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Abstract

We introduce an information theoretic crite-
rion for Bayesian network structure learning
which we call quotient normalized maximum
likelihood (qNML). In contrast to the closely
related factorized normalized maximum like-
lihood criterion, qNML satisfies the property
of score equivalence. It is also decompos-
able and completely free of adjustable hy-
perparameters. For practical computations,
we identify a remarkably accurate approxi-
mation proposed earlier by Szpankowski and
Weinberger. Experiments on both simulated
and real data demonstrate that the new crite-
rion leads to parsimonious models with good
predictive accuracy.

1 INTRODUCTION

Bayesian networks [Pearl, 1988] are popular mod-
els for presenting multivariate statistical dependen-
cies that may have been induced by underlying
causal mechanisms. Techniques for learning the
structure of Bayesian networks from observational
data have therefore been used for many tasks such
as discovering cell signaling pathways from pro-
tein activity data [Sachs et al., 2002], revealing the
business process structures from transaction logs
[Savickas and Vasilecas, 2014] and modeling brain-
region connectivity using fMRI data [Ide et al., 2014].

Learning the structure of statistical dependencies can
be seen as a model selection task where each model
is a di↵erent hypothesis about the conditional de-
pendencies between sets of variables. Traditional
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model selection criteria such as the Akaike informa-
tion criterion (AIC) [Akaike, 1973] and the Bayesian
information criterion (BIC) [Schwarz, 1978] have also
been used for the task, but recent comparisons have
not been favorable for AIC, and BIC appears to re-
quire large sample sizes in order to identify appropri-
ate structures [Silander et al., 2008, Liu et al., 2012].
Traditionally, the most popular criterion has been
the Bayesian marginal likelihood [Heckerman, 1995]
and its BDeu variant (see Section 2), but stud-
ies [Silander et al., 2007, Steck, 2008] show this crite-
rion to be sensitive to hyperparameters and to yield
undesirably complex models for small sample sizes.

The information-theoretic normalized maxi-
mum likelihood (NML) criterion [Shtarkov, 1987,
Rissanen, 1996] would otherwise be a potential can-
didate for a good criterion, but its exact calculation
is likely to be prohibitively expensive. In 2008,
Silander et al. introduced a hyperparameter-free,
NML inspired criterion called the factorized NML
(fNML) [Silander et al., 2008] that was shown to
yield good predictive models without such sensitivity
problems. However, from the structure learning point
of view, fNML still sometimes appears to yield overly
complex models. In this paper we introduce another
NML related criterion, the quotient NML (qNML)
that yields simpler models without sacrificing predic-
tive accuracy. Furthermore, unlike fNML, qNML is
score equivalent, i.e., it gives equal scores to structures
that encode the same independence and dependence
statements. Like other common model selection
criteria, qNML is also consistent.

We next briefly introduce Bayesian networks and re-
view the BDeu and fNML criteria and then introduce
the qNML criterion. We also summarize the results for
20 data sets to back up our claim that qNML yields
parsimonious models with good predictive capabilities.
The experiments with artificial data generated from
real-world Bayesian networks demonstrate the capa-
bility of our score to quickly learn a structure close to
the generating one.
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2 BAYESIAN NETWORKS

Bayesian networks are a general way to describe
the dependencies between the components of an
n-dimensional random data vector. In this paper we
only address the case in which the component X

i

of
the data vector X = (X1, . . . , Xn

) may take any of
the discrete values in a set {1, . . . , r

i

}. Despite denot-
ing the values with small integers, the model will treat
each X

i

as a categorical variable.

2.1 Likelihood

A Bayesian network B = (G, ✓) defines a probabil-
ity distribution for X. The component G defines the
structure of the model as a directed acyclic graph
(DAG) that has exactly one node for each component
of X. The structure G = (G1, . . . , Gn

) defines for each
variable/node X

i

its (possibly empty) parent set G
i

,
i.e., the nodes from which there is a directed edge to
the variable X

i

.

