
Fast Nearest Neighbor Search through
Sparse Random Projections and Voting

Ville Hyvönen∗, Teemu Pitkänen∗, Sotiris Tasoulis†, Elias Jääsaari∗, Risto Tuomainen∗,
Liang Wang‡, Jukka Corander∗§¶ and Teemu Roos∗

∗Helsinki Institute for Information Technology HIIT, University of Helsinki, Finland. Email: {firstname.lastname}@cs.helsinki.fi
†Liverpool John Moores University, UK. Email: S.Tasoulis@ljmu.ac.uk

‡Computer Laboratory, University of Cambridge, UK. Email: liang.wang@cl.cam.ac.uk
§Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, UK

¶Department of Biostatistics, University of Oslo, Norway. Email: jukka.corander@helsinki.fi

Abstract—Efficient index structures for fast approximate near-
est neighbor queries are required in many applications such
as recommendation systems. In high-dimensional spaces, many
conventional methods suffer from excessive usage of memory
and slow response times. We propose a method where multiple
random projection trees are combined by a novel voting scheme.
The key idea is to exploit the redundancy in a large number of
candidate sets obtained by independently generated random pro-
jections in order to reduce the number of expensive exact distance
evaluations. The method is straightforward to implement using
sparse projections which leads to a reduced memory footprint
and fast index construction. Furthermore, it enables grouping of
the required computations into big matrix multiplications, which
leads to additional savings due to cache effects and low-level
parallelization. We demonstrate by extensive experiments on a
wide variety of data sets that the method is faster than existing
partitioning tree or hashing based approaches, making it the
fastest available technique on high accuracy levels.

Index Terms—Nearest Neighbor Search; Random Projections;
High Dimensionality; Approximation Algorithms

I. INTRODUCTION

Nearest neighbor search is an essential part of many ma-
chine learning algorithms. Often, it is also the most time-
consuming stage of the procedure, see [1]. In application areas,
such as in recommendation systems, robotics and computer
vision, where fast response times are critical, using brute force
linear search is often not feasible. This problem is further
magnified by the availability of inreasingly complex, high-
dimensional data sources.

Applications that require frequent k-NN queries from large
data sets are for example object recognition [2], [3], shape
recognition [4] and image completion [5] using large databases
of image descriptors, and content-based web recommendation
systems [6].

Consequently, there is a vast body of literature on the
algorithms for fast nearest neighbor search. These algorithms
can be divided into exact and approximate nearest neighbor
search. While exact nearest neighbor search algorithms return
the true nearest neighbors of the query point, they suffer from
the curse of dimensionality: their performance degrades when
the dimension of the data increases, rendering them no better
than brute force linear search in the high-dimensional regime.

In approximate nearest neighbor search, the main interest is
the tradeoff between query time and accuracy, which can be
measured either in terms of distance ratios or the probability of
finding the true nearest neighbors. Several different approaches
have been proposed and their implementations are commonly
used in practical applications.

In this section, we first define the approximate nearest
neighbor search problem, then review the existing approaches
to it, and finally outline a new method that avoids the main
drawbacks of existing methods.

A. Approximate nearest neighbor search
Consider a metric spaceM, a data set X = (x1, . . . ,xn) ⊆

M, a query point q ∈M, and a distance metric m :M2 → R.
The k-nearest neighbor (k-NN) search is the task of finding
the k closest (w.r.t. m) points to q from the data set X, i.e.,
find a set K ⊆ X for which it holds that |K| = k and

m(q,x) ≤ m(q,y)

for all x ∈ K, y ∈ X \K.
In this work, we consider applications where M is the d-

dimensional Euclidean space Rd, and m is Euclidean distance

m(x,y) =

√√√√ d∑
i=1

(xi − yi)2.

An approximate nearest neighbor search algorithm can be
divided into two separate phases: an offline phase, and an
online phase. In the offline phase an index is built, and the
online phase refers to completing fast nearest neighbor queries
using the constructed index. In practical applications, the most
critical considerations are the accuracy of the approximation
(the definition of the accuracy and the required accuracy level
depending on the application), and the query time needed to
reach it.

