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Abstract
We address the problem of defining similarity between vectors of possibly depend-
ent categorical variables by deriving formulas for the Fisher kernel for Bayesian net-
works. While both Bayesian networks and Fisher kernels are established techniques, 
this result does not seem to appear in the literature. Such a kernel naturally opens 
up the possibility to conduct kernel-based analyses in completely categorical fea-
ture spaces with dependent features. We show experimentally how this kernel can be 
used to find subsets of observations that we see as representative for the underlying 
Bayesian network model.

Keywords  Fisher kernel · Bayesian network · Similarity

1  Introduction

Variables such as color, nationality and species that are measured on a nominal scale 
do not allow for an obvious definition of distance. Consequently, there is no obvious 
solution for measuring similarities between random vectors whose components are 
measured on the nominal scale. In this paper, we propose computing similarities of 
the nominal scale random vectors using a Fisher kernel based on discrete Bayesian 
networks (Pearl 1988).
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Fisher kernels (Jaakkola and Haussler 1998) were originally motivated by the 
need to build classifiers for objects of different lengths/sizes. They have since been 
used to classify proteins, speakers, documents, images, tree structured data, etc. 
A survey by Sewell (2011) provided a brief review. Much of the development has 
been concentrating on classification of different kinds of objects, but kernels can 
also be used for many other things such as regression, clustering or dimensionality 
reduction. Each different model requires a separate derivation of the formulas that 
show how the Fisher kernel is computed for the data items modeled by the particular 
model. To our knowledge, the derivation of the Fisher kernel for general Bayesian 
networks has not been presented before. We will also present formulas for measur-
ing similarity of two sets of observations modeled by a Bayesian network.

In practice, Bayesian network models are often learned automatically from the 
data. However, common model selection criteria do not necessarily identify the 
Bayesian network model completely, but they generally return a class of “equiva-
lent”, but differently parametrized, Bayesian networks or a random member of such 
a class. While the Fisher kernel in general is known to be sensitive to the parametri-
zation, we will show that any member of such an equivalence class yields the same 
Fisher kernel.

In the following, we will first review the related work on the multivariate categor-
ical similarity/distance measures. We will then quickly introduce notation for Bayes-
ian networks and state the main formula for computing a Fisher kernel based on it. 
We present the derivation and an important result of insensitivity to the choice of 
equivalent structure. Then, we show how the kernel generalizes to comparing sets of 
observations and discuss the connection to a kernel-based distance measure called 
maximum mean discrepancy. We also describe a simple greedy algorithm which can 
be used for finding representative sets of observations with the help of the set kernel. 
Finally, we make use of the algorithm in experiments, where we try find representa-
tive sets for various Bayesian network structures.

2 � Related work

Boriah et al. (2008) have reviewed several similarity measures for discrete vectors, 
many of which have implemented some kind of weighting of different variables, but 
none of which took dependencies between variables into account. The work on simi-
larities that takes dependencies into account seems to do so by considering pairwise 
similarities only (Niitsuma and Okada 2005; McCane and Albert 2008; Desai et al. 
2011; Ring et al. 2015). This is in sharp contrast to the Fisher kernel for Bayesian 
networks that can model dependencies between many variables.

Fisher kernel for discrete data is not a new idea. Fisher kernels have been derived, 
for example, for hidden Markov models (Jaakkola et  al. 2000) and probabilistic 
latent semantic indexing (Chappelier and Eckard 2009). While these models can 
be used for vectors of categorical dimensions, their bias is designed with respect 
to a special latent variable that implements labeling, clustering or topic detection. 
As dependency models, their structure implies that all the observed variables are 
(marginally) dependent on each other. Since Bayesian networks try to capture a 
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more explicit dependency structure, the Fisher kernel-based similarity also becomes 
different.

In addition to Fisher kernels, other approaches to building kernels with the aid of 
probabilistic models include probability product kernels (Jebara et al. 2004) and dif-
fusion kernels (Lafferty and Lebanon 2005).

3 � Fisher kernel for Bayesian networks

Bayesian networks are multivariate dependency models over n random variables 
D = (D1,… ,Dn) . In our setting, each Di is a categorical variable taking one of the ri 
values from {1,… , ri} . The Bayesian network B = (G, �) consists of a directed acy-
clic graph (DAG) G and parameters � . In the graph G, the nodes 1,… , n correspond 
to the components of D and the arcs encode dependence structure among the vari-
ables. We let �i denote the parent set of node i (i.e., the nodes from which there are 
direct arcs to node i). Letting �i(D) denote the parent variables and enumerating all 
the possible parent variable configurations from 1 to qi , this structure is then popu-
lated with parameters � so that each value k of variable Di and each value configura-
tion j of �i(D) is attached to a parameter �ijk so that:

where �i(D) = j means that the parent variables take values according to the jth con-
figuration. For a data point d, we use P(d;�) as a shorthand for P(D = d;�).

Using an indicator function Id(x) , that takes value 1, if d = x , and 0 otherwise, we 
can write the likelihood function for d as:

We assume all the parameters �ijk to be strictly positive.

3.1 � Fisher kernel

A Fisher kernel is a way to define the similarity of a pair of items based on a para-
metric statistical model. We will first review the definition of Fisher kernel and then 
right after that present the form that the Fisher kernel takes when this parametric 
model is a Bayesian network over discrete variables. The actual derivation is pre-
sented in the following section.