Given a realization x of X, we denote the sub-vector of
x that consists of the values of the parents of X

i

in x
by G

i

(x). It is customary to enumerate all the possible
sub-vectors G

i

(x) from 1 to q
i

=
Q

h2Gi
r
h

. In case G
i

is empty, we define q
i

= 1 and P (G
i

(x) = 1) = 1 for
all vectors x.

For each variable X
i

there is a q
i

⇥r
i

table ✓
i

of param-
eters whose kth column on the jth row ✓

ij

defines the
conditional probability P (X

i

= k | G
i

(X) = j; ✓) =
✓
ijk

. With structure G and parameters ✓, we can now
express the likelihood function of the model as

P (x|G, ✓) =
nY

i=1

P (x
i

| G
i

(x); ✓
i

) =
nY

i=1

✓
iGi(x)xi

. (1)

2.2 Bayesian Structure Learning

Score-based Bayesian learning of Bayesian network
structures evaluates the goodness of di↵erent struc-
tures G using their posterior probability P (G|D,↵),
where ↵ denotes the hyperparameters for the model
parameters ✓, and D is a collection of N n-dimensional
i.i.d. data vectors collected to a N ⇥ n design matrix.
We use the notation D

i

to denote the ith column of
the data matrix and the notation D

V

to denote the
columns that correspond to the variable subset V . We
also write D

i,Gi for D{i}[Gi
and denote the entries

of the column i on the rows on which the parents G
i

contain the value configuration number j by D
i,Gi=j

,
j 2 {1, . . . , q

i

}.

It is common to assume the uniform prior for struc-
tures, in which case the objective function for struc-
ture learning is reduced to the marginal likelihood
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Figure 1: Number of parameters in a breast cancer
model as a function of sample size for di↵erent model
selection criteria.

P (D|G,↵). If the model parameters ✓
ij

are further as-
sumed to be independently Dirichlet distributed only
depending on i and G

i

and the data D is assumed to
have no missing values, the marginal likelihood can be
decomposed as

P (D|G,↵)

=
nY

i=1

qiY

j=1

P (D
i,Gi=j

;↵)

=
nY

i=1

qiY

j=1

Z
P (D

i,Gi=j

|✓
ij

)P (✓
ij

;↵)d✓
ij

. (2)

In coding terms this means that each data column D
i

is first partitioned based on the values in columns G
i

,
and each part is then coded using a Bayesian mixture
that can be expressed in closed form [Buntine, 1991,
Heckerman et al., 1995].

2.3 Problems, Solutions and Problems

Finding satisfactory Dirichlet hyperparameters for the
Bayesian mixture above has, however, turned out to
be problematic. Early on, one of the desiderata for
a good model selection criterion was that it is score
equivalent, i.e., it would yield equal scores for essen-
tially equivalent models [Verma and Pearl, 1991]. For
example, the score for the structure X1 ! X2 should
be the same as the score for the model X2 ! X1

since they both correspond to the hypothesis that vari-
ables X1 and X2 are statistically dependent on each
other. It can be shown [Heckerman et al., 1995] that
to achieve this, not all the hyperparameters ↵ are pos-
sible and for practical reasons Buntine [Buntine, 1991]
suggested a so-called BDeu score with just one hyper-
parameter ↵ 2 R++ so that ✓

ij· ⇠ Dir( ↵

qiri
, . . . , ↵

qiri
).

However, it soon turned out that the BDeu score
was very sensitive to the selection of this hyper-
parameter [Silander et al., 2007] and that for small
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sample sizes this method detects spurious correla-
tions [Steck, 2008] leading to models with suspiciously
many parameters.

