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Brandon has

@ cough,
@ severe abdominal pain,
© nausea,

Q low blood pressure,
@ fever.
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© nausea,
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Brandon has
@ cough,
@ severe abdominal pain,

© nausea,
Q low blood pressure,
@ fever.

No single disease causes all of these.

Each symptom can be caused by some (possibly different) disease...
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Brandon has

@ cough, © pneumonia,
@ severe abdominal pain,

© nausea,

Q low blood pressure,
@ fever.

No single disease causes all of these.

Each symptom can be caused by some (possibly different) disease...
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Brandon has

@ cough, © pneumonia,
@ severe abdominal pain, @ appendicitis,
© nausea,

Q low blood pressure,
@ fever.

No single disease causes all of these.

Each symptom can be caused by some (possibly different) disease...
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Brandon has

@ cough, © pneumonia,

@ severe abdominal pain, @ appendicitis,
© nausea, © food poisoning,
Q low blood pressure,

@ fever.

No single disease causes all of these.

Each symptom can be caused by some (possibly different) disease...
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Brandon has

@ cough, © pneumonia,

@ severe abdominal pain, @ appendicitis,
© nausea, © food poisoning,
Q low blood pressure, © hemorrhage,
@ fever.

No single disease causes all of these.

Each symptom can be caused by some (possibly different) disease...
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Occam'’s Razor

MDL Principle House
Universal Source Coding Razor
MDL Principle (contd.)

House

Brandon has

© cough, © pneumonia,

@ severe abdominal pain, © appendicitis,
© nausea, © food poisoning,
© low blood pressure, © hemorrhage,
O fever. © meningitis.

No single disease causes all of these.

Each symptom can be caused by some (possibly different) disease...
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Occam'’s Razor

MDL Principle House
Universal Source Coding Razor
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House

Brandon has

© cough, © pneumonia,

@ severe abdominal pain, © appendicitis,
© nausea, © food poisoning,
© low blood pressure, © hemorrhage,
O fever. © meningitis.

No single disease causes all of these.
Each symptom can be caused by some (possibly different) disease...

Dr. House explains the symptoms with two simple causes:
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MDL Principle House
Universal Source Coding Razor
MDL Principle (contd.)

House

Brandon has

© cough, @ common cold,
@ severe abdominal pain, © appendicitis,
© nausea, © food poisoning,
© low blood pressure, © hemorrhage,
@ fever. @ common cold.

No single disease causes all of these.
Each symptom can be caused by some (possibly different) disease...

Dr. House explains the symptoms with two simple causes:

@ common cold, causing the cough and fever,
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MDL Principle House
Universal Source Coding Razor
MDL Principle (contd.)

House

Brandon has

© cough, @ common cold,
@ severe abdominal pain, © gout medicine,
© nausea, © gout medicine,
© low blood pressure, © gout medicine,
Q fever. © common cold.

No single disease causes all of these.
Each symptom can be caused by some (possibly different) disease...

Dr. House explains the symptoms with two simple causes:
@ common cold, causing the cough and fever,
@ pharmacy error: cough medicine replaced by gout medicine.
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Entities should not be multiplied beyond necessity. '

Isaac Newton: “We are to admit no more causes of natural things
than such as are both true and sufficient to explain their
appearances.”
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Occam'’s Razor

MDL Principle House
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Occam'’s Razor

Occam’s Razor
Entities should not be multiplied beyond necessity.

Isaac Newton: “We are to admit no more causes of natural things
than such as are both true and sufficient to explain their
appearances.”

Diagnostic parsimony: Find the fewest possible causes that
explain the symptoms.
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Occam'’s Razor

MDL Principle House
Universal Source Coding Razor
MDL Principle (contd.)

Occam'’s Razor

Occam’s Razor
Entities should not be multiplied beyond necessity.

Isaac Newton: “We are to admit no more causes of natural things
than such as are both true and sufficient to explain their
appearances.”

Diagnostic parsimony: Find the fewest possible causes that
explain the symptoms.

(Hickam's dictum: “Patients can have as many diseases as they damn
well please.”)
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Occam'’s Razor

MDL Principle House
Universal Source Coding Razor
MDL Principle (contd.)

Guessing Game
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@ Occam’s Razor

© MDL Principle
@ Rules & Exceptions
@ Probabilistic Models

© Universal Source Coding

@ MDL Principle (contd.)
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Choose the hypothesis which minimizes the sum of

@ the codelength of the hypothesis, and

@ the codelength of the data with the help of the hypothesis.
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Choose the hypothesis which minimizes the sum of

@ the codelength of the hypothesis, and

@ the codelength of the data with the help of the hypothesis.

min(é(h) + €(D: h))
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Choose the hypothesis which minimizes the sum of

@ the codelength of the hypothesis, and

@ the codelength of the data with the help of the hypothesis.

min(é(h) + €(D: h))

How to encode data with the help of a hypothesis?
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Idea 1: Hypothesis = rule; encode exceptions.
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Rules & Exceptions

Idea 1: Hypothesis = rule; encode exceptions.