Definition 1  For a model P(d;�) , parametrized by a vector � of parameters, a Fisher 
kernel K(x, y;�) is defined as:

P(Di = k|�i(D) = j;�) = �ijk,

(1)P(d;�) =

n∏
i=1

P(di ∣ �i(d);�) =

n∏
i=1

qi∏
j=1

ri∏
k=1

�
Idi

(k)⋅I�i (d)
(j)

ijk
.

K(x, y;�) = sT (x;�)I−1(�)s(y;�).
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In the definition, the score s(x;�) is a column vector of partial derivatives of the log 
likelihood, i.e., s(x;�)i =

�

��i
logP(x;�) , and the I(�) is a so-called Fisher information 

matrix (Cover and Thomas 2006) with elements:

where �d[f (d)] =
∑

d P(D = d)f (D = d).

For the Bayesian networks, we obtain the following:

Theorem 1  Let M = (G, �) be a Bayesian network over variables

D = (D1,… ,Dn) with parent sets (�1,… ,�n) . Now, the Fisher similarity for two 
n-dimensional discrete vectors x and y modeled by M, can be computed as a varia-
ble-wise sum

where

The formula above may lead to dividing by zero, but only in case of comparing 
items that the model deems impossible by assigning them the zero probability (which is 
however excluded under our assumption 𝜃ijk > 0).

The joint probabilities P(�i(x);�) are not readily available in Bayesian networks, but 
must be computed, which in general is an NP-hard problem (Cooper 1990). However, 
many practical implementations of the Bayesian network inference are based on the 
junction tree algorithm (Lauritzen and Spiegelhalter 1988), which features a static data 
structure that contains the joint probabilities for sets (called cliques) that contain parent 
sets as their subsets. Therefore, the probabilities P(�i(x);�) can be marginalized from 
the clique probabilities. When such an exact inference is computationally too demand-
ing, approximate inference techniques can be used.

I(�)ij = −�d

[
�2 logP(d;�)

��i��j

]
,

K(x, y;�) =

n∑
i=1

Ki(x, y;�),

(2)Ki(x, y;�) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if �i(x) ≠ �i(y),
−1

P(�i(x);�)
if �i(x) = �i(y)

∧ (xi ≠ yi),
1

P(�i(x);�)
⋅
1−�i�i (x)xi

�i�i (x)xi

if �i(x) = �i(y)

∧ (xi = yi).
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4 � Outline of the derivation

In this section, we will go through the derivation of Bayesian network Fisher kernel 
on a high level. To reduce clutter, some details of the derivations are postponed to 
Appendices.

4.1 � Univariate Fisher kernel

While our interest is in a multivariate model, much of the derivation can be reduced 
to computing the Fisher kernel for a single categorical variable with r possible val-
ues, since a Bayesian network can be represented as a collection of conditional prob-
ability tables, and the tables themselves consist of univariate categorical distribu-
tions. Therefore, we will first study the simple univariate case.

The main result of this section is formulated as follows.

Lemma 1  Assume D is a single categorical variable taking values from 1 to r with 
probabilities � = (�1,… , �r) where 𝜃k > 0 and 

∑r

k=1
�k = 1 . Now, the Fisher similar-

ity for two observations x and y is given as:

where �x = P(D = x;�).

Proof  We will proceed in a straightforward fashion, dividing our proof into three 
parts: (1) We first compute the gradient of the log likelihood; (2) then find an expres-
sion for the inverse of Fisher information matrix; (3) and lastly, combine these to get 
the statement of Lemma 1.

4.1.1 � Gradient of the log likelihood

Let d denote a value of D. We can express the likelihood as:

where �r is not a real parameter of the model but a shorthand notation 
�r ≡ 1 −

∑r−1

k=1
�k . Thus, the log-likelihood function is logP(d;�) =

∑r

k=1
Id(k) log �k . 

Taking the partial derivatives wrt. �k yields:

Using ek to denote kth standard basis vector of ℝr−1 , and � for the vector of all ones, 
the whole vector s(d;�) can be written as:

K(x, y;�) =

{
1−�x

�x
if x = y, and

−1 if x ≠ y,

P(d;�) =

r∏
k=1

�
Id(k)

k
,

s(d;�)k =
logP(d;�)

��k
= Id(k)�

−1
k

− Id(r)�
−1
r
.
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or using indicators

It is worth emphasizing that each partial derivative depends on the data vector d, but 
is a function of the parameter � . It may be useful to further reveal the structure by 
writing:

So depending on the data item d, the partial derivative s(d;�)k is one of the three 
functions of � above.

4.1.2 � The Fisher information and its inverse

The Fisher information matrix for the multinomial model (which is equivalent to our 
categorical case when the number of trials is 1) takes the form (Bernardo and Smith 
1994, p. 336):

and its inverse is given as:

Bernardo and Smith (1994) omit the explicit derivations of (4) and (5). We will pre-
sent the derivation of I(�) in Appendix A. The inverse can be obtained from this by 
noting that I(�) is expressible as a sum consisting of two terms: an invertible (diago-
nal) matrix and a rank one matrix. Inverting a matrix with this structure is straight-
forward (Miller 1981). Even more straightforwardly, computing the matrix product, 
I(�)I−1(�) , and verifying that it gives an identity matrix proves that inverse of I(�) 
has to have the form given in (5).

For further purposes, it is useful to write the elements of I(�) as:

s(d;𝜃) =

{
𝜃−1
k
ek if d = k < r, and

−𝜃−1
r
� if d = r,

(3)s(d;�) =

r−1∑
k=1

Id(k)�
−1
k
ek − Id(r)�

−1
r
�.

s(d;𝜃)k =

⎧
⎪⎨⎪⎩

0 if d ≠ k < r,

𝜃−1
k

if d = k < r, and

−𝜃−1
r

if d = r.

