001 /*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements. See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License. You may obtain a copy of the License at
008 *
009 * http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017 package org.apache.commons.math.genetics;
018
019 import java.util.ArrayList;
020 import java.util.Arrays;
021 import java.util.Collections;
022 import java.util.Comparator;
023 import java.util.List;
024
025 /**
026 * <p>
027 * Random Key chromosome is used for permutation representation. It is a vector
028 * of a fixed length of real numbers in [0,1] interval. The index of the i-th
029 * smallest value in the vector represents an i-th member of the permutation.
030 * </p>
031 *
032 * <p>
033 * For example, the random key [0.2, 0.3, 0.8, 0.1] corresponds to the
034 * permutation of indices (3,0,1,2). If the original (unpermuted) sequence would
035 * be (a,b,c,d), this would mean the sequence (d,a,b,c).
036 * </p>
037 *
038 * <p>
039 * With this representation, common operators like n-point crossover can be
040 * used, because any such chromosome represents a valid permutation.
041 * </p>
042 *
043 * <p>
044 * Since the chromosome (and thus its arrayRepresentation) is immutable, the
045 * array representation is sorted only once in the constructor.
046 * </p>
047 *
048 * <p>
049 * For details, see:
050 * <ul>
051 * <li>Bean, J.C.: Genetic algorithms and random keys for sequencing and
052 * optimization. ORSA Journal on Computing 6 (1994) 154–160</li>
053 * <li>Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms.
054 * Volume 104 of Studies in Fuzziness and Soft Computing. Physica-Verlag,
055 * Heidelberg (2002)</li>
056 * </ul>
057 * </p>
058 *
059 * @param <T>
060 * type of the permuted objects
061 * @since 2.0
062 * @version $Revision: 811685 $ $Date: 2009-09-05 13:36:48 -0400 (Sat, 05 Sep 2009) $
063 */
064 public abstract class RandomKey<T> extends AbstractListChromosome<Double> implements PermutationChromosome<T> {
065
066 /**
067 * Cache of sorted representation (unmodifiable).
068 */
069 private final List<Double> sortedRepresentation;
070
071 /**
072 * Base sequence [0,1,...,n-1], permuted accorting to the representation (unmodifiable).
073 */
074 private final List<Integer> baseSeqPermutation;
075
076 /**
077 * Constructor.
078 *
079 * @param representation list of [0,1] values representing the permutation
080 */
081 public RandomKey(List<Double> representation) {
082 super(representation);
083 // store the sorted representation
084 List<Double> sortedRepr = new ArrayList<Double> (getRepresentation());
085 Collections.sort(sortedRepr);
086 sortedRepresentation = Collections.unmodifiableList(sortedRepr);
087 // store the permutation of [0,1,...,n-1] list for toString() and isSame() methods
088 baseSeqPermutation = Collections.unmodifiableList(
089 decodeGeneric(baseSequence(getLength()), getRepresentation(), sortedRepresentation)
090 );
091 }
092
093 /**
094 * Constructor.
095 *
096 * @param representation array of [0,1] values representing the permutation
097 */
098 public RandomKey(Double[] representation) {
099 this(Arrays.asList(representation));
100 }
101
102 /**
103 * {@inheritDoc}
104 */
105 public List<T> decode(List<T> sequence) {
106 return decodeGeneric(sequence, getRepresentation(), sortedRepresentation);
107 }
108
109 /**
110 * Decodes a permutation represented by <code>representation</code> and
111 * returns a (generic) list with the permuted values.
112 *
113 * @param <S> generic type of the sequence values
114 * @param sequence the unpermuted sequence
115 * @param representation representation of the permutation ([0,1] vector)
116 * @param sortedRepr sorted <code>representation</code>
117 * @return list with the sequence values permuted according to the representation
118 */
119 private static <S> List<S> decodeGeneric(List<S> sequence, List<Double> representation, List<Double> sortedRepr) {
120 int l = sequence.size();
121
122 if (representation.size() != l) {
123 throw new IllegalArgumentException(String.format("Length of sequence for decoding (%s) has to be equal to the length of the RandomKey (%s)", l, representation.size()));
124 }
125 if (representation.size() != sortedRepr.size()) {
126 throw new IllegalArgumentException(String.format("Representation and sortedRepr must have same sizes, %d != %d", representation.size(), sortedRepr.size()));
127 }
128
129 List<Double> reprCopy = new ArrayList<Double> (representation);// do not modify the orig. representation
130
131 // now find the indices in the original repr and use them for permuting
132 List<S> res = new ArrayList<S> (l);
133 for (int i=0; i<l; i++) {
134 int index = reprCopy.indexOf(sortedRepr.get(i));
135 res.add(sequence.get(index));
136 reprCopy.set(index, null);
137 }
138 return res;
139 }
140
141 /**
142 * Returns <code>true</code> iff <code>another</code> is a RandomKey and
143 * encodes the same permutation.