Black box of size 25 x 25 = 625, white
dots at (x1, y1), (x2, y2), (X3, ¥3).
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Rules & Exceptions

Idea 1: Hypothesis = rule; encode exceptions.

Black box of size 25 x 25 = 625, white
dots at (x1, y1), (x2, y2), (X3, ¥3).

For image of size n = 625, there are 2"
different images, and

(&) = 7y

different groups of k exceptions.
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Rules & Exceptions

Idea 1: Hypothesis = rule; encode exceptions.

Black box of size 25 x 25 = 625, white
dots at (x1, y1), (x2, y2), (X3, ¥3).

For image of size n = 625, there are 2"
different images, and

(&) = 7y

different groups of k exceptions.

k=1: <'1’> — 625 < 2625 ~ 1.4 x 10188,

Codelength log,(n + 1) + log, (Z) ~ 19 vs. log, 2625 = 625
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Rules & Exceptions

Idea 1: Hypothesis = rule; encode exceptions.

Black box of size 25 x 25 = 625, white
dots at (x1, y1), (x2, y2), (X3, ¥3).

For image of size n = 625, there are 2"
different images, and

(&) = 7y

different groups of k exceptions.

k=2 <'2’> — 195000 < 2625 ~ 1.4 x 10188,

Codelength log,(n + 1) + log, (Z) ~ 27 vs. log, 2625 = 625

Teemu Roos Introduction to Information-Theoretic Modeling



Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Rules & Exceptions

Idea 1: Hypothesis = rule; encode exceptions.

Black box of size 25 x 25 = 625, white
dots at (x1, y1), (x2, y2), (X3, ¥3).

For image of size n = 625, there are 2"
different images, and

(&) = 7y

different groups of k exceptions.

k=3: <'3’> — 40495000 < 2025 ~ 1.4 x 10188,

Codelength log,(n + 1) + log, (Z) ~ 35 vs. log, 2625 = 625

Teemu Roos Introduction to Information-Theoretic Modeling



Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Rules & Exceptions

Idea 1: Hypothesis = rule; encode exceptions.

Black box of size 25 x 25 = 625, white
dots at (x1, y1), (x2, y2), (X3, ¥3).

For image of size n = 625, there are 2"
different images, and

(&) = 7y

different groups of k exceptions.

k=10: ({8) — 2331354000 000 000 000 000 < 2°2°,

Codelength log,(n + 1) + log, (Z) ~ 80 vs. log, 2625 = 625
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Rules & Exceptions

Idea 1: Hypothesis = rule; encode exceptions.

Black box of size 25 x 25 = 625, white
dots at (x1, y1), (x2, y2), (X3, ¥3).

For image of size n = 625, there are 2"
different images, and

(&) = 7y

different groups of k exceptions.

”>z95xm“ﬂ<?%z14xmw?

k =100 :
<100
Codelength log,(n + 1) + log, (:) ~ 401 vs. log, 2%%° = 625
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Rules & Exceptions

Idea 1: Hypothesis = rule; encode exceptions.

Black box of size 25 x 25 = 625, white
dots at (x1, y1), (x2, y2), (X3, ¥3).

For image of size n = 625, there are 2"
different images, and

b & <n>_k n!

k)~ Ki(n— k)

different groups of k exceptions.

”>zz7xmwﬁ<?%zL4xmw?

k =300 :
(300
Codelength log,(n + 1) + log, (Z) ~ 629 vs. log, 29%° = 625
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Rules & Exceptions

Idea 1: Hypothesis = rule; encode exceptions.

Black box of size 25 x 25 = 625, white
dots at (x1, y1), (x2, y2), (X3, ¥3).

For image of size n = 625, there are 2"
different images, and

(&) = 7y

different groups of k exceptions.

”>z51xmw%<?%zL4xmw?

k=372
(372
Codelength log,(n + 1) + log, (Z) ~ 613 vs. log, 29%° = 625
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Idea 2: Hypothesis = probability distribution.
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Idea 2: Hypothesis = probability distribution.

Probability distributions are codes are probability distributions! '
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Idea 2: Hypothesis = probability distribution.

Probability distributions are codes are probability distributions! '

The code-length of the data is given by

UD; h)= Iogzﬁ .

«0O0)>» «F»r «Z» « Q>

it
-



Idea 2: Hypothesis = probability distribution.

Probability distributions are codes are probability distributions! '

The code-length of the data is given by

1
{D; h) =logy ——— .
( ) g2 ph(D)
Remember to encode distribution too: ¢(h)

> 0.
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The MDL model selection criterion

minimize £(h) + ¢(D; h)
can be interpreted (via p = 27¢) as

maximize p(h) x pp(D) .
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

MDL & Bayes

The MDL model selection criterion

minimize ¢(h) + ¢(D; h)
can be interpreted (via p = 27%) as

maximize p(h) x pp(D) .