(4)I(�) =
1

�r

⎡
⎢⎢⎢⎣

�r�
−1
1

+ 1 1 ⋯ 1

1 �r�
−1
2

+ 1 ⋯ 1

⋯ ⋯ ⋱ ⋮

1 1 ⋯ �r�
−1
r−1

+ 1

⎤⎥⎥⎥⎦

(5)I
−1(�) =

⎡⎢⎢⎢⎣

�1(1 − �1) −�1�2 ⋯ −�1�r−1
−�1�2 �2(1 − �2) ⋯ −�2�r−1
⋯ ⋯ ⋱ ⋮

−�1�r−1 −�2�r−1 ⋯ �r−1(1 − �r−1)

⎤⎥⎥⎥⎦
.
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where we used Kronecker delta symbol �xy that equals 1, if x = y , and 0, otherwise. 	
� ◻

4.1.3 � The kernel

The last thing left to do is to combine our results to get the expression for the uni-
variate kernel K(x, y) = sT (x;�)I−1(�)s(y;�) . As the gradient s(d;�) takes different 
forms depending on the value d, it is maybe the easiest to enumerate all the cases 
corresponding to different combinations for values x and y. After considering all 
the cases, it turns out that the kernel will take different forms depending on whether 
x = y or x ≠ y . This derivation is done explicitly in Appendix A. We will just state 
the final result here, which is also the statement of Lemma 1:

We notice that dissimilar items are always dissimilar at level −1 , but similar items 
are similar at level [0,∞] . The similarity of a value to itself is greater for rare values 
(rare means that �x = P(D = x;�) is small).

4.2 � Multivariate Fisher kernel

We will now move on to the derivation in the multivariate case, leaving again some 
details to Appendix B. As seen from Eq. (1), the log-likelihood function for Bayes-
ian networks is:

where �ijri is never a real parameter but just a shorthand �ijri ≡ 1 −
∑ri−1

k=1
�ijk . From 

Eq. (7), it is easy to compute the components of score using the calculations already 
made in the univariate case. This gives:

which also has the familiar form from the univariate case, apart from the extra indi-
cator function due to the presence of parent variables. To get some intuition from 
the above equation, we can write it case by case as:

(6)I(�)kl = �kl�
−1
k

+ �−1
r
,

K(x, y;�) = �xy�
−1
x

− 1

=

{
1−�x

�x
if x = y, and

−1 if x ≠ y.

(7)

logP(d;�) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Idi(k) ⋅ I�i(d)(j) log �ijk

=

n∑
i=1

qi∑
j=1

I�i(d)(j)

ri∑
k=1

Idi(k) log �ijk,

(8)s(d;�)ijk = I�i(d)(j)[Idi(k)�
−1
ijk

− Idi(ri)�
−1
ijri
],



	 Behaviormetrika

1 3

4.2.1 � Fisher information matrix

The derivation of Fisher Information matrix also proceeds along the same lines as 
the univariate case. The indicator function corresponding to the parent configura-
tion results in the marginal probability of parent variables appearing in the formula. 
Details can be found in Appendix B. The end result is as follows:

where �ij,xy = �ix ⋅ �jy is generalization of Kronecker delta notation to a series of 
integers.

By looking at Eq. (9), we see that the matrix has a block diagonal structure. There 
is one block corresponding to each parent configuration for every variable. For vari-
able Di , the jth block is a (ri − 1) × (ri − 1) matrix, where on the diagonal we have 
values �−1

ijk
+ �−1

ijri
 for k = 1,… , ri − 1 and outside the diagonal �−1

ijri
 (with all the val-

ues multiplied by P(�i(D) = j) ). So each block looks just like the matrix in the uni-
variate case (see Eq. (4)), which we have already inverted.

4.2.2 � Inverse of the Fisher information matrix

The inverse of a block diagonal matrix is obtained by inverting the blocks sepa-
rately. Applying the univariate result for each of the blocks, we obtain that the ijth 
block has the form:

where ijA is a diagonal matrix with entries ijAkk = �ijk and ijFkl = �ijk�ijl.

4.2.3 � Fisher kernel

In calculating the K(x, y;�) = s(x;�)TI−1(�) s(y;�) , the block diagonality of the 
I
−1(�) will save us a lot of computation. We therefore partition the score vector into 

sub-vectors s(d;�)i that contain partial derivatives for all the parameters 
�i = ∪

qi
j=1

∪
ri−1

k=1
{�ijk} , and then further subdivide these into parts s(d;�)ij.

Since the kernel K(x, y;�) can be expressed as an inner product 
⟨s(x;�)TI−1(�), s(y;�)⟩ , we may factor this sum as:

s(d;𝜃)ijk =

⎧
⎪⎪⎨⎪⎪⎩

0 if 𝜋i(d) ≠ j,

0 if 𝜋i(d) = j ∧ di ≠ k < ri ∧ di ≠ ri,

𝜃−1
ijk

if 𝜋i(d) = j ∧ di = k < ri, and

−𝜃−1
ijri

if 𝜋i(d) = j ∧ di = ri.

(9)I(�)(xyz),(ijk) = �ij,xyP(�i(D) = j)(�kz�
−1
ijk

+ �−1
ijri
),

ij[I−1(�)] =
1

P(�i(D) = j)
[ijA −ij F],
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where Ki(x, y;�) = ⟨[s(x;�)TI−1(�)]i, s(y;�)i⟩ . It is therefore sufficient to study the 
terms Ki.