Recently, Suzuki [Suzuki, 2017] discussed the theoret-
ical properties of the BDeu score and showed that in
certain settings BDeu has the tendency to add more
and more parent variables for a child node even though
the empirical conditional entropy of the child given the
parents has already reached zero. In more detail, as-
sume that in our data D the values of X

i

are com-
pletely determined by variables in a set Z, so that
the empirical entropy H

N

(X
i

|Z) is zero. Now, if we
can further find one or more variables, denoted by Y ,
whose values are determined completely by the vari-
ables in Z, then BDeu will prefer the set Z [ Y over
Z alone as the parents of X

i

. Suzuki argues that this
kind of behavior violates regularity in model selection
as the more complex model is preferred over a simpler
one even though it does not fit the data any better.
The phenomenon seems to stem from the way the hy-
perparameters for the Dirichlet distribution are chosen
in BDeu as using Je↵reys’ prior, ✓

ijk

⇠ Dir( 12 , . . . ,
1
2 ),

does not su↵er from this anomaly. However, using Jef-
freys’ prior causes marginal likelihood score not to be
score equivalent. In Section 3.4, we will give the for-
mal definition of regularity and state that qNML is
regular. In addition, we provide a proof of regularity
for fNML criterion, which has not appeared in the lit-
erature before. The detailed proofs can be found in
Appendix B in the Supplementary Material.

A natural solution to avoid parameter sensitiv-
ity of BDeu would be to use a normalized max-
imum likelihood (NML) criterion [Shtarkov, 1987,
Rissanen, 1996], i.e., to find the structure G that max-
imizes

P
NML

(D;G) =
P (D|✓̂(D;G))

P
D

0 P (D0|✓̂(D0;G))
, (3)

where ✓̂ denotes the (easy to find) maximum like-
lihood parameters and the sum in the denominator
goes over all the possible N ⇥ n data matrices. This
information-theoretic NML criterion can be justified
from the minimum description length point of view
[Rissanen, 1978, Grünwald, 2007]. It has been shown
to be robust with respect to di↵erent data generating
mechanisms where a good choice of prior is challeng-
ing, see [Eggeling et al., 2014, Määttä et al., 2016].
While it is easy to see that the NML criterion sat-
isfies the requirement of giving equal scores to equal
structures, the normalizing constant renders the com-
putation infeasible.

Consequently, Silander et al. [Silander et al., 2008]
suggested solving the BDeu parameter sensitivity
problem by using the NML code for the column par-

titions, i.e., changing the Bayesian mixture in equa-
tion (2) to

P 1
NML

(D
i,Gi=j

;G) =
P (D|✓̂(D

i,Gi=j

;G))
P

D

0 P (D0|✓̂(D0;G))
, (4)

where D0 2 {1, . . . , r
i

}|Di,Gi=j |. The logarithm of the
denominator is often called the regret, since it indi-
cates the extra code length needed compared to the
code length obtained using the (a priori unknown)
maximum likelihood parameters. The regret for P 1

NML

depends only on the length N of the categorical data
vector with r di↵erent categorical values,

reg(N, r) = log
X

D2{1,...,r}N

P (D|✓̂(D)). (5)

While the naive computation of the regret is still
prohibitive, Silander et al. approximate it e�-
ciently using a so-called Szpankowski approxima-
tion [Kontkanen et al., 2003]:

reg(N, r) ⇡
p
2r�

�
r

2

�

3
p
N�

�
r�1
2

� (6)

+

✓
r � 1

2

◆
log

✓
N

2

◆
� log�

⇣r
2

⌘
+

1

2
log (⇡)

�
r2�2

�
r

2

�

9N�2
�
r�1
2

� +
2r3 � 3r2 � 2r + 3

36N
.

However, equation (6) is derived only for the case
where r is constant and N grows. While with fNML it
is typical that N is large compared to r, an approxima-
tion for all ranges of N and r derived by Szpankowski
and Weinberger [Szpankowski and Weinberger, 2012]
can also be used:

reg(N, r) ⇡ N

✓
log↵+ (↵+ 2) logC

↵

� 1

C
↵

◆

�1

2
log

✓
C

↵

+
2

↵

◆
, (7)

where ↵ = r

N

and C
↵

= 1
2 +

1
2

q
1 + 4

↵

. These approx-

imations are compared in Table 1 to the exact regret
for various values of N and r. For a constant N , equa-
tion (6) provides a progressively worse approximation
as r grows. Equation (7) on the other hand is a good
approximation of the regret regardless of the ratio of
N and r. In our experiments, we will use this approx-
imation for implementation of the qNML criterion.

fNML solves the parameter sensitivity problem and
yields predictive models superior to BDeu. However,
the criterion does not satisfy the property of giving
the same score for models that correspond to the same
dependence statements. The score equivalence is usu-
ally viewed desirable when DAGs are considered only
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Table 1: Regret values for various values of N and r.