In Bayesian probability, this is equivalent to maximization of
posterior probability:

p(h) p(D | h)
p(D) ’

where the term p(D) (the marginal probability of D) is constant
wrt. h and doesn't affect model selection.

p(h| D) =

Teemu Roos Introduction to Information-Theoretic Modeling



ENVIRONMETRICS

Environmetrics 2001; 12: 559-568 (DOI: 10.1002/env.4582)

Model selection: Full Bayesian approach

Carlos Alberto de Braganca Pereira™! and Julio Michael Stern’

BIOINFO and IME-USP — University of Sao Paulo, Brazil
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ENVIRONMETRICS

Environmetrics 2001; 12: 559-568 (DOI: 10.1002/env.4582)

We can use the FBST as a model selection criterion, testing the hypothesis of some of its parameters
being null, and using the following version of the ‘Ockham razor: Do not include in the model a new
parameter unless there is strong evidence it is not null.’

circumstances discussed later.

The FBST selection criterion has an intrinsic regularization mechanism, under some general

Carlos Alberto de Braganca Pereira™! and Julio Michael Stern’

BIOINFO and IME-USP — University of Sao Paulo, Brazil
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

MDL & Bayes

ENVIRONMETRICS
Environmetrics 2001; 12: 559-568 (DOIL: 10.1002/env.482)

We can use the FBST as a model selection criterion, testing the hypothesis of some of its parameters
being null, and using the following version of the ‘Ockham razor: Do not include in the model a new
parameter unless there is strong evidence it is not null.’

The FBST selection criterion has an intrinsic regularization mechanism, under some general
circumstances discussed later.

Carlos Alberto de Braganga Pereira*' and Julio Michael Stern!

BIOINFO and IME-USP — University of Sao Paulo, Brazil

“Do not include in the model a new parameter unless there is
strong evidence it is not null.”

Teemu Roos Introduction to Information-Theoretic Modeling
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Idea 3: Hypothesis = set of probability distributions
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Probabilistic Models

Idea 3: Hypothesis = set of probability distributions
= model class.

L=l

2 - g

04

A

0.3

/

0.2

0.1

0.0
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Idea 3: Hypothesis = set of probability distributions
= model class.

A universal code achieves almost as short a code-length as the
code based on the best distribution in the model class.
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Idea 3: Hypothesis = set of probability distributions
= model class.

A universal code achieves almost as short a code-length as the
code based on the best distribution in the model class.

Different types of universal codes:
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Probabilistic Models

Idea 3: Hypothesis = set of probability distributions
= model class.

Universal Coding

A universal code achieves almost as short a code-length as the
code based on the best distribution in the model class.

Different types of universal codes:

© two-part code,

Teemu Roos Introduction to Information-Theoretic Modeling



Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Probabilistic Models

Idea 3: Hypothesis = set of probability distributions
= model class.

Universal Coding

A universal code achieves almost as short a code-length as the
code based on the best distribution in the model class.

Different types of universal codes:
© two-part code,

@ mixture code,
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Occam's Razor

MDL Principle Rules & Exceptions
Universal Source Coding Probabilistic Models
MDL Principle (contd.)

Encoding Data: Probabilistic Models

Idea 3: Hypothesis = set of probability distributions
= model class.

Universal Coding

A universal code achieves almost as short a code-length as the
code based on the best distribution in the model class.

Different types of universal codes:
© two-part code,
@ mixture code,
© normalized maximum likelihood (NML) code.

Teemu Roos Introduction to Information-Theoretic Modeling



@ Occam’s Razor

© MDL Principle

© Universal Source Coding
@ Two-Part Codes
@ Mixture Codes
@ Normalized Maximum Likelihood
@ Universal Prediction

@ MDL Principle (contd.)
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The typical situation might be as follows:
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The typical situation might be as follows:

@ We know (think) that the source symbols are generated by a

Bernoulli model with parameter p € [0, 1].
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The typical situation might be as follows:

@ We know (think) that the source symbols are generated by a
Bernoulli model with parameter p € [0, 1].
© However, we do not know p in advance.
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The typical situation might be as follows:

@ We know (think) that the source symbols are generated by a
Bernoulli model with parameter p € [0, 1].
© However, we do not know p in advance.

© We'd like to encode data at rate H(p).
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Let M ={py : 6 € O} be a parametric probabilistic model class,
i.e., a set of distributions py indexed by parameter 6.
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Let M ={py : 6 € O} be a parametric probabilistic model class,
i.e., a set of distributions py indexed by parameter 6.