144 *
145 * @param another chromosome to compare
146 * @return true iff chromosomes encode the same permutation
147 */
148 @Override
149 protected boolean isSame(Chromosome another) {
150 // type check
151 if (! (another instanceof RandomKey<?>))
152 return false;
153 RandomKey<?> anotherRk = (RandomKey<?>) another;
154 // size check
155 if (getLength() != anotherRk.getLength())
156 return false;
157
158 // two different representations can still encode the same permutation
159 // the ordering is what counts
160 List<Integer> thisPerm = this.baseSeqPermutation;
161 List<Integer> anotherPerm = anotherRk.baseSeqPermutation;
162
163 for (int i=0; i<getLength(); i++) {
164 if (thisPerm.get(i) != anotherPerm.get(i))
165 return false;
166 }
167 // the permutations are the same
168 return true;
169 }
170
171 /**
172 * {@inheritDoc}
173 */
174 @Override
175 protected void checkValidity(java.util.List<Double> chromosomeRepresentation) throws InvalidRepresentationException {
176 for (double val : chromosomeRepresentation) {
177 if (val < 0 || val > 1) {
178 throw new InvalidRepresentationException("Values of representation must be in [0,1] interval");
179 }
180 }
181 }
182
183
184 /**
185 * Generates a representation corresponding to a random permutation of
186 * length l which can be passed to the RandomKey constructor.
187 *
188 * @param l
189 * length of the permutation
190 * @return representation of a random permutation
191 */
192 public static final List<Double> randomPermutation(int l) {
193 List<Double> repr = new ArrayList<Double>(l);
194 for (int i=0; i<l; i++) {
195 repr.add(GeneticAlgorithm.getRandomGenerator().nextDouble());
196 }
197 return repr;
198 }
199
200 /**
201 * Generates a representation corresponding to an identity permutation of
202 * length l which can be passed to the RandomKey constructor.
203 *
204 * @param l
205 * length of the permutation
206 * @return representation of an identity permutation
207 */
208 public static final List<Double> identityPermutation(int l) {
209 List<Double> repr = new ArrayList<Double>(l);
210 for (int i=0; i<l; i++) {
211 repr.add((double)i/l);
212 }
213 return repr;
214 }
215
216 /**
217 * Generates a representation of a permutation corresponding to the
218 * <code>data</code> sorted by <code>comparator</code>. The
219 * <code>data</code> is not modified during the process.
220 *
221 * This is useful if you want to inject some permutations to the initial
222 * population.
223 *
224 * @param <S> type of the data
225 * @param data list of data determining the order
226 * @param comparator how the data will be compared
227 * @return list representation of the permutation corresponding to the parameters
228 */
229 public static <S> List<Double> comparatorPermutation(List<S> data, Comparator<S> comparator) {
230 List<S> sortedData = new ArrayList<S> (data);
231 Collections.sort(sortedData, comparator);
232
233 return inducedPermutation(data, sortedData);
234 }
235
236 /**
237 * Generates a representation of a permutation corresponding to a
238 * permutation which yields <code>permutedData</code> when applied to
239 * <code>originalData</code>.
240 *
241 * This method can be viewed as an inverse to {@link #decode(List)}.
242 *
243 * @param <S> type of the data
244 * @param originalData the original, unpermuted data
245 * @param permutedData the data, somehow permuted
246 * @return representation of a permutation corresponding to the permutation <code>originalData -> permutedData</code>
247 * @throws IllegalArgumentException iff the <code>permutedData</code> and <code>originalData</code> contains different data
248 */
249 public static <S> List<Double> inducedPermutation(List<S> originalData, List<S> permutedData) throws IllegalArgumentException {
250 if (originalData.size() != permutedData.size()) {
251 throw new IllegalArgumentException("originalData and permutedData must have same length");
252 }
253 int l = originalData.size();
254
255 List<S> origDataCopy = new ArrayList<S> (originalData);
256
257 Double[] res = new Double[l];
258 for (int i=0; i<l; i++) {
259 int index = origDataCopy.indexOf(permutedData.get(i));
260 if (index == -1) {
261 throw new IllegalArgumentException("originalData and permutedData must contain the same objects.");
262 }
263 res[index] = (double) i / l;
264 origDataCopy.set(index, null);
265 }
266 return Arrays.asList(res);
267 }
268
269 /**
270 * {@inheritDoc}
271 */
272 @Override
273 public String toString() {
274 return String.format("(f=%s pi=(%s))", getFitness(), baseSeqPermutation);
275 }
276
277 /**
278 * Helper for constructor. Generates a list of natural numbers (0,1,...,l-1).
279 *
280 * @param l length of list to generate
281 * @return list of integers from 0 to l-1
282 */
283 private static List<Integer> baseSequence(int l) {
284 List<Integer> baseSequence = new ArrayList<Integer> (l);
285 for (int i=0; i<l; i++) {
286 baseSequence.add(i);
287 }
288 return baseSequence;
289 }
290 }