As a measure of accuracy, we use recall, which is relevant
especially for information retrieval and recommendation set-
tings. It is defined as the proportion of true k-nearest neighbors
of the query point returned by the algorithm:

Recall =
|A ∩K|

k
.

Here A is a set of k approximate nearest neighbors returned
by the algorithm, and K is the set of true k nearest neighbors
of the query point.

Of secondary importance are the index construction time
in the offline stage and the memory requirement, which are
usually not visible to the user but must be feasible. Note that in
many applications the index must be updated regularly when
we want to add new data points into the set from where the
nearest neighbors are searched from.

B. Related work

Most effective methods for approximate nearest neighbor
search in high-dimensional spaces can be classified into either
hashing, graph, or space-partitioning tree based strategies.

1) Hashing based algorithms: The most well-known and
effective hashing based algorithms are variants of locality-
sensitive hashing (LSH) [7]–[9]. In LSH, several hash func-
tions of the same type are used. These hash functions are
locality-sensitive, which means that nearby points fall into the
same hash bucket with higher probability than the points that
are far away from each other. When answering a k-NN query,
the query point is hashed with all the hash functions, and
then a linear search is performed in the set of data points in
the buckets where the query point falls into. Multi-probe LSH
[10]–[12] improves the efficiency of LSH by searching also the
nearby hash buckets of the bucket a query point is hashed into.
Thus a smaller amount of hash tables is required to obtain a
certain accuracy level. The choice of the hash function affects
the performance and needs to be done carefully in each case.

2) Graph based algorithms: Approximate graph based
methods such as [13]–[15] build a k-NN-graph of the data
set in an offline phase, and then utilize it to do fast k-NN
queries. For example in [15] several graphs of random subsets
of the data are used to approximate the exact k-NN-graph of
the whole data set. The data set is divided hierarchically and
randomly into subsets, and the k-NN-graphs of these subsets
are built. This process is then repeated several times, and the
resulting graphs are merged and the final graph is utilized to
answer nearest neighbor queries. Graph based methods are in
general efficient, but the index construction is slow for larger
data sets.

3) Space-partitioning trees: The first space partitioning-
tree based strategy proposed for nearest neighbor search was
the k-d tree [16], which divides the data set hierarchically into
cells that are aligned with the coordinate axes. Nearest neigh-
bors are then searched by performing a backtracking or priority
search in this tree. k-d trees and other space-partitioning trees
can be utilized in approximate nearest neighbor search by
terminating the search when a predefined number of data
points is checked, or all the points within some predefined
error bound from the query point are checked [17].

Instead of the hyperplanes, clustering algorithms can be
utilized to partition the space hierarchically; for example the
k-means algorithm is used in k-means trees [1], [18]. Other
examples of clustering based partitioning trees are cover trees

[19], VP trees [20] and ball trees [21]. Similarly to graph-
based algorithms, clustering based variants have the drawback
of long index construction times due to hierarchical clustering
on large data sets.

An efficient scheme to increase the accuracy of space-
partitioning trees is to utilize several parallel randomized
space-partitioning trees. Randomized k-d trees [22], [23] are
grown by choosing a split direction at random from dimen-
sions of the data in which it has the highest variance. Nearest
neighbor queries are answered using priority search; a single
priority queue, which is ordered by distance of the query point
from splitting point in the splitting direction, is maintained for
all the trees.

Another variant of randomized space-partitioning tree is the
random projection tree (RP tree), which was first proposed for
vector quantization in [24], and later modified for approximate
nearest neighbor search in [25]. In random projection trees the
splitting hyperplanes are aligned with the random directions
sampled from the unit sphere instead of the coordinate axes.
Nearest neighbor queries are answered using defeatist search:
first the query point is routed down in several trees, and then
a brute force linear search is performed in the union of the
points of all the leaves the query point fell into.

C. MRPT algorithm

One of the strengths of randomized space-partitioning trees
is in their relative simplicity compared to hashing and graph
based methods: they have only few tunable parameters, and
their performance is quite robust with respect to them. They
are also perfectly suitable for parallel implementation because
the trees are independent, and thus can be easily parallelized
either locally or over the network with minimal communica-
tion overhead.