For any distribution py, the Shannon code-lengths satisfy

lo(D) = log,

1
po(D)

it
-

«0O0)>» «F»r «Z» « Q>



Let M ={py : 6 € O} be a parametric probabilistic model class,
i.e., a set of distributions py indexed by parameter 6.

For any distribution py, the Shannon code-lengths satisfy

1
lo(D) = logy ——— .
(D) ? po(D)
Using parameter value 6, the total code-length becomes
01(0) + log,

1

po(D)
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coefficients)?

What if the parameters are continuous (like polynomial

«O)>» «F)r « > « E» Q>



What if the parameters are continuous (like polynomial
coefficients)?

Solution: Quantization. Choose a discrete subset of points,

M) 92 . and use only them.
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What if the parameters are continuous (like polynomial
coefficients)?

Solution: Quantization. Choose a discrete subset of points,
M) 92 . and use only them.
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What if the parameters are continuous (like polynomial
coefficients)?

Solution: Quantization. Choose a discrete subset of points,
M) 92 . and use only them.
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What if the parameters are continuous (like polynomial
coefficients)?

Solution: Quantization. Choose a discrete subset of points,
M) 92 . and use only them.
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What if the parameters are continuous (like polynomial
coefficients)?

Solution: Quantization. Choose a discrete subset of points,
M) 92 . and use only them.
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What if the parameters are continuous (like polynomial
coefficients)?

Solution: Quantization. Choose a discrete subset of points,
M) 92 . and use only them.
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Occam'’s Razor Two-Part Codes

MDL Principle Mixture Codes
Universal Source Coding Normalized Maximum Likelihood
MDL Principle (contd.) Universal Prediction

Continuous Parameters

What if the parameters are continuous (like polynomial
coefficients)?

Solution: Quantization. Choose a discrete subset of points,
6 92 . and use only them.

If the points are sufficiently dense (in a code-length sense) then the
code-length for data is still almost as short as mingcg ¢9(D).

[m] = = =

Teemu Roos Introduction to Information-Theoretic Modeling



Occam'’s Razor Two-Part Codes

MDL Principle Mixture Codes
Universal Source Coding Normalized Maximum Likelihood
MDL Principle (contd.) Universal Prediction

Continuous Parameters

What if the parameters are continuous (like polynomial
coefficients)?

Solution: Quantization. Choose a discrete subset of points,
6 92 . and use only them.

Information Geometry!

If the points are sufficiently dense (in a code-length sense) then the
code-length for data is still almost as short as mingcg ¢9(D).

[m] = = =

Teemu Roos Introduction to Information-Theoretic Modeling



code.

There are universal codes that are strictly better than the two-part
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There are universal codes that are strictly better than the two-part
code.

For instance, given a code for the parameters, let w be a

distribution over the parameter space © (quantized if necessary)
defined as

w(f) =249
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Occam'’s Razor Two-Part Codes

MDL Principle Mixture Codes
Universal Source Coding Normalized Maximum Likelihood
MDL Principle (contd.) Universal Prediction

Mixture Universal Model

There are universal codes that are strictly better than the two-part
code.

For instance, given a code for the parameters, let w be a
distribution over the parameter space © (quantized if necessary)
defined as

w(f) =270)

Let p* be a mixture distribution over the data-sets D € D,

defined as
p¥(D) = py(D) w(0) ,
6co

i.e., an “average” distribution, where each py is weighted by w(6).

Teemu Roos Introduction to Information-Theoretic Modeling



Consider again the maximum likelihood model

5(D) = D) .
p3(D) = max (D)

It is the best probability assignment achievable under model M.

«0O0)>» «F»r «Z» « Q>
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Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Two-Part Codes

Mixture Codes

Normalized Maximum Likelihood
Universal Prediction

Normalized Maximum Likelihood

Consider again the maximum likelihood model

5(D) = D) .
p3(D) = max (D)

It is the best probability assignment achievable under model M.

Unfortunately, it is not possible to use the ML model for coding
because is not a probability distribution, i.e.,

C=) pyD)>1,

DeD

unless @ is constant wrt. D.

Teemu Roos
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The normalized maximum likelihood (NML) model is obtained
by normalizing the ML model:

pnml(D) — mCD)

,  where C = Z psp(D) .
DeD
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Occam's Razor Two-Part Codes

MDL Principle Mixture Codes
Universal Source Coding Normalized Maximum Likelihood
MDL Principle (contd.) Universal Prediction

Normalized Maximum Likelihood

Normalized Maximum Likelihood
The normalized maximum likelihood (NML) model is obtained
by normalizing the ML model:
(D
pnml(D) - pH(C ) ,  where C = Z pé(D
DeD

NML code-length:

1 1
{(D) =logy ———— = log + log, C .
() =lo8z D) ~ 8 (o) 1o

Teemu Roos Introduction to Information-Theoretic Modeling



Occam's Razor Two-Part Codes

MDL Principle Mixture Codes
Universal Source Coding Normalized Maximum Likelihood
MDL Principle (contd.) Universal Prediction

Normalized Maximum Likelihood

Normalized Maximum Likelihood
The normalized maximum likelihood (NML) model is obtained
by normalizing the ML model:

ps(D)

pnml(D) - HC ,  where C = Z pé(D
DeD

NML code-length:

1 1
{(D) =logy ———— = log + log, C .
() =lo8z D) ~ 8 (o) 1o

The more flexible (complex) the model class, the greater the
normalizing constant.