Since in s(x;�)i only the entries corresponding to the indices (i,�i(x)) may be non-
zero, the same applies to the row vectors [s(x;�)TI−1(�)]i due to the block diagonality 
of I−1(�).

That automatically implies that if �i(x) ≠ �i(y) then Ki(x, y;�) = 0 . If 
�i(x) = �i(y) = j , the computation reduces to the univariate case for K(xi, yi;�ij) , after 
taking the factors P(�i(D) = j) in a Fisher information matrix blocks into account. Here 
�ij = {�ijk ∣ k = 1,… , ri}.

Summarizing these results, we get K(x, y;�) =
∑n

i=1
Ki(x, y;�) , where

or more compactly

5 � Invariance of Fisher kernel for equivalent network structures

A distribution may sometimes be represented by different parametrizations of different 
Bayesian network structures. We say that two network structures G1 and G2 are equiva-
lent if for every parametrization θ1 of G1 there exists θ2 for G2 so that the networks 
represent the same probability distribution, and vice versa. Verma and Pearl (1990) 
showed that two network structures are equivalent if they have the same skeleton (i.e., 
they are the same if directed arcs are turned into undirected ones), and if they have the 
same set of V-structures (colliding arcs from two parents that are non-adjacent to each 
other).

K(x, y;�) =

n∑
i=1

Ki(x, y;�),

Ki(x, y;�) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0 if �i(x) ≠ �i(y),

−
1

P(�i(x);�)
if �i(x) = �i(y)

∧ (xi ≠ yi), and
1

P(�i(x);�)

1−�i�i (x)xi

�i�i (x)xi

if �i(x) = �i(y)

∧ (xi = yi),

Ki(x, y;�) =
��i(x)�i(y)

P(�i(x);�)

[
�xiyi

�i�i(x)xi

− 1

]

=
��i(x)�i(y)K(xi, yi;�i�i(x))

P(�i(x);�)
.
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5.1 � Fisher kernel for non‑equivalent structures

It is known that in general the Fisher kernel depends on the parametrization of the 
model. We will show by an example that this is also the case in Bayesian network 
models when the network structures are not equivalent.

Let us assume two independent binary variables, A and B, with following distri-
butions: P(A) = (0.7, 0.3) and P(B) = (0.4, 0.6) . If we present the joint distribution 
with a network without any arc, the Fisher similarity for the point ( A = 0,B = 0 ) is:

However, we may also express the same joint distribution in a net-
work in which there is an arc from A to B. In this case, P(A) = (0.7, 0.3) , 
P(B ∣ A = 0) = P(B ∣ A = 1) = (0.4, 0.6) . Unlike in the previous case, the Fisher 
kernel term KB now takes into account the probability of the parent A, which leads to 
a result different from the previous case:

5.2 � Fisher kernel for equivalent structures

Assume next that network structures of models M1 and M2 are equivalent, meaning 
that the two graphs imply exactly the same assertions of conditional independence. 
We would like to now show that in terms of the Fisher kernel, it does not matter 
which of these equivalent structures we use. To show this, we make use of the fol-
lowing property of Fisher kernels.

Theorem  2  Let �1 ∈ ℝ
q and �2 ∈ ℝ

q denote two equivalent parametrizations for 
Fisher kernel K such that �2 = g(�1) for some differentiable and invertible function 
g ∶ ℝ

q
→ ℝ

q . Now K(x, y;�1) = K(x, y;�2), ∀x, y.

In other words, Fisher kernel is invariant under one-to-one reparametrizations. For 
the proof, see Shawe-Taylor and Cristianini (2004). To show the invariance under 
equivalent Bayesian network structures, it suffices to prove the following statement:

Theorem 3  Let M1 = (G1, �
1) and M2 = (G2, �

2) represent two Bayesian networks 
with equivalent structures. Let q denote the number of free parameters in M1 and 
M2 . Given the parameters �1 for M1 , there exists a differentiable and invertible map-
ping g ∶ ℝ

q
→ ℝ

q such that �2 = g(�1).

In fact, this result is used as an assumption by Heckerman and Geiger (1995), and 
stated to hold in our setting where conditional distributions in the Bayesian network are 
unrestricted multinomials. However, an explicit proof does not appear in the paper. We 
give one in Appendix C. This allows us to formulate our main result of this section:

K((0, 0), (0, 0)) =
1 − 0.7

0.7
+

1 − 0.4

0.4
= 1

13

14
.

K((0, 0), (0, 0)) =
1 − 0.7

0.7
+

1

0.7

1 − 0.4

0.4
= 2

4

7
.
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Theorem  4  Let M1 = (G1, �
1) and M2 = (G2, �

2) be two Bayesian networks with 
equivalent structures such that they represent the same distribution over D. Let x 
and y denote two observations on D. Now,

6 � Comparing sets of observations

Having derived the Fisher kernel for measuring similarity among pairs of observations 
and studied its properties, we next show how this kernel easily generalizes to compar-
ing two sets of observations. This set kernel also allows us to define a distance function 
which has a connection to a quantity called maximum mean discrepancy. We will also 
present a simple greedy algorithm which can be used to find a prototypical sets of points 
from a larger set of candidates as measured by the similarity induced by Fisher kernel.

6.1 � The univariate set kernel

Let X = (x1,… , xN) and Y = (y1,… , yM) , where xl and ym are i.i.d. observations on a 
categorical random variable. Since the log likelihood of i.i.d set of cases is the sum of 
member log likelihoods, it is rather easy to show that the Fisher kernel for two data sets 
is the average of Fisher kernels of pairs in the sets (Chappelier and Eckard 2009).