However, both of the aforementioned variants of random-
ized space-partitioning trees have a few weak points which
limit their efficiency and scalability. First, randomization used
in randomized k-d trees does not make the trees sufficiently
decorrelated to reach high levels of accuracy efficiently. Ran-
domization used in RP trees is sufficient, but it comes at
high computational cost: computation of random projections
is time-consuming for high-dimensional data sets because the
random vectors have the same dimension as the data.

Second, both the priority queue search used in [22], [23]
and the defeatist search used in [25] require checking a large
proportion of the data points to reach high accuracy levels;
this leads to slow query times. Third, because each node of
an RP tree has its own random vector, the number of random
vectors required is exponential with respect to tree depth. In
the high-dimensional case this on the one hand increases the
memory required by the index unnecessarily, and on the other
hand slows down the index construction process.

Because of the first two reasons the query times of the
randomized space-partitioning trees are not competitive with
the fastest graph based methods (cf. experimental results in
Section IV).

In this article we propose a method that uses multiple ran-
dom projection trees (MRPT); it incorporates two additional
features that lead to fast query times and accurate results.
The algorithm has the aforementioned strengths of randomized
space-partitioning trees but avoids their drawbacks.

More specifically, our contributions are:
1) We show that sparse random projections can be used

to obtain a fast variant of randomized space-partitioning
trees.

2) We propose the MRPT algorithm that combines multiple
trees by voting search as a new and more efficient
method to utilize randomized space-partitioning trees for
approximate nearest neighbor search.

3) We present a time and space complexity analysis of our
algorithm.

4) We demonstrate experimentally that the MRPT algo-
rithm with sparse projections and voting search out-
performs the state-of-the-art methods using several real-
world data sets across a wide range of sample size and
dimensionality.

In the following sections we describe the proposed method
by first revisiting the classic RP tree method [25], and then
describing the novel features that lead to increased accuracy
and reduced memory footprint and query time.

II. INDEX CONSTRUCTION

A. Classic random projection trees

At the root node of the tree, the points are projected onto
a random vector r generated from the d-dimensional standard
normal distribution Nd(0, I). The data set is then split into two
child nodes using the median of the points in the projected
space: points whose projected values are less or equal to the
median in the projected space are routed into the left child
node, and points with projected values greater than the median
are routed into the right child node. This process is then
repeated recursively for the subsets of the data in both of the
child nodes, until a predefined depth ` is met.

For high-dimensional data, the computation of random
projections is slow, and the memory requirement for storing
the random vectors is high. To reduce both the computation
time and the memory footprint, we propose two improvements:
• Instead of using dense vectors sampled from the d-

dimensional normal distribution, we use sparse vectors
to reduce both storage and computation complexity.

• Instead of using different projection vectors for each
intermediate node of a tree, we use one projection vector
for all the nodes on the same level of a tree, so that we
can further reduce the storage requirement and maximize
low-level parallelism through vectorization.

In addition, instead of splitting at a fractile point chosen at
random from the interval [14 ,

3
4], as suggested in [25], we split

at the median to make the performance more predictable and
to enable saving the trees in a more compact format.

In the following subsections we briefly discuss the details
of the above improvements. Pseudocode for constructing the

index using sparse RP trees is given in detail in Algorithms 1–2
below. The proposed Algorithm 1 consists of three embedded
for loops. The outermost loop (line 4 - 15) builds T RP
trees by continuously calling the GROW_TREE function in
Algorithm 2. For each individual RP tree, the two inner for
loops (line 6 - 12) prepare a sparse random matrix R which
will be used for projecting the data set X to P using ` random
vectors (at line 13). Specifically, the innermost loop is for
constructing a d-dimensional sparse vector for a given tree
level. In Algorithm 2, the GROW_TREE function constructs a
binary search tree by recursively splitting the high-dimensional
space X into sub-spaces using the previous projection P.