Teemu Roos Introduction to Information-Theoretic Modeling
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@ mixture,
@ NML.
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We have seen three kinds of universal codes:
@ two-part,



We have seen three kinds of universal codes:
@ two-part,

@ mixture,
@ NML.

There are also universal codes that are not based on any (explicit)
model class: Lempel-Ziv (WinZip, gzip)!
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So what do we do with them?
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So what do we do with them?

We can use universal codes for (at least) three purposes:
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So what do we do with them?

We can use universal codes for (at least) three purposes:
@ compression,
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So what do we do with them?

We can use universal codes for (at least) three purposes:
@ compression,
@ prediction,
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So what do we do with them?

@ compression,

We can use universal codes for (at least) three purposes:
@ prediction,

© model selection.
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By the connection p(D) = 2~D)| the following are equivalent:
e good compression: /(D) is small,
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By the connection p(D) = 2~D)| the following are equivalent:
e good compression: /(D) is small,

e good predictions: p(D; | D1,...,D;_1) is high for most
ie{l,...,n}.
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Occam's Razor Two-Part Codes

MDL Principle Mixture Codes
Universal Source Coding Normalized Maximum Likelihood
MDL Principle (contd.) Universal Prediction

Universal Prediction

By the connection p(D) = 2~D)| the following are equivalent:
e good compression: /(D) is small,

e good predictions: p(D; | D, ...,D;_1) is high for most
ie{l,...,n}.

For instance, the mixture code gives a natural predictor which is
equivalent to Bayesian prediction.

Teemu Roos Introduction to Information-Theoretic Modeling



Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Universal Prediction

Two-Part Codes

Mixture Codes

Normalized Maximum Likelihood
Universal Prediction

By the connection p(D) = 2~D)| the following are equivalent:

e good compression: /(D) is small,

e good predictions: p(D; | D, ...,D;_1) is high for most

ie{l,...,n}.

For instance, the mixture code gives a natural predictor which is

equivalent to Bayesian prediction.

The NML model gives predictions that are good relative to the
best model in the model class, no matter what happens.

Teemu Roos
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Since a model class that enables good compression of the data

must be based on exploiting the regular features in the data, the

code-length can be used as a yard-stick for comparing model
classes.
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@ Occam’s Razor

© MDL Principle
© Universal Source Coding

@ VDL Principle (contd.)
@ Modern MDL
@ Histogram Density Estimation
o Clustering
@ Linear Regression
@ Wavelet Denoising
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Modern MDL

Occam'’s Razor : . L
s Histogram Density Estimation
MDL Principle C\ustfring Y
Universal Source Coding Ui Ragressien
MDL Principle (contd.) Wl Dl

MDL Principle

MDL Principle
“Old-style":
@ Choose the model pg € M that yields the shortest two-part
code-length

. 1
e (M) + £1(0) + log, 2o(D)’

Modern:
@ Choose the model class M that yields the shortest universal

code-length
n/w\itn U(M) + (D).

Teemu Roos Introduction to Information-Theoretic Modeling



by the codelength.

The success in extracting the structure from data can be measured
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by the codelength.

The success in extracting the structure from data can be measured

model class(es). For instance, the Bernoulli (coin flipping) model
only sees the number of 1s.

«0O0)>» «F»r «Z» « Q>

We can only extract the structure that is “visible” to the used
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Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

MDL Model Selection

Intuitive Explanation of MDL
The success in extracting the structure from data can be measured
by the codelength.

We can only extract the structure that is “visible” to the used
model class(es). For instance, the Bernoulli (coin flipping) model
only sees the number of 1s.

When the model can express the structural properties pertaining to
the data but not more, the total code-length is minimal.

Teemu Roos Introduction to Information-Theoretic Modeling



Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

MDL Model Selection

Intuitive Explanation of MDL

The success in extracting the structure from data can be measured
by the codelength.

We can only extract the structure that is “visible” to the used
model class(es). For instance, the Bernoulli (coin flipping) model
only sees the number of 1s.

When the model can express the structural properties pertaining to
the data but not more, the total code-length is minimal.

Important: Too complex models lead to a long total code-length
(Occam’s Razor!).

