001 /*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements. See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License. You may obtain a copy of the License at
008 *
009 * http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017 package org.apache.commons.math.analysis.interpolation;
018
019 import java.io.Serializable;
020
021 import org.apache.commons.math.MathException;
022 import org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm;
023
024 /**
025 * Implements the <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
026 * Neville's Algorithm</a> for interpolation of real univariate functions. For
027 * reference, see <b>Introduction to Numerical Analysis</b>, ISBN 038795452X,
028 * chapter 2.
029 * <p>
030 * The actual code of Neville's evalution is in PolynomialFunctionLagrangeForm,
031 * this class provides an easy-to-use interface to it.</p>
032 *
033 * @version $Revision: 799857 $ $Date: 2009-08-01 09:07:12 -0400 (Sat, 01 Aug 2009) $
034 * @since 1.2
035 */
036 public class NevilleInterpolator implements UnivariateRealInterpolator,
037 Serializable {
038
039 /** serializable version identifier */
040 static final long serialVersionUID = 3003707660147873733L;
041
042 /**
043 * Computes an interpolating function for the data set.
044 *
045 * @param x the interpolating points array
046 * @param y the interpolating values array
047 * @return a function which interpolates the data set
048 * @throws MathException if arguments are invalid
049 */
050 public PolynomialFunctionLagrangeForm interpolate(double x[], double y[])
051 throws MathException {
052 return new PolynomialFunctionLagrangeForm(x, y);
053 }
054 }