Algorithm 1 Grow T RP trees.
1: function GROW TREES(X, T , `, a)
2: n ← X.nrows
3: let trees[1 . . . T] be a new array
4: for t in 1, . . . , T do
5: let R be a new d× ` matrix
6: for level in 1, . . . , ` do
7: for i in 1, . . . , d do
8: generate z from Bernoulli(a)
9: if z = 1 then

10: generate R[i, level] from N(0, 1)
11: else
12: R[i, level] ← 0

13: P ← XR
14: trees[t].root ← GROW TREE(X, [1 . . . n], 0, P)
15: trees[t].random matrix ← R

16: return trees

Algorithm 2 Grow a single RP tree.
1: function GROW TREE(X, indices, level, P)
2: if level = ` then
3: return X[indices,] as leaf
4: proj ← P[indices, level]
5: split ← median(proj)
6: left indices ← indices[proj ≤ split]
7: right indices ← indices[proj > split]
8: left ← GROW TREE(X, left indices, level + 1, P)
9: right ← GROW TREE(X, right indices, level + 1, P)

10: return split, left, right

B. Sparse random projections

With high-dimensional data sets, computation of the random
vectors easily becomes a bottleneck on the performance of the
algorithm. However, it is not necessary to use random vectors
sampled from the d-dimensional standard normal distribution
to approximately preserve the pairwise distances between the
data points. Achlioptas [26] shows that the approximately
distance-preserving low-dimensional embedding of Johnson-
Lindenstrauss-lemma is obtained also with sparse random vec-
tors with components sampled from {−1, 0, 1} with respective
probabilities { 16 ,

2
3 ,

1
6}. Li et al. [27] prove that the same

components with respective probabilities { 1
2
√
d
, 1− 1√

d
, 1
2
√
d
},

where d is the dimension of the data, can be used to obtain
a
√
d-fold speed-up without significant loss in accuracy com-

pared to using normally distributed random vectors.
We use sparse random vectors r = (r1, . . . , rd), whose

components are sampled from the standard normal distribution
with probability a, and are zeros with probability 1− a :

ri =

{
N(0, 1) with probability a

0 with probability 1− a.

The sparsity parameter a can be tuned to optimize perfor-
mance but we have observed that a = 1√

d
recommended in

[27] tends to give near-optimal results in all the data sets we
tested, which suggests that further fine-tuning of this parameter
is unnecessary. This proportion is small enough to provide
significant computational savings through the use of sparse
matrix libraries.

C. Compactness and speed with fewer vectors
In classic RP trees, a different random vector is used at each

inner node of a tree, whereas we use the same random vector
for all the sibling nodes of a tree. This choice does not affect
the accuracy at all because a query point is routed down each
of the trees only once; hence, the query point is projected onto
a random vector ri sampled from the same distribution at each
level of a tree. This means that the query point is projected
onto i.i.d. random vectors r1, . . . , r` in both scenarios.

An RP tree has 2` − 1 inner nodes; therefore, if each node
of a tree had a different random vector as in classic RP trees,
2`−1 different random vectors would be required for one tree.
However, when a single vector is used on each level, only
` vectors are required. This reduces the amount of memory
required by the random vectors from exponential to linear with
respect to the depth of the trees.

Having only ` random vectors in one tree also speeds up the
index construction significantly. While some of the observed
speed-up is explained by a decreased amount of the random
vectors that have to be generated, mostly it is due to enabling
the computation of all the projections of the tree in one
matrix multiplication: the projected data set P ∈ Rn×` can be
computed from the data set X ∈ Rn×d and a random matrix
R ∈ Rd×` as

P = XR.

Although the total amount of computation stays the same,
in practice this speeds up the index construction significantly
due to the cache effects and low-level parallelization through
vectorization.

D. Time and space complexity: Index construction
At each level of each tree the whole data set is projected

onto a d-dimensional random vector that has on average
ad non-zero components, so the expected1 index construc-
tion time is Θ(T`nad). For classic RP trees (a = 1) this

1The following complexity results hold exactly if the algorithm is modified
so that each random vector has exactly dade non-zero components instead of
the expected number of non-zero components being ad.

is Θ(T`nd), but for sparse trees (a = 1√
d

) this is only
Θ(T`n

√
d).

For each tree, we need to store the points allocated to each
leaf node, so the memory required by the index is at least
O (Tn). At each node only a split point is saved; this does not
increase the space complexity because there are only 2`−1 <
n inner nodes in one tree.