Teemu Roos Introduction to Information-Theoretic Modeling
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very simple:

The multinomial model — the generalization of Bernoulli — is

Pr(X =j)=86;, forje{l,...,m}.
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very simple:

The multinomial model — the generalization of Bernoulli — is

Pr(X=j)=86;, forje{l,...,m}
Maximum likelihood:
g = =g}

n

«0O0)>» «F»r «Z» « Q>
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very simple:

The multinomial model — the generalization of Bernoulli — is

Pr(X=j)=86;, forje{l,...,m}
Maximum likelihood:
g = =g}

n

Two-part, mixture, and NML models readily defined.
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very simple:

The multinomial model — the generalization of Bernoulli — is

Pr(X=j)=86;, forje{l,...,m}
Maximum likelihood:
g = =g}

n

Two-part, mixture, and NML models readily defined.
= Exercises 7-9.
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model

pa(x")
cm o’

cr =

n

The naive way to compute the normalizing constant in the NML

> ply™).

y"GX"

«0O0)>» «F»r «Z» « Q>

takes exponential time (Q(m")).
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model

y"GX"
takes exponential time (Q(m")).

However, there is a trick (Myllymaki & Kontkanen, 2007) to do
in linear time.

The naive way to compute the normalizing constant in the NML
Py(x")

e G > ply™).

t
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Occam'’s Razor itectai WDl

MDL Principle Hlstogr_am Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Universal Source Coding
MDL Principle (contd.)

Fast NML for Multinomials

The naive way to compute the normalizing constant in the NML

model (x")
pA X m n
QC,,, C =) ™,

}/HGX"

takes exponential time (Q(m")).

However, there is a trick (Myllymaki & Kontkanen, 2007) to do it
in linear time.

Kontkanen & Myllymaki, “A linear-time algorithm for computing the
multinomial stochastic complexity”, Information Processing Letters 103
(2007), 6, pp. 227-233

Teemu Roos Introduction to Information-Theoretic Modeling



A histogram density is defined by

@ The break-points between the bins,
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A histogram density is defined by

@ The break-points between the bins,
@ The heights of the bins.
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A histogram density is defined by

@ The break-points between the bins,
@ The heights of the bins.

Choosing the number and the positions of break-points can be
done by MDL.

it
-
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Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Histogram Density Estimation

A histogram density is defined by
@ The break-points between the bins,
@ The heights of the bins.

Choosing the number and the positions of break-points can be
done by MDL.

The code-length is equivalent (up to additive constants) to the
code-length in a multinomial model.

Teemu Roos Introduction to Information-Theoretic Modeling



Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Histogram Density Estimation

A histogram density is defined by
@ The break-points between the bins,
@ The heights of the bins.

Choosing the number and the positions of break-points can be
done by MDL.

The code-length is equivalent (up to additive constants) to the
code-length in a multinomial model.
= Linear-time algorithm can be used.

Teemu Roos Introduction to Information-Theoretic Modeling



Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Histogram Density Estimation

MDL Histogram Density Estimation

Petri Kontkanen, Petri Myllymaki
Complex Systems Computation Group (CoSCo)
Helsinki Institute for Information Technology (HIIT)
University of Helsinki and Helsinki University of Technology
P.0.Box 68 (Department of Computer Science)
FIN-00014 University of Helsinki, Finland
{Firstname}.{Lastname}@hiit.fi

Abstract only on finding the optimal bin count. These regu-
lar histograms are, however, often problematic. It has
been argued (Rissanen, Speed, & Yu, 1992) that reg-
ular histograms are only good for describing roughly
uniform data. If the data distribution is strongly non-
uniform, the bin count must necessarily be high if one
wants to capture the details of the high density portion
of the data. This in turn means that an unnecessary
large amount of bins is wasted in the low density re-

We regard histogram density estimation as
a model selection problem. Our approach
is based on the information-theoretic min-
imum description length (MDL) principle,
which can be applied for tasks such as data

ering, density mation, image denois-
oo dol oo - ol AITAT
Teemu Roos Introduction to Information-Theoretic Modeling
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multinomial variables.

Consider the problem of clustering vectors of (independent)
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multinomial variables.

Consider the problem of clustering vectors of (independent)

This can be seen as a way to encode (compress) the data:
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multinomial variables.

Consider the problem of clustering vectors of (independent)

This can be seen as a way to encode (compress) the data:
@ first encode the cluster index of each observation vector,
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multinomial variables.

Consider the problem of clustering vectors of (independent)

This can be seen as a way to encode (compress) the data:

@ first encode the cluster index of each observation vector,
models.

@ then encode the observations using separate (multinomial)

«0O0)>» «F»r «Z» « Q>
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Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Clustering

Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Consider the problem of clustering vectors of (independent)

multinomial variables.

This can be seen as a way to encode (compress) the data:

@ first encode the cluster index of each observation vector,

@ then encode the observations using separate (multinomial)

models.

Again, the problem is reduced to the multinomial case, and the
fast NML algorithm can be applied.