N r eq. (6) eq. (7) exact

50

10 13.24 13.26 13.24
100 62.00 60.01 60.00
1000 491.63 153.28 153.28
10000 25635.15 265.28 265.28

500

10 22.67 22.69 22.67
100 144.10 144.03 144.03
1000 624.35 603.93 603.93
10000 4927.24 1533.38 1533.38

5000

10 32.74 32.76 32.74
100 247.97 247.97 247.97
1000 1452.51 1451.78 1451.78
10000 6247.83 6043.16 6043.16

as models for conditional independence, without any
causal interpretation. Furthermore, the learned struc-
tures are often rather complex (see Figure 1) which
also hampers their interpretation. The quest for a
model selection criterion that would yield more parsi-
monious, easier to interpret, but still predictive Bayes-
ian networks structures is one of the main motivations
for this work.

3 QUOTIENT NML SCORE

We will now introduce a quotient normalized maxi-
mum likelihood (qNML) criterion for learning Bayes-
ian network structures. While equally e�cient to com-
pute as BDeu and fNML, it is free from hyperparame-
ters, and it can be proven to give equal scores to equiv-
alent models. Furthermore, it coincides with the ac-
tual NML score for exponentially many models. In our
empirical tests it produces models featuring good pre-
dictive performance with significantly simpler struc-
tures than BDeu and fNML.

Like BDeu and fNML, qNML can be expressed as a
product of n terms, one for each variable, but unlike
the other two, it is not based on further partitioning
the corresponding data column

sqNML(D;G) :=
nX

i=1

sqNML

i

(D;G) (8)

:=
nX

i=1

log
P 1
NML

(D
i,Gi ;G)

P 1
NML

(D
Gi ;G)

.

The trick here is to model a subset of columns
as though there were no conditional independencies
among the corresponding variables S ⇢ X. In this
case, we can collapse the

Q
Xi2S

r
i

value configura-
tions and consider them as values of a single variable

with
Q

Xi2S

r
i

di↵erent values which can then be mod-

eled with a one-dimensional P 1
NML

code. The sqNML

score does not necessarily define a distribution for D,
but it is easy to verify that it coincides with the NML
score for all networks that are composed of fully con-
nected components. The number of such networks is
lower bounded by the number of nonempty partitions
of a set of n elements, i.e., the nth Bell number.

We are now ready to prove some important properties
of the qNML score.

3.1 qNML Is Score Equivalent

qNML yields equal scores for network structures that
encode the same set of independencies. Verma and
Pearl [Verma and Pearl, 1991] showed that the equiv-
alent networks are exactly those which a) are the same
when directed arcs are substituted by undirected ones
and b) which have the same V-structures, i.e. the vari-
able triplets (A,B,C) where both A and B are par-
ents of C, but there is no arc between A and B (in
either direction). Later, Chickering [Chickering, 1995]
showed that all the equivalent network structures, and
only those structures, can be reached from each other
by reversing, one by one, the so-called covered arcs, i.e.
the arcs from node A to B, for which B’s parents other
than A are exactly A’s parents (G

B

= {A} [G
A

).

We will next state this as a theorem and sketch a proof
for it. A more detailed proof appears in Appendix A
in the Supplementary Material.

Theorem 1. Let G and G0
be two Bayesian network

structures that di↵er only by a single covered arc re-

versal, i.e., the arc from A to B in G has been reversed

in G0
to point from B to A, then

sqNML(D;G) = sqNML(D;G0).