The expected amount of memory required by one random
vector is Θ(ad) when random vectors are saved in sparse
matrix form. This is Θ(d) for dense RP trees, and Θ(

√
d) for

sparse RP trees with the sparsity parameter fixed to a = 1√
d

.
Because an RP tree has 2` − 1 inner nodes, the memory
requirement for T classic RP trees, which have a different
random vector for each node of a tree, is O (Tdn). However,
in our version, in which a single vector is used on each level,
there are only ` vectors; hence, the memory requirement for
T sparse RP trees is O

(
T (
√
d log n + n)

)
.

III. QUERY PHASE

In many approximate nearest neighbor search algorithms
the query phase is further divided into two steps: a candidate
generation step, and an exact search step.

In the candidate generation step, a candidate set S, for which
usually |S| � n, is retrieved from the whole data set, and
then in the exact search step k approximate nearest neighbors
of a query point are retrieved by performing a brute force
linear search in the candidate set. In the MRPT algorithm,
the candidate generation step consists of traversal of T trees
grown in the index construction phase.

The leaf to which a query point q belongs to is retrieved
by first projecting q at the root node of the tree onto the same
random vector as the data points, and then assigning it into the
left or right branch depending on the value of the projection. If
it is smaller than or equal to the cutpoint s (median of the data
points belonging to that node in the projected space) saved at
that node, i.e.

qT ri ≤ s,

the query point is routed into the left child node, and other-
wise into the right child node. This process is then repeated
recursively until a leaf is met.

The query point is routed down into a leaf in all the T trees
obtained in the index construction phase. The query process
is thus far similar to the one described in [25]. The principal
difference is the candidate set generation: in classic RP trees,
the candidate set S includes all the points that belong to the
same leaf with the query point in at least one of the trees.

A problem with this approach is that when a high number
of trees are used in the tree traversal step, the size of the
candidate set |S| becomes excessively large.

In the following, we show how the frequency information
(i.e., how frequently a point falls into the same cell as query
point) can be utilized to improve both query performance and
accuracy.

A. Voting search

Assume that we have constructed T RP trees of depth `.
Each of them partitions Rd into 2` cells (leaves) L1, . . . L2` ,
all of which contain d n

2`
e or b n

2`
c data points. For 1 ≤ t ≤ T ,

let ft be an indicator function of data point x ∈ X and the
query q, which returns 1, if x and q reside in the same cell
in tree t, and 0 otherwise:

ft(x;q) =

2`∑
m=1

1{x ∈ Lm,q ∈ Lm}.

Further, let F be a count function of data point x, which
returns the number of trees in which x and q belong to the
same leaf:

F (x;q) =

T∑
t=1

ft(x;q).

We propose a simple but effective voting search where we
choose into the candidate set only data points residing in the
same leaf as the query point in at least v trees:

S = {x ∈ X : F (x;q) ≥ v}.

The vote threshold v is a tuning parameter. A lower threshold
value yields higher accuracy at the expense of increased query
times.

This further pruning of the candidate set utilizes the intuitive
notion that the closer the data point is to the query point,
the more probably an RP tree divides the space so that they
both belong to the same leaf. We emphasize that our voting
scheme is not restricted to RP trees, but it can be used in
combination with any form of space-partitioning algorithms,
given that there is enough randomness involved in the process
to render the partitions sufficiently independent.

Pseudocode for the online stage of the MRPT algorithm
is given in detail in Algorithms 3–4 below (the knn(q, k, S)
function is a regular k-NN search which returns k nearest
neighbors for the point q from the set S).

Algorithm 3 Route a query point into a leaf in an RP tree.
1: function TREE QUERY(q, tree)
2: R ← tree.random matrix
3: p ← qTR
4: root ← tree.root
5: for level in 1, . . . , ` do
6: if p[level] ≤ root.split then
7: root ← root.left
8: else
9: root ← root.right

10: return data points in root

B. Time and space complexity: Query execution

When the trees are grown into some predetermined depth
` using the median split, the expected running time of the
tree traversal step is Θ(T`ad) because at each level of each
RP tree the query point is projected onto a d-dimensional

Algorithm 4 Approximate k-NN search using multiple RP
trees.