If we compare a data set X of size N with Nk occurrences of the value k, and another 
data set Y of size M which has Mk occurrences of the value k, we can collect the com-
mon terms of the sum and get:

6.2 � The multivariate set kernel

The i.i.d assumption applied to n-dimensional data vectors xl and yi allows us to pre-
sent the multivariate set kernel as:

K(x, y;�1) = K(x, y;�2), ∀x, y.

K(X, Y;�) =
1

NM

N∑
l=1

M∑
m=1

K(xl, ym)

=
1

NM

(N,M)∑
(l,m)=(1,1)

[�xlym�
−1
xl

− 1]

=

r∑
k=1

[
Nk

N

Mk

M
�−1
k

]
− 1.

K(X, Y;�) =
1

NM

n∑
i=1

(N,M)∑
(l,m)=(1,1)

Ki(x
l, ym;�).
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Now to express the inner sum more compactly, we need to obtain the counts of the 
variable configurations (as determined by the Bayesian network structure) in sets X 
and Y. We denote with Nijk the number of data vectors x in X for which xi = k and the 
parent configuration �i(x) of is the jth possible one out of qi =

∏
p∈�i

rp . We write 
Nij =

∑ri
k=1

Nijk . For corresponding counts in the set Y, we denote the counts with 
Mijk. We may now develop the kernel as K(X, Y;�) = 1

NM

∑n

i=1
Ki(X, Y;�) , where

We notice that the formula in brackets is a version of the univariate set kernel, so we 
could write:

where xij denotes the vector of values of xi in those vectors of X where parents of xi 
have an index j. We need the convention that the value of set kernel is zero if either 
of the sets is empty.

6.3 � Maximum mean discrepancy

Applying set kernel to Euclidean distance with the kernel trick (see, for instance, 
Shawe-Taylor and Cristianini 2004), we can compute (squared) distances between 
two data sets according to:

where K(⋅, ⋅) refers to the multivariate Fisher kernel with the dependence on param-
eters omitted for brevity.

We note that distance defined in (10) coincides with the empirical estimate of 
maximum mean discrepancy (MMD) (Gretton et al. 2012) with the kernel function 
being the Fisher kernel. MMD provides a test statistic for comparing whether two 
sets of data come from the same distribution. With the help of a kernel function 
and the corresponding reproducing kernel Hilbert space (RKHS), it is defined as 

Ki(X, Y;�) =

(N,M)∑
(l,m)=(1,1)

��i(xl)�i(ym)

P(�i(x
l);�)

[
�xl

i
ym
i

�i�i(xl)xli

− 1

]

=

(N,M)∑
(l,m)=(1,1)

��i(xl)�i(xm)

P(�i(x
l);�)

�xl
i
ym
i

�i�i(xl)xli

−
��i(xl)�i(ym)

P(�i(x
l);�)

=

qi∑
j=1

ri∑
k=1

NijkMijk

P(�i(x) = j;�)�ijk
−

qi∑
j=1

NijMij

P(�i(x) = j;�)

=

qi∑
j=1

1

P(�i(x) = j;�)

[[
ri∑
k=1

NijkMijk

�ijk

]
− NijMij

]
.

Ki(X, Y;�) =

qi∑
j=1

K(xij, yij;�ij)

P(�i(x) = j;�)
,

(10)d(X, Y) =
1

N2

∑
i,j

K(xi, xj) +
1

M2

∑
i,j

K(yi, yj) −
2

NM

∑
i,j

K(xi, yj),
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the maximal difference in expectations over functions in the unit ball of this RKHS. 
MMD is expected to be close to zero when two data sets are drawn from the same 
distribution and larger otherwise.

We note that the theory developed by Gretton et al. (2012) builds on an assump-
tion that RKHS (with the associated kernel K(⋅, ⋅) defined on elements of space X  ) 
is universal. This technical assumption guarantees that the population version of the 
MMD is a metric for the probability distributions over X  . For instance, Gaussian 
kernel would define such RKHS and allow us to do two-sample testing for sets of 
observations in ℝn . We use the distance defined in (10) in our experiments, and refer 
to it as MMD, but leave further theoretical considerations (for instance, if the large 
sample bounds derived in Gretton et  al. (2012) would be readily available to use 
with our Fisher kernel) to future work.

6.4 � Greedy algorithm for optimizing MMD

We describe a simple greedy algorithm for finding a subset of points with small 
MMD from a larger candidate set. Given a set of N training examples X on variables 
D, and a Fisher kernel K, we try find a subset XS = {xi ∣ i ∈ S} ⊂ X of size k, where 
S ⊂ {1,… ,N} ≡ ⌈N⌉ so that d(XS,X) is minimized. If the Bayesian network from 
which the Fisher kernel is constructed is learned from X, this subset XS minimizing 
the distance can be taken to be a representative sample of the full set X as deemed 
by the model. We will put this statement under closer scrutiny in the experiments 
where we make use of the algorithm. This type of an application of using MMD for 
selecting prototypical samples has been also considered in Kim et al. (2016).

The greedy optimization procedure is described in Algorithm 1. The algorithm 
proceeds by starting from the initially given set of points XS . It then goes through 
the k points in XS one at a time, changing the current data point to one that results 
in the minimal d(XS,X) . The algorithm converges after it has looped through the k 
points once without being able to obtain a reduction in d(XS,X).