Proof. Now the scores for structures can be decom-
posed as sqNML(D;G) =

P
n

i=1 s
qNML

i

(D;G) and

sqNML(D;G0) =
P

n

i=1 s
qNML

i

(D;G0). Since only the
terms corresponding to the variables A and B in these
sums are di↵erent, it is enough to show that the sum
of these two terms are equal for G and G0. Since we
can assume the data to be fixed we lighten up the no-
tation and write P 1

NML

(i, G
i

) := P 1
NML

(D
i,Gi ;G) and
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P 1
NML

(G
i

) := P 1
NML

(D
Gi ;G). Now

sqNML

A

(D;G) + sqNML

B

(D;G)

= log
P 1
NML

(A,G
A

)

P 1
NML

(G
A

)

P 1
NML

(B,G
B

)

P 1
NML

(G
B

)

= log 1 · P
1
NML

(B,G
B

)

P 1
NML

(G
A

)

= log
P 1
NML

(B,G0
B

)

P 1
NML

(G0
A

)

P 1
NML

(A,G0
A

)

P 1
NML

(G0
B

)

= sqNML

A

(D;G0) + sqNML

B

(D;G0),

using the equations {A}[G
A

= G
B

, {B}[G0
B

= G0
A

,
{B} [ G

B

= {A} [ G0
A

, and G
A

= G0
B

which follow
easily from the definition of covered arcs.

3.2 qNML is Consistent

One important property possessed by nearly every
model selection criterion is consistency. In our con-
text, consistency means that given a data matrix
with N samples coming from a distribution faithful
to some DAG G, the qNML will give the highest
score to the true graph G with a probability tend-
ing to one as N increases. We will show this by first
proving that qNML is asymptotically equivalent to
the widely used BIC criterion which is known to be
consistent [Schwarz, 1978, Haughton, 1988]. The out-
line of this proof follows a similar pattern to that in
[Silander et al., 2010] where the consistency of fNML
was proved.

The BIC criterion can be written as

BIC(D;G) =
nX

i=1

logP (D
i

| ✓̂
i|Gi

)� q
i

(r
i

� 1)

2
logN,

(9)
where ✓̂

i|Gi
denotes the maximum likelihood parame-

ters of the conditional distribution of variable i given
its parents in G.

Since both the BIC and qNML scores are decompos-
able, we can focus on studying the local scores. We
will next show that, asymptotically, the local qNML
score equals the local BIC score. This is formulated in
the following theorem:

Theorem 2. Let r
i

and q
i

denote the number of pos-

sible values for variable X
i

and its possible configura-

tions of parents G
i

, respectively. As N ! 1,

sqNML

i

(D;G) = logP (D
i

| ✓̂
i|Gi

)� q
i

(r
i

� 1)

2
logN.

In order to prove this, we start with the definition of

qNML and write

sqNML

i

(D;G) = log
P (D

i,Gi | ✓̂
i,Gi)

P (D
Gi | ✓̂

Gi)

� (reg(N, q
i

r
i

)� reg(N, q
i

)). (10)

By comparing the equations (9) and (10), we see that
proving our clam boils down to showing two things:
1) the terms involving the maximized likelihoods are
equal and 2) the penalty terms are asymptotically
equivalent. We will formulate these as two lemmas.

Lemma 1. The maximized likelihood terms in equa-

tions (9) and (10) are equal:

P (D
i,Gi | ✓̂

i,Gi)

P (D
Gi | ✓̂

Gi)
= P (D

i

| ✓̂
i|Gi

).

Proof. We can write the terms on the left side of the
equation as

P (D
i,Gi | ✓̂

i,Gi) =
Y

j,k

✓
N

ijk

N

◆
Nijk

, and

P (D
Gi | ✓̂

Gi) =
Y

j

✓
N

ij

N

◆
Nij

.

Here, N
ijk

denotes the number of times we observe X
i

taking value k when its parents are in jth configuration
in our data matrix D. Also, N

ij

=
P

k

N
ijk

(andP
k,j

N
ijk

= N for all i). Therefore,

P (D
i,Gi | ✓̂

i,Gi)

P (D
Gi | ✓̂

Gi)
=

Q
j,k

⇣
Nijk

N

⌘
Nijk

Q
j

⇣
Nij

N

⌘
Nij

=

Q
j,k

⇣
Nijk

N

⌘
Nijk

Q
j

Q
k

⇣
Nij

N

⌘
Nijk

= P (D
i

| ✓̂
i|Gi

).