1: function APPROXIMATE KNN(q, k, trees, v)
2: S ← ∅
3: let votes[1 . . .X.nrows] be a new array
4: for tree in trees do
5: for point in TREE QUERY(q, tree) do
6: votes[point] ← votes[point] + 1
7: if votes[point] = v then
8: S ← S ∪ {point}
9: return knn(q, k, S)

TABLE I: Time and space complexity of the algorithm com-
pared to classic RP trees.

RP trees MRPT
(
a = 1√

d

)
Query time O

(
Td(` + n

2`
)
)

O
(
Td(√̀

d
+ n

2`
)
)

Index construction time Θ(T`nd) Θ(T`n
√
d)

Index memory O (Tdn) O
(
T (
√
d logn + n)

)

random vector that has on average ad non-zero components.
When using random vectors sampled from the d-dimensional
standard normal distribution, this is Θ(T`d), but when using
value a = 1√

d
for the sparsity parameter, it is only Θ(T`

√
d).

When the median split is used, each leaf has either d n
2`
e

or b n
2`
c data points. Therefore, the size of the final search set

satisfies |S| ≤ T d n
2`
e for both defeatist and voting search.

Because of this upper bound for the size of the candidate
set, the running time of the exact search in the candidate set is
O
(
T n

2`
d
)

for both defeatist search and voting search. Thus,
the total query time is O

(
Td(` + n

2`
)
)

for classic RP trees,

and O
(
Td(√̀

d
+ n

2`
)
)

for the MRPT algorithm.

IV. EXPERIMENTAL RESULTS

We assess the efficiency of our algorithm by comparing it
against state-of-the-art approximate nearest neighbor search
algorithms. To make the comparison as practically relevant as
possible, we chose widely used methods that are available in
optimized libraries.

All of the compared libraries, including ours, are imple-
mented in C++ and compiled with similar optimizations. We
make our comparison and the implementation of our algorithm
available as open-source2.

All of the experiments were performed on a single computer
with two Intel Xeon E5540 2.53GHz CPUs and 32GB of
RAM. No parallelization beyond that achieved by the use of
linear algebra libraries, such as caching and vectorization of
matrix operations, was used in any of the experiments.

We compare the MRPT algorithm to representatives from
all three major groups of approximate nearest neighbor search
algorithms: tree , graph and hashing based methods (cf. Table

2https://github.com/ejaasaari/mrpt-comparison

TABLE II: Data sets used in the experiments

Data set n d type

GIST 1000000 960 image descriptors
SIFT 2500000 128 image descriptors
MNIST 60000 784 image
Trevi 101120 4096 image
STL-10 100000 9216 image
News 262144 1000 text (TF-IDF + LSA)
Random 50000 4096 synthetic

TABLE III: Algorithms tested

Algorithm Library type

K-d tree ANN tree
Randomized k-d trees FLANN tree
K-means tree FLANN tree
NN-descent KGraph graph
Multi-probe LSH Falconn hash

III). In addition, we included our own implementation of
classic RP-trees and sparse RP-trees to test the efficacy of
our modifications.

A. Results

In the experiments we used three different values of k that
cover the range used in typical applications: k = 1, 10 and
100. However, due to space restrictions, we present results
only for k = 10 (the results for k = 1 and k = 100 are
available in the supplementary material on GitHub).

Figure 1 shows results for k = 10 on six data sets. The
times required to reach a given recall level are shown in Table
IV. The MRPT algorithm is significantly faster than other tree-
based methods and LSH on all of the data sets, except SIFT.
It is worth noting that SIFT has a much lower dimension (d =
128) than the other data sets. These results suggest that the
proposed algorithm is more suitable for high-dimensional data
sets.

The performance of the MRPT algorithm is also superior
to classic RP trees on all of the data sets. Of our two
main contributions, voting seems the be more important than
sparsity with respect to query times: sparse RP trees are only
slightly faster than dense RP trees, the gap being somewhat
larger on the higher-dimensional data sets, but the voting
search provides a marked improvement on all data sets. This
shows that the voting search, especially when combined with
sparsity, is an efficient way to reduce query time without
compromising accuracy.

