1. Let \(T = \text{lallilla}\$ \).

 (a) Give the suffix tree of \(T \) including suffix links.

 (b) Give the suffix array of \(T \) together with the LCP array.

Solution:

Suffix tree:

[Diagram of suffix tree]

Suffix and LCP array:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(SA[i])</th>
<th>(LCP[i])</th>
<th>(T_{SA[i]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>\text{a}$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>\text{a}$lilla$</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>\text{illa}$</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>\text{la}$</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>\text{lilla}$</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
<td>\text{illa}$</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>\text{illa}$</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>\text{lilla}$</td>
</tr>
</tbody>
</table>

2. The reverse of a string \(S[0..m] \) is the string \(S^R = S[m-1]\text{S}[m-2]..S[0] \). Describe an algorithm for finding the longest factor \(S \) of \(T[0..n] \) such that the reverse \(S^R \) is a factor of \(T \) too. The algorithm should work in linear time in the constant alphabet model.

Solution: \(S \) and \(S^R \) are both factors of \(T \) if and only if \(S \) is a factor of both \(T \) and \(T^R \). Therefore, \(S \) is the longest common factor of \(T \) and \(T^R \).

The longest common factor of \(T \) and \(T^R \) can be computed using the generalized suffix tree (see slide 185 in the lectures). Therefore, the problem is reduced to the computation of a suffix tree for a string \(TLT^R\$ \) which can be done in linear time using for example McCreight’s algorithm.
3. What is the number of distinct factors in the string abracadabra?

Solution:

The suffixes in lexicographic order are

```plaintext
a
abra
abracadabra
acadabra
adabra
bra
bracadabra
cadabra
dabra
ra
racadabra
```

The LCP array is

\[\text{LCP} = (1, 4, 1, 0, 3, 0, 0, 2) \]

and the sum is 12. Thus the number of distinct factors is \(11 \cdot \frac{12}{2} + 1 - 12 = 55 \).

4. Give a linear time algorithm for computing the matching statistics of \(S \) with respect to \(T \) from the generalized suffix array of \(S \) and \(T \) and the associated LCP array (without constructing the suffix tree).

Solution:

Let \(SA \) be the suffix array of \(T \$S \$ \) and \(LCP \) be the associated LCP array. \(SA[i] \) represents a \(T \)-suffix \(T_{SA[i]} \) if \(SA[i] \leq |T| \) and an \(S \)-suffix \(S_{SA[i]−|T|−1} \) otherwise.

Let \(i < j \) be such that \(SA[i] \) and \(SA[j] \) are \(T \)-suffixes and, for all \(k \in (i..j) \), \(SA[k] \) is an \(S \)-suffix.

Consider some \(k \in (i..j) \) and let \(k' = SA[k] − |T| − 1 \), i.e., \(S_{k'} \) is the suffix at \(SA[k] \). Let

\[
\ell_1 = \text{lcp}(T_{SA[i]}, S_{k'}) = \min\{LCP[h] \mid h \in [i+1..k]\}
\]

\[
\ell_2 = \text{lcp}(T_{SA[j]}, S_{k'}) = \min\{LCP[h] \mid h \in [k+1..j]\}
\]

where we used Lemma 4.9 in the lecture notes. Then

\[
MS[k'] = \begin{cases}
(\ell_1, SA[i]) & \text{if } \ell_1 \geq \ell_2 \\
(\ell_2, SA[j]) & \text{otherwise}
\end{cases}
\]

We can compute \(\ell_1 \) for all \(k \in (i..j) \) in \(O(j - i) \) time with a single left-to-right scan of \(LCP[i+1..j] \) and similarly \(\ell_2 \) with a single right-to-left scan of \(LCP[i+1..j] \). Thus the total time complexity is \(O(|S| + |T|) \).
5. Let \(L = rtttrar\$ii \) be the Burrows–Wheeler transform of a text \(T \).

(a) What is \(T \)?

Solution: \(T = ritaritar\$. \)

(b) Simulate backward search on \(T \) for the pattern \(P = ari \).

Solution: The following table shows the computation in the main loop of Algorithm 4.15:

<table>
<thead>
<tr>
<th>(i)</th>
<th>old (b)</th>
<th>old (e)</th>
<th>(c \leftarrow P[i])</th>
<th>(C[c])</th>
<th>(\text{rank}(c, b))</th>
<th>(\text{rank}(c, e))</th>
<th>new (b)</th>
<th>new (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>10</td>
<td>i</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>r</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>8</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The output is the range \([2..3)\).