Next, we consider the di↵erence of regrets in (10)
which corresponds to the penalty term of BIC. The
following lemma states that these two are asymptoti-
cally equal:

Lemma 2. As N ! 1,

reg(N, q
i

r
i

)� reg(N, q
i

) =
q
i

(r
i

� 1)

2
logN +O(1).

Proof. The regret for a single multinomial variable
with m categories can be written asymptotically as

reg(N,m) =
m� 1

2
logN +O(1). (11)
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For the more precise statement with the underlying
assumptions (which are fulfilled in the multinomial
case) and for the proof, we refer to [Rissanen, 1996,
Grünwald, 2007]. Using this, we have

reg(N, q
i

r
i

)� reg(N, q
i

)

=
q
i

r
i

� 1

2
logN � q

i

� 1

2
logN +O(1)

=
q
i

r
i

� 1� q
i

+ 1

2
logN +O(1)

=
q
i

(r
i

� 1)

2
logN +O(1).

This concludes our proof since Lemmas 1 and 2 imply
Theorem 2.

3.3 qNML Equals NML for Many Models

The fNML criterion can be seen as a computationally
feasible approximation of the more desirable NML cri-
terion. However, the fNML criterion equals the NML
criterion only for the Bayesian network structure with
no arcs. It can be shown that the qNML criterion
equals the NML criterion for all the networks G whose
connected components are tournaments (i.e., complete
directed acyclic subgraphs of G). These networks in-
clude the empty network, the fully connected one and
many networks in between having di↵erent complexity.
While the generating network is unlikely to be com-
posed of tournament components, the result increases
the plausibility that qNML is a reasonable approxima-
tion for NML in general1.

Theorem 3. If G consists of C connected compo-

nents (G1, . . . , GC) with variable sets (V 1, . . . , V C),
then logP

NML

(D;G) = sqNML(D;G) for all data sets

D.

Proof. The full proof can be found in Appendix
C in the Supplementary Material. The proof first
shows that NML decomposes for these particular
structures, so it is enough to show the equivalence
for fully connected graphs. It further derives the
number a(n) of di↵erent n-node networks whose
connected components are tournaments, which
turns out to be the formula for OEIS sequence
A0002622. In general this sequence grows rapidly;
1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, . . ..

1
A claim that is naturally subject for further study.

2
https://oeis.org/A000262

3.4 qNML is Regular

Suzuki [Suzuki, 2017] defines regularity for a scoring
function Q

n

(X | Y ) as follows:

Definition 1. Assume H
N

(X | Y 0)  H
N

(X | Y ),
where Y 0 ⇢ Y. We say that Q

N

(· | ·) is regular if

Q
N

(X | Y 0) � Q
N

(X | Y ).

In the definition, N denotes the sample size, X is
some random variable, Y denotes the proposed par-
ent set for X, and H

N

(· | ·) refers to the empiri-
cal conditional entropy. Suzuki [Suzuki, 2017] shows
that BDeu violates this principle and demonstrates
that this can cause the score to prefer more complex
networks even though the data do not support this.
Regular scores are also argued to be computationally
more e�cient when applied with branch-and-bound
type algorithms for Bayesian network structure learn-
ing [Suzuki and Kawahara, 2017].

By analyzing the penalty term of the qNML scoring
function, one can prove the following statement:

Theorem 4. qNML score is regular.

Proof. The proof is given in Appendix B in the Sup-
plementary Material.

As fNML criterion di↵ers from qNML only by how the
penalty term is defined, we obtain the following result
with little extra work:

Theorem 5. fNML score is regular.

Proof. The proof is given in Appendix B in the Sup-
plementary Material.

Suzuki [Suzuki, 2017] independently introduces a
Bayesian Dirichlet quotient (BDq) score that can also
be shown to be score equivalent and regular. However,
like BDeu, this score features a single hyperparameter
↵, and our initial studies suggest that BDq is also very
sensitive to this hyperparameter (see Appendix D in
the Supplementary Material), the issue that was one
of the main motivations to develop a parameter-free
model selection criterion like qNML.