Algorithm 1 Greedy algorithm.
Require: Initial index set S, |S| = k

min d ← d(XS , X)
while S has changed do

for i ∈ S do
S ← S \ {i}
j∗ = argminj∈�N�\(S∪{i}) d(XS∪{j}, X)
best d ← d(XS∪{j∗}, X)
if best d < min d then

S ← S ∪ {j∗}
min d ← best d

else
S ← S ∪ {i}

end if
end for

end while
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7 � Experiments

The aim of our experiments is to illustrate the nature of the similarity that the 
Bayesian network Fisher kernel measures. By providing a valid kernel function, 
our kernel would be readily available for use in supervised tasks like classifica-
tion or regression through any kernel-based method. The only requirement would 
be being able to come up with a Bayesian network over the domain. A straight-
forward approach would use the available training data to learn the structure of a 
Bayesian network and then its parameters. A score-based approach for learning 
the network might involve maximizing a penalized likelihood, and the parameters 
would be set to ones maximizing the likelihood given the structure. As noted by 
van der Maaten (2011), it is not guaranteed that the Fisher kernel extracted from 
this generatively trained model would be optimal for discriminative purposes. A 
generative model is trained to model the input data well, which would drive the 
gradients of training instances towards zero and not necessarily mean that these 
representations would be particularly good for discriminating between the labels 
of instances.

In our experiments, we use Fisher kernel as mean of gaining insight on the 
underlying Bayesian network by trying to identify sets of observation that are 
important for the model. In general, there has been lately a surge of interest in 
understanding and interpreting various machine learning models (Murdoch et al. 
2019). As Fisher kernel measures similarity of data items from the point of view 
of the model, it provides a natural tool for various tasks related to model interpre-
tation (Khanna et al. 2019).

7.1 � Data summarization

We study how Fisher kernel performs in summarizing data. This experiment is 
inspired by the data summarization experiment in Khanna et al. (2019). Outline 
of the experiment is as follows. We first learn a Bayesian network M from data, 
build a Fisher kernel and then employ Algorithm 1 to find a subset of points that 
are important for M. To quantify “important”, we re-train the parameters of the 
model using the found subset and evaluate predictive performance of the newly 
trained model with hold-out data. We consider different approaches for learning 
the network and vary the evaluation metric.

We use junction tree algorithm to obtain the parent probabilities required in 
the Fisher kernel. In case the constructed junction tree has a tree width larger than 
10, the parent probabilities are computed by sampling data (106 samples) from the 
Bayesian network and then estimating probabilities as empirical frequencies (with 
pseudocount one to avoid possible zero probabilities).

As an alternative to Fisher kernel-based prototype selection, we also consider 
a simple heuristic based on �2 test. More in detail, when evaluating goodness of 
XS , we look at data on each variable in XS independently, and compute a p value 
from a �2 test, where observed frequencies are computed from XS and the expected 
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frequencies from the whole set X. The degrees-of-freedom is one less the number of 
observed categories. The best XS would be the one maximizing 

∑n

i=1
log p̂i, where 

p̂i is the p value corresponding to the test on the ith variable in XS (and in X). Intui-
tion here is that a large p value indicates that the observed frequencies match the 
expected ones. Algorithm 1 is also used to optimize this heuristic (to be precise, the 
objective function is −

∑n

i=1
log p̂i) . Also as a baseline, we show results for randomly 

selecting the subset XS.

7.1.1 � Network learned using hill climb

In this experiment, we considered three data sets found in UCI repository: letter 
( N = 20,000 , n = 17 ), nursery ( N = 12,960 , n = 9 ) and waveform-5000 ( N = 5000 , 
n = 41 ). The class variable present in each data set was treated as any other cat-
egorical feature. Possible continuous features were discretized to (at most) 4 bins 
and data was split to training and test sets ( 50%∕50% ). We then learned a Bayesian 
network using hill climbing1 with BIC as a scoring function using the training data. 
The parameters of the network were set to smoothed (pseudo-count one) maximum 
likelihood estimates. The Fisher kernel was constructed using this network. We 
measured full set accuracy by computing per sample negative log likelihood for the 
test set. We then proceeded to finding representative subsets from the training data. 
We considered four different values for subset size k and sampled 1000 of such sets. 
For the each sampled set, we recorded Fisher kernel MMD distance, �2 heuristic 
criterion and test set log likelihood corresponding to model with parameters learned 
from this set. We ran Algorithm 1 for each k with MMD distance and �2 heuristic. 
The best of the sampled subsets (according to each criterion) was used as a starting 
point for the greedy algorithm.

Results are shown in Fig. 1. Random mean represents the average log likelihood 
computed from the randomly sampled subsets with error bar showing the standard 
deviation. We can see that the Fisher kernel-based MMD finds more representative 
subsets than the compared criteria as measured by the log likelihood.

To give a rough idea of the running times2 of the methods in Fig. 1, it took 17, 32 
and 94 seconds to compute the parent probabilities and the Fisher kernel evaluations 
for training data points in data sets waveform-5000, nursery and letter, respectively. 
Running the greedy algorithm with the MMD distance for different subsets sizes 
took from 8 s ( k = 200 ) to 3 min ( k = 1000 ) in data set waveform-5000. For nursery 
and letter, the corresponding times were from 0.2 to 5 min and from 0.7 to 19 min, 
respectively. For the greedy �2 method, the corresponding times ranged (in minutes) 
from 1 to 4, from 0.2 to 0.8 and from 1 to 5, respectively. To find the starting points 
for the greedy algorithms, sampling 1000 random subsets, recording both the MMD 
and �2 statistics took from 9 to 18 s in waveform-5000, from 20 to 34 seconds in 
nursery and from 45 to 101 s in letter.

