Space efficient linear time construction of suffix
arrays. Journal of Discrete Algorithms, 3(2), 2005, 143–156.

Nong, Zhang & Chan: Two efficient algorithms for linear time
suffix array construction. IEEE Transactions on Computers,
60(10), 2011, 1471–1484.

243