4 EXPERIMENTAL RESULTS

We empirically compare the capacity of qNML to that
of BIC, BDeu (↵ = 1) and fNML in identifying the
data generating structures, and producing models that
are predictive and parsimonious. It seems that none
of the criteria uniformly outperform the others in all
these desirable aspects of model selection criteria.
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4.1 Finding Generating Structure

In our first experiment, we took five widely used bench-
mark Bayesian networks3, sampled data from them,
and tried to learn the generating structure with the
di↵erent scoring functions using various sample sizes.
We used the following networks: Asia (n = 5, 8
arcs), Cancer (n = 5, 4 arcs), Earthquake (n = 5,
4 arcs), Sachs (n = 11, 17 arcs) and Survey (n = 6,
6 arcs). These networks were picked in order to use
the dynamic programming based exact structure learn-
ing [Silander and Myllymäki, 2006] which limited the
number n of variables to less than 20. We measured
the quality of the learned structures using structural
Hamming distance (SHD) [Tsamardinos et al., 2006].

Figure 2 shows SHDs for all the scoring criteria for each
network. Sample sizes range from 10 to 10000 and the
shown results are averages computed from 1000 repeti-
tions. None of the scores dominates in all settings con-
sidered. BIC fares well when the sample size is small
as it tends to produce a nearly empty graph which is
a good answer in terms of SHD when the generating
networks are relatively sparse. qNML obtains strong
results in the Earthquake and Asia networks, being
the best or the second best with all the sample sizes
considered.
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Figure 2: Sample size versus SHD with data generated
from real world DAGs.

Figure 3 summarizes the SHD results in all networks

3
Bayesian Network Repository: http://www.bnlearn.

com/bnrepository/

by showing the average rank for each score. The rank-
ing was done by giving the score with the lowest SHD
rank 1 and the worst one rank 4. In case of ties,
the methods with the same SHD were given the same
rank. The shown results are averages computed from
5000 values (5 networks, 1000 repetitions). From this,
we can see that qNML never has the worst average
ranking, and it has the best ranking with sample sizes
greater than 300. This suggests that qNML is over-
all a safe choice in structure learning, especially with
moderate and large sample sizes.
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Figure 3: Average ranks for the scoring functions in
structure learning experiments.

4.2 Prediction and Parsimony

To empirically compare the model selection criteria,
we took 20 UCI data sets [Lichman, 2013] and ran
train and test experiments for all of them. To better
compare the performance over di↵erent sample sizes,
we picked di↵erent fractions (10%, 20%, . . . , 90%) of
the data sets as training data and the rest as the test
data. This was done for 1000 di↵erent permutations of
each data set. The training was conducted using the
dynamic programming based exact structure learning
algorithm.

When predicting P (d
test

|D
train

, S, ✓) with structures
S learned by the BDeu score, we used the Bayes-
ian predictive parameter values (BPP) ✓

ijk

/
N

ijk

+ 1
riqi

. In the spirit of keeping the scores
hyperparameter-free, for structures learned by the
other model selection criteria, we used the sequen-
tial predictive NML (sNML) parametrization ✓

ijk

/
e(N

ijk

)(N
ijk

+ 1), where e(n) = (n+1
n

)n as suggested
in [Rissanen and Roos, 2007].

For each train/test sample, we ranked the predictive
performance of the models learned by the four di↵er-
ent scores (rank 1 being the best and 4 the worst). Ta-
ble 2 features the average rank for di↵erent data sets,
the average being taken over 1000 di↵erent train/test

http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/
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Table 2: Average predictive performance rank over dif-
ferent sample sizes for di↵erent model selection criteria
in 20 di↵erent data sets.