Teemu Roos
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structure:

The clustering model can be interpreted as the naive Bayes

()

label = cluster index

fi,...,f, are features
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structure:

The clustering model can be interpreted as the naive Bayes

()

label = cluster index

fi,...,f, are features
The structure is very restrictive. Generalization achieved by
Bayesian networks.
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The clustering model can be interpreted as the naive Bayes

structure:

label = cluster index

fi,...,f, are features
The structure is very restrictive. Generalization achieved by
Bayesian networks.

MDL criterion for learning Bayesian network structures again based
on fast NML for multinomials.
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Directed asyclic graph (DAG) describing conditional
independencies (causality?).
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Directed asyclic graph (DAG) describing conditional
independencies (causality?).

Denote parents by Pa; C {Xi,..., Xn}\Xi.
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Directed asyclic graph (DAG) describing conditional
independencies (causality?).

Denote parents by Pa; C {Xi,..., Xn}\Xi.

Joint probability

m
p(Xla cee 7Xm) = H p(Xi | pai)‘
j=1
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it
it
N)
¥l
i)




Problem with NML for Bayesian networks is the summation over
all possible data-sets: exponential complexity.
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5 Modern MDL
Occam'’s Razor 7 . L
s Histogram Density Estimation
MDL Principle :
Clustering
Linear Regression
Wavelet Denoising

Universal Source Coding
MDL Principle (contd.)

Bayesian Networks

Problem with NML for Bayesian networks is the summation over
all possible data-sets: exponential complexity.

Approximation: normalization over smaller blocks at a time.
X% X 5% X X% % X% X

~+=— [OWS ==

NML fNML sNML fsNML

Teemu Roos Introduction to Information-Theoretic Modeling



5 Modern MDL
Occam'’s Razor 7 . L
s Histogram Density Estimation
MDL Principle :
Clustering
Linear Regression
Wavelet Denoising

Universal Source Coding
MDL Principle (contd.)

Bayesian Networks

Problem with NML for Bayesian networks is the summation over
all possible data-sets: exponential complexity.

Approximation: normalization over smaller blocks at a time.
X% X 5% X X% % X% X

~+=— [OWS ==

NML fNML sNML fsNML

= Factorized NML

Teemu Roos Introduction to Information-Theoretic Modeling



Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Bayesian Networks

30000 pr

B AIC seeredemne
sl 'ﬁ-Ig, BIC awgifommme
- e, uxlBDeu_l_O n--mmEmmml b
%, ':,""' NML, se——f—

20000 K25

25000

15000

10000

5000

10 © 100 1000

Sample size
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Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Bayesian Networks

30000 pr
BIC zmuifuine
25000 1 nn-umlEmlmnl b
“r,, INML =
20000 )
15000 BDe optimal when
prior "correct". INML
10000 almost as good.
5000 '
0

10 7 10 o 10
Sample size
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Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Bayesian Networks

9000 ry
8000 -;‘;"‘“'-'::;:'.'.’.'.'."
7000 } X
6000
5000
4000
3000
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1000

0 A
10 100 1000

Sample size
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5 Modern MDL
Occam'’s Razor 7 . L
s Histogram Density Estimation
MDL Principle @l
Universal Source Coding g

. Linear Regression
MDL Principle (contd.) Wavelet Dgenoising

Bayesian Networks
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In order to encode data using, say, the Gaussian density we face
the question: | How to encode continuous data? |
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In order to encode data using, say, the Gaussian density we face

the question: | How to encode continuous data? |

We already know how to encode using models with continuous
parameters:
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In order to encode data using, say, the Gaussian density we face

the question: | How to encode continuous data? |

We already know how to encode using models with continuous
parameters:

@ two-part with optimal quantization (z %Iogz n),
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Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

How to Encode Continuous Data?

In order to encode data using, say, the Gaussian density we face
the question: ‘ How to encode continuous data?

We already know how to encode using models with continuous
parameters:

k
2

e two-part with optimal quantization (= 5 log, n),

@ mixture code,

Teemu Roos Introduction to Information-Theoretic Modeling



Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

How to Encode Continuous Data?

In order to encode data using, say, the Gaussian density we face
the question: ‘ How to encode continuous data?

We already know how to encode using models with continuous
parameters:

e two-part with optimal quantization (~ £ log, n),
@ mixture code,

o NML.
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Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

How to Encode Continuous Data?

In order to encode data using, say, the Gaussian density we face

the question: ’ How to encode continuous data?

We already know how to encode using models with continuous

parameters:

e two-part with optimal quantization (=~

@ mixture code,
o NML.

% log, n),

Obviously not possible to encode data with infinite precision. Have
to discretize: encode x only up to precision 9.