The numerical values in Table IV indicate that for recall
levels ≥ 90%, the MRPT method is the fastest in 14 out of
21 instances, while the KGraph method is fastest in 7 out 21
cases. Compared to brute force search, MRPT is roughly 25–
100 times faster on all six real-world data sets at 90% recall
level, and roughly 10–40 times faster even at the highest 99%
recall level.

V. CONCLUSION

We propose the multiple random projection tree (MRPT)
algorithm for approximate k-nearest neighbor search in high
dimensions. The method is based on combining multiple
sparse random projection trees using a novel voting scheme
where the final search is focused to points occurring most
frequently among points retrieved by multiple trees. The algo-
rithm is straightforward to implement and exploits standard
fast linear algebra libraries by combining calculations into
large matrix–matrix operations.

We demonstrate through extensive experiments on both
real and simulated data that the proposed method is faster
than state-of-the-art space-partitioning tree and hashing based
algorithms on a variety of accuracy levels. It is also faster than
a leading graph based algorithm (KGraph) on high accuracy
levels, while being slightly slower on low accuracy levels. The
good performance of MRPT is especially pronounced for high-
dimensional data sets.

Due to its very competitive and consistent performance,
and simple and efficient index construction stage — especially
compared to graph-based algorithms — the proposed MRPT
method is an ideal method for a wide variety of applications
where high-dimensional large data sets are involved.

ACKNOWLEDGEMENTS

This work was supported in part by the Finnish Funding
Agency for Innovation (Project SPA), the Academy of Finland
(Centre-of-Excellence COIN), and the DoCS graduate school
of the University of Helsinki.

REFERENCES

[1] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 36, no. 11, pp. 2227–2240, 2014.

[2] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 2. IEEE, 2006, pp. 2161–
2168.

[3] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[4] Y. Amit and D. Geman, “Shape quantization and recognition with
randomized trees,” Neural computation, vol. 9, no. 7, pp. 1545–1588,
1997.

[5] J. Hays and A. A. Efros, “Scene completion using millions of pho-
tographs,” in ACM Transactions on Graphics (TOG), vol. 26, no. 3.
ACM, 2007, p. 4.

[6] L. Wang, S. Tasoulis, T. Roos, and J. Kangasharju, “Kvasir: Scalable
provision of semantically relevant web content on big data framework,”
IEEE Transactions on Big Data, vol. Advance online publication.
DOI:10.1109/TBDATA.2016.2557348, 2016.

[7] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, 1998, pp.
604–613.

[8] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in VLDB, vol. 99, no. 6, 1999, pp. 518–529.

[9] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on. IEEE,
2006, pp. 459–468.

Fig. 1: Query time (log scale) for 100 queries versus recall on six different data sets with k = 10. The compared methods
are: k-d tree (ann), multi-probe LSH (falconn), randomized k-d tree (flann-kd), hierarchical k-means tree (flann-kmeans), k-
NN graph (kgraph) and our method (mrpt). We also include results for our implementation of classic RP-trees (rp trees) and
RP-trees with sparsity (sparse rp trees).

TABLE IV: Query times required to reach at least a given recall level for recall R = 80%, 90%, 95%, 99%, and for k = 10.
Fastest times for each recall level are emphasized with bold font. MRPT consistently outperforms other algorithms at high
recall levels. For example, for R ≥ 95%, 71.4% of times MPRT achieves the fastest query time (i.e., 10 out of 14) whereas it
is only 28.6% for KGraph (i.e., 4 out of 14). ∗) R = 100% by definition for brute force search.

time (s), 100 queries

data set R (%) ANN FALCONN FLANN-kd FLANN-kmeans KGraph RP-trees MRPT(v = 1) MRPT brute force∗)

MNIST

80 0.89 0.21 0.02 0.02 0.02 0.09 0.05 0.02

2.5990 1.57 0.36 0.04 0.04 0.04 0.16 0.08 0.03
95 2.29 0.55 0.06 0.05 0.06 0.2 0.14 0.04
99 3.46 1.23 0.15 0.1 0.44 0.39 0.22 0.07