Data N BDeu
BPP

BIC
sNML

fNML
sNML

qNML
sNML

PostOpe 90 2.79 1.20 3.06 2.94
Iris 150 2.82 2.37 2.27 2.54
Wine 178 3.23 1.88 2.67 2.22
Glass 214 3.61 3.09 1.42 1.88

Thyroid 215 2.55 3.21 1.80 2.44
HeartSt 270 3.12 1.39 3.12 2.37
BreastC 286 3.09 1.41 2.97 2.53
HeartHu 294 3.18 1.66 2.90 2.27
HeartCl 303 3.46 1.38 2.99 2.17
Ecoli 336 3.20 3.53 1.24 2.04
Liver 345 3.17 2.39 2.69 1.75

Balance 625 3.35 1.91 1.59 3.16
BcWisco 699 3.06 2.03 2.89 2.02

Diabete 768 2.91 2.70 2.68 1.71

TicTacT 958 3.44 2.71 1.31 2.53
Yeast 1484 2.60 3.76 1.55 2.10

Abalone 4177 2.60 3.64 1.04 2.72
PageBlo 5473 2.24 3.61 1.31 2.83
Adult 32561 3.23 3.77 1.00 2.00
Shuttle 58000 1.44 3.78 1.56 3.22

samples for each 9 sample sizes. BIC’s bias for simplic-
ity makes it often win (written bold in the table) with
small sample sizes, but it performs worst (underlined)
for the larger sample sizes (for the same reason), while
fNML seems to be good for large sample sizes. The
striking feature about the qNML is its robustness. It
is usually between BIC and fNML for all the sample
sizes making it a “safe choice”. This can be quantified
if we further average the columns of Table 2, yielding
the average ranks of 2.95, 2.57, 2.10, and 2.37, with
standard deviations 0.49, 0.90, 0.76, and 0.43. While
fNML achieves on average the best rank, the runner-
up qNML has the lowest standard deviation.

Figure 1 shows how fNML still sometimes behaves
strangely in terms of model complexity as measured
by the number of parameters in the model. qNML,
instead, appears to yield more parsimonious models.
To study the concern of fNML producing too complex
models for small sample sizes, we studied the number
of parameters in models produced by di↵erent scores
when using 10% of each data set for structure learning.

Looking at the number of parameters for the same 20
data sets again features BIC’s preference for simple
models (Table 3). qNML usually (19/20) yields more
parsimonious models than fNML that selects the most
complex model for 7 out of 20 data sets.

Table 3: Average number of parameters in models for
di↵erent scores in 20 di↵erent data sets.

Data N BDeu BIC fNML qNML

Iris 15 37 23 33 29
PostOpe 18 1217 19 397 146
Ecoli 34 182 31 162 77
Liver 35 45 15 61 24
Wine 36 16521 70 807 205
Glass 44 1677 48 506 97

Thyroid 44 40 23 66 28
HeartSt 54 16861 44 1110 256
BreastC 58 25797 49 3767 844
HeartHu 60 1634 43 792 90
HeartCl 62 34381 47 1433 404
BcWisco 70 4630 42 603 89
Diabete 77 39 22 216 34
TicTacT 96 13701 25 1969 767
Balance 126 20 24 49 611
Yeast 149 71 31 265 75

Abalone 418 91 46 150 63
PageBlo 548 703 45 380 56
Shuttle 5800 535 99 717 130
Adult 6513 699 479 1555 945

The graphs for di↵erent sample sizes for both predic-
tive accuracy and the number of parameters can be
found in Appendix E in the Supplementary Material.

5 CONCLUSION

We have presented qNML, a new model selection cri-
terion for learning structures of Bayesian networks.
While being competitive in predictive terms, it often
yields significantly simpler models than other common
model selection criteria other than BIC that has a very
strong bias for simplicity. The computational cost
of qNML equals the cost of the current state-of-the-
art criteria. The criterion also gives equal scores for
models that encode the same independence hypothe-
ses about the joint probability distribution. qNML
also coincides with the NML criterion for many mod-
els. In our experiments, the qNML criterion appears
as a safe choice for a model selection criterion that bal-
ances parsimony, predictive capability and the ability
to quickly converge to the generating model.
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nen, P., and Myllymäki, P. (2008). Factorized nor-
malized maximum likelihood criterion for learning
Bayesian network structures. In Proceedings of the

4th European Workshop on Probabilistic Graphical

Models (PGM-08), pages 257–264, Hirtshals, Den-
mark.

[Silander et al., 2010] Silander, T., Roos, T., and Myl-
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