1  We used the implementation found in R-package ’bnlearn’.
2  Using a quad-CPU 3.10 GHz desktop computer. Methods were implemented in Python.
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7.1.2 � Bayesian network classifiers

Next, we considered classification experiments with the aforementioned three 
data sets. Outline of the experiments is exactly the same, except for the net-
work learning and the evaluation metric. After splitting the data in half, we used 
training data to learn a tree-augmented naive Bayes (TAN) classifier (Friedman 
et al. 1997) and K-dependence Bayesian (KDB) classifier (Sahami 1996). These 
both classes of classifiers can be represented as Bayesian networks over the class 
variable and the features. Each feature is connected to the class variable, and 
the classifiers differ in their way of modeling the dependency structure of the 
features. TAN uses conditional mutual information (given class variable) to find 
the best tree structure for the distribution of features. KDB also makes use of 
conditional mutual information but learns the structure in a greedy manner, con-
necting each feature to at most K other features. We used K = 3 in the experi-
ments and parameters of both the classifiers were smoothed by adding one pseu-
docount to empirical frequencies. Given the network structures and the Fisher 
kernel, the representative subsets were found using the procedure described in 
the last subsection. Goodness of the found subset was evaluated by computing 
the classification error and log loss (per sample) on the test set.

The results for the TAN and KDB are presented in Figs. 2 and 3, respectively. 
We can see that in general the Fisher kernel-based selection criterion is able 
to find considerably better subsets in terms of both evaluation metrics for both 
of the classifiers. Especially with TAN, the classification accuracy even with 
the smallest subset size is close to the full set accuracy in nursery and wave-
form-5000 data sets. With KDB in data set nursery, the smallest subset sizes 
produce results close to or worse than the random sampling. On the other hand, 
TAN does not seem to have similar problems. One thing explaining this could 
be that KDB (with K = 3 ) contains more parameters, so naturally more data 
points are required to estimate the parameters accurately. In general, the evalu-
ation metrics considered in this experiment are focused only on the class vari-
able, whereas the similarity measured by Fisher kernel takes into account all the 
variables through their corresponding parameters. From this point of view, the 
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log likelihood used in the previous subsection provides a more natural evalua-
tion criterion. Nevertheless, this experiment demonstrates that Fisher kernel is 
in most cases able to extract representative sets for discriminative purposes, too.

8 � Conclusion

We have presented a Fisher kernel for discrete Bayesian networks and shown 
that it makes sense to use it with networks learned from data even if the exact 
DAG structure is not in general identifiable. We also presented formulas for 
comparing two sets of cases and connected the resulting distance to maximum 
mean discrepancy. In the experiments, we illustrated the nature of the similar-
ity the Fisher kernel measures using examples that draw their motivation from 
interpreting Bayesian network models.

The obvious future work would contain testing this kernel in a huge number 
of available kernel-based methods and studying further the model interpretation 
aspect by extending the current experiments.

We have assumed that our model does not contain hidden variables. However, 
when the modeled vector z = (x, h) is partitioned into an observed part x and a 
hidden part h, one can easily define a marginalized kernel  (Tsuda et  al. 2002) 
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K(x, x�) =
∑

h,h� P(h�x)P(h��x�)K(z, z�) , which can be computed efficiently when 
the hidden dimension is not too large, since P(h|x) ∝ P(x, h) , which is easy to 
compute for Bayesian networks.
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A details on derivation of the univariate Fisher kernel

A.1 Fisher information matrix

Computing the Fisher information matrix requires the partial derivatives of the 
components of s(d;�)k (3). Noting that ��

−1
r

��l
= �−2

r
 , we get:

where �xy = 1 , if x = y , and 0, otherwise. Since �d[Id(k)] = P(D = k;�) = �k,

This is the same as Eq. (6) and agrees with the matrix presented in Eq. (4).

A.2 Inverse of Fisher information

Looking at the (5), we see that I−1(�)ij = �ij�i − �i�j . Using the equation above (the 
same as Eq. (6)), we get that

�s(d;�)k

��l
=

�

��l

(
Id(k)�

−1
k

− Id(r)�
−1
r

)

= −�klId(k)�
−2
k

− Id(r)�
−2
r
,

I(�)kl = −�d[−�klId(k)�
−2
k

− Id(r)�
−2
r
]

= �kl�
−1
k

+ �−1
r

= �−1
r
(�kl�

−1
k
�r + 1).
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which verifies that (5) is the inverse of Fisher information.

A.3 The kernel

We start by first exploring the row vector s(x;�)TI−1(�) . We recall, however, 
that s(x;�) looks very different when x = r and x < r . It is also useful to write 
I
−1(�) = A − F, where A = diag(�) and F = ��T . We use notation Ak⋅ to denote the 

kth row of matrix A.
Now, if x = r , s(x;�) = −�−1

r
� , so multiplying with its transpose sums the rows of 

the matrix and multiplies the results with −�−1
r

 , and we get

When x < r , the s(x;�) = �−1
x
ex , so the s(x;�)T picks the xth row from matrices and 

multiplies it by �−1
x

;

To work our way to full s(x;�)TI−1(�) s(y;�) it is easiest to continue by cases:

(1)	 If x = y = r , we get 

(2)	 If x < r = y , we get 

(I(�)I−1(�))ij =

r−1∑
k=1

I(�)ikI
−1(�)kj

=

r−1∑
k=1

(
�ik�

−1
i

+ �−1
r

)(
�kj�k − �k�j

)

=

r−1∑
k=1

(
�ik�kj�

−1
i
�k − �ik�

−1
i
�k�j + �kj�

−1
r
�k − �k�j�

−1
r

)

= �ij − �j + �j�
−1
r

− (1 − �r)�j�
−1
r

= �ij,

s(x;�)TI−1(�) = s(x;�)TA − s(x;�)TF

= −�−1
r

r−1∑
k=1

Ak⋅ + �−1
r

r−1∑
k=1

Fk⋅

= −�−1
r
�T + �−1

r
(1 − �r)�

T = −�T .

s(x;�)TI−1(�) = s(x;�)TA − s(x;�)TF

= �−1
x
(�xe

T
x
) − �−1

x
(�x�

T ) = (ex − �)T .

s(x;�)TI−1(�) s(y;�) = (−�T )(−�−1
r
�) = �−1

r
�T�

= �−1
r
(1 − �r) =

1 − �r

�r
.
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(3)	 Due to the symmetry of the Fisher information, for the case y < r = x : 

(4)	 Lastly, if x < r and y < r , we get: 

Collecting the results above gives as finally

B Details on derivation of the multivariate Fisher kernel

B.1 Fisher information matrix

Computing the second derivatives of the log likelihood, thus the partial derivatives 
of

is straightforward, once we note that 
��−1

ijri

��ijz
= �−2

ijri
. Extending the Kronecker delta 

notation �s,t to test equality of series s and t of integers, the second derivatives are

where we used �ijk,xyz = �ij,xy ⋅ �kz . Then noting that

s(x;�)TI−1(�) s(y;�) = (ex − �)T (−�−1
r
�)

= −�−1
r
(eT

x
� − �T�)

= −�−1
r
(1 − (1 − �r)) = −1.

(11)s(x;�)TI−1(�) s(y;�) = −1.

s(x;�)TI−1(�) s(y;�) = (eT
x
− �T )(�−1

y
ey)

= �−1
y
[eT

x
ey − �Tey]

= �−1
y
[�xy − �y]

=

{
1−�y

�y
if x = y, and

−1 if x ≠ y.

K(x, y;�) =

{
1−�x

�x
if x = y, and

−1 if x ≠ y.

s(d;�)ijk = I�i(d)(j)[Idi(k)�
−1
ijk

− Idi(ri)�
−1
ijri
]

�s(d;�)ijk

��xyz
= I�i(d)(j)[−Idi (k)�ijk,xyz�

−2
ijk

− Idi (ri)�ij,xy�
−2
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]

= I�i(d)(j)�ij,xy[−Idi(k)�kz�
−2
ijk

− Idi (ri)�
−2
ijri
],
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we get

C Proof of Theorem 3

Proof  Chickering showed that any equivalent structure can be reached from another 
by a series of covered arc reversal operations without leaving the equivalence class 
(Chickering 1995). An arc Di → Dj is covered if �j(D) = �i(D) ∪ {Di} . That is, the 
nodes share the exactly the same parent set, with the exception that Di is not its own 
parent. Without loss of generality, we can now assume that G1 and G2 differ by a sin-
gle covered arc reversal. Assume that this covered arc between Di and Dj in G1 is 
reversed, creating an arc Dj → Di in G2 . Let Z denote the common parents of Di and 
Dj . We treat Z as a single categorical variable whose cardinality is the number of all 
the possible parent combinations. Reversing the arc affects only the parameters 
defining the conditional distributions of Di ( �1i  and �2

i
 ) and Dj ( �1j  and �2

j
 ). All the 

other parameters in �1 can be mapped to �2 using an identity function.
If we multiply the conditional distributions of Di and Dj together, we get the dis-

tribution p(Di,Dj ∣ Z) . Given Z = z , we can treat this as a complete Bayesian net-
work (does not imply any conditional independencies) over Di and Dj under both M1 
and M2 . Starting from parameters �1 we can get the parameters for the joint 
P(Di,Dj ∣ Z = z) uniquely. The joint parameters refer here to probabilities 
P(Di = x,Dj = y ∣ Z = z) . Mapping is simply given by the chain rule and it is invert-
ible. The Jacobian related to the inverse mapping is derived by Heckerman et  al. 
(1995) (Theorem  10). The Jacobian is easily seen to be non-zero assuming 
𝜃1
ijk

> 0 ∀i, j, k . To be more precise, Theorem 10 provides the Jacobian related to the 
mapping from joint parameters to parameters of any complete Bayesian network 
model over the same domain. In our case, this means, that after bijectively mapping 
�1 to joint parameters, we can continue and map the joint parameters bijectively to 
parameters �2 of M2 . This holds for any z, and as a composition of two bijections is 
also a bijection, we have proved our claim. 	�  ◻

�d[Idi(k) ⋅ I�i(d)(j)] = P(Di = k,�i(D) = j) = P(�i(D) = j)P(Di = k|�i(D) = j)

= P(�i(D) = j) ⋅ �ijk,

I(�)(xyz),(ijk) = −�d

[
�s(d;�)ijk

��xyz

]
= �ij,xy�kzP(�i(D) = j)P(Di = k|�i(D) = j)�−2

ijk

+ �ij,xyP(�i(D) = j)P(Di = ri|�i(D) = j)�−2
ijri

= �ij,xyP(�i(D) = j)(�kz�
−1
ijk

+ �−1
ijri
).
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