News

80 2.15 0.39 0.56 0.26 0.05 0.71 0.64 0.12

23.0990 4.42 0.88 2.92 0.45 0.11 1.37 1.05 0.2
95 7.35 1.23 9.55 1.39 0.25 1.98 1.62 0.28
99 11.83 2.58 38.81 7.5 3.24 4.3 3.87 0.5

GIST

80 20.54 21.21 6.03 1.86 0.59 4.77 4.19 1.03

52.9890 36.18 29.19 13.35 3.63 1.87 7.69 7.54 1.83
95 48.13 37.92 24.41 6.22 7.94 13.6 11.89 2.91
99 76.57 50.29 59.12 14.14 - 24.11 20.33 6.1

SIFT

80 0.81 0.93 0.21 0.09 0.05 0.4 0.38 0.24

21.3290 1.67 1.47 0.41 0.18 0.11 0.71 0.59 0.31
95 3.1 2.06 0.84 0.31 0.18 0.92 0.97 0.37
99 7.88 3.2 2.81 0.86 0.35 3.22 2.16 0.62

Trevi

80 5.5 14.62 0.97 0.7 0.16 1.48 0.94 0.27

22.1590 12.43 17.88 1.81 1.01 0.75 2.44 1.46 0.45
95 18.64 18.8 3.02 1.69 18.68 3.74 2.15 0.67
99 - 25.54 10.54 7.61 - 8.13 5.25 2.07

STL-10

80 31.31 18.62 4.29 2.04 0.18 5.46 3.06 0.88

49.4390 39.38 28.62 8.76 2.72 0.39 9.45 6.32 1.52
95 45.0 31.46 13.39 3.53 1.13 11.62 8.58 2.43
99 49.67 45.42 29.96 6.1 32.12 18.56 16.89 4.28

Random

80 23.86 10.1 12.55 9.73 7.59 8.55 8.2 4.55

10.990 27.33 12.27 13.91 11.48 9.8 10.2 9.8 6.9
95 29.07 14.28 14.5 12.55 10.93 10.88 10.71 8.6
99 30.47 17.03 15.37 13.7 12.02 11.59 11.42 10.36

[10] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe lsh: efficient indexing for high-dimensional similarity search,” in
Proceedings of the 33rd international conference on Very large data
bases. VLDB Endowment, 2007, pp. 950–961.

[11] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li, “Modeling
lsh for performance tuning,” in Proceedings of the 17th ACM conference
on Information and knowledge management. ACM, 2008, pp. 669–678.

[12] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal lsh for angular distance,” in Advances in Neural
Information Processing Systems 28. Curran Associates, Inc., 2015, pp.
1225–1233.

[13] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast approx-
imate nearest-neighbor search with k-nearest neighbor graph,” in IJCAI
Proceedings-International Joint Conference on Artificial Intelligence,
vol. 22, no. 1, 2011, p. 1312.

[14] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph
construction for generic similarity measures,” in Proceedings of the 20th
international conference on World wide web. ACM, 2011, pp. 577–586.

[15] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-
nn graph construction for visual descriptors,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 1106–1113.

[16] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[17] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923,
1998.

[18] K. Fukunaga and P. M. Narendra, “A branch and bound algorithm for
computing k-nearest neighbors,” IEEE transactions on computers, vol.
100, no. 7, pp. 750–753, 1975.

[19] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 97–104.

[20] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in SODA, vol. 93, no. 194, 1993, pp.
311–21.

[21] B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and
matching for object class recognition.” in BMVC, 2006, pp. 789–798.

[22] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[23] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, pp. 331–340,
2009.

[24] S. Dasgupta and Y. Freund, “Random projection trees for vector quan-
tization,” IEEE Transactions on Information Theory, vol. 55, no. 7, pp.
3229–3242, 2009.

[25] S. Dasgupta and K. Sinha, “Randomized partition trees for nearest
neighbor search,” Algorithmica, vol. 72, no. 1, pp. 237–263, 2015.

[26] D. Achlioptas, “Database-friendly random projections,” in Proceedings
of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems. ACM, 2001, pp. 274–281.

[27] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 287–296.