Teemu Roos

Introduction to Information-Theoretic Modeling



Recall the Gaussian density function:

d

o2 (X1, Xn) (i-id) (2%02) /2
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Recall the Gaussian density function:

(iid
o2 (X1, Xn)

_ >oia(xi — 1)
) (27‘(‘0’2) —n/2

The code-length is then

n 1 <
2 loga(20%) — 55 > (i — ).
i=1

«0O0)>» «F»r «Z» « > Q>



«0>» «Fr «E» < QR

Ok, we have our Gaussian code-length formula:

n -~
2
5I0g2(27ra ) — =

(x;i — ).
i=1

it
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Ok, we have our Gaussian code-length formula:

n 1 &
5 loga(210%) = 55 > (xi — n).
2 204 “

i=1
Let's use the two-part code and plug in the maximum likelihood
parameters:

1< -
ﬁZE.Z;Xi, 32:;;(&'—1&)2
1= =
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Ok, we have our Gaussian code-length formula:

g log,(27m6°) —

1 ¢ .
26_2 Z(XI - /J')z'
i=1

Let's use the two-part code and plug in the maximum likelihood
parameters:

1< -
ﬁZE.Z;Xi, 32:;;(&'—1&)2
1= =
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Ok, we have our Gaussian code-length formula:

n

5 log,(27m62) —

1 o .
26'2 Z(XI - lu)z'
i=1

Let's use the two-part code and plug in the maximum likelihood
parameters:

1< 1 —
ﬁZE.Z;Xi, 32:;;(&'—/3)2
1= =
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n

Ok, we have our Gaussian code-length formula:

5 log,(27m62) — g
parameters:

Let's use the two-part code and plug in the maximum likelihood

1< 1 <
ﬁz;;x;, &2=;§;(x,-—m2
1= 1=
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n

Ok, we have our Gaussian code-length formula:

5 log, 2 + constant.

parameters:

Let's use the two-part code and plug in the maximum likelihood

1< 1 <
ﬁz;;x;, &2=;§;(x,-—m2
1= 1=

«0O0)>» «F»r «Z» « Q>
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We get the total (two-part) code-length formula:

g log, 52 + > log, n + constant.
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We get the total (two-part) code-length formula:

g log, 52 + > log, n + constant.

Since we have two parameters, 1 and o2, we let k = 2.
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n

We get the total (two-part) code-length formula:

2
> log, 62 + =

2

log, n + constant.

Since we have two parameters, 1 and 02, we let k = 2.
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A similar treatment can be given to linear regression models.
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a set of coefficients fy, .

A similar treatment can be given to linear regression models.
The model includes a set of regressor variables xi,...,x, € R, and

-+ Bp.
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Linear Regression

A similar treatment can be given to linear regression models.

The model includes a set of regressor variables xi,...,x, € R, and
a set of coefficients 31, ..., Bp.

The dependent variable, Y, is assumed to be Gaussian:

@ the mean p is given as a linear combination of the regressors:

M:/ﬁlxl+"'+ﬁpxp:ﬂlxa

@ variance is some parameter o2,

Teemu Roos Introduction to Information-Theoretic Modeling
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X =

X11

Xn1l

X1p

Xnp

&)
g=| -

2

For a sample of size n, the matrix notation is convenient:
Y1

€1

€n



For a sample of size n, the matrix notation is convenient:
Y1

X1 o Xip b1 €1
v=| | x=[: . | s=|:] e=

Yn Xpl  ° Xnp ﬂp €n
Then the model can be written as

Y = X6+,
where ¢; ~ N(0,02).

«0O0)>» «F»r «Z» « Q>
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The maximum likelihood estimators are now

N 1 A RSS
B=(XX)XY, 8= Y =X = =2,
where RSS is the “residual sum of squares”

it
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The maximum likelihood estimators are now

= (XXX, 8=y - X =
where RSS is the “residual sum of squares

Since the errors are assumed Gaussian, our code-length formula
applies:

k
5 log, 52 + > log, n + constant
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The maximum likelihood estimators are now

= (XXX, 8=y - X =
where RSS is the “residual sum of squares

Since the errors are assumed Gaussian, our code-length formula
applies:

k
g log, RSS + — log, n + constant
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The maximum likelihood estimators are now

B=X'X)IXY, &2

1 A
=Y = X33 =
Ml ellp:

where RSS is the "residual sum of squares”.

Since the errors are assumed Gaussian, our code-length formula

applies:

k
g log, RSS + > log, n + constant.

The number of parameters is now p + 1 (p of the 3s and 02), so

we get...

Teemu Roos
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The maximum likelihood estimators are now

A ~ . 1 "
b= (XX)IXY, 62 =]y = XBl3 =

where RSS is the “residual sum of squares”.

Since the errors are assumed Gaussian, our code-length formula

applies:
g log, RSS +

The number of parameters is now p + 1 (p of the 3s and ¢?), so

we get...

Teemu Roos

p+

log, n + constant.

Introduction to Information-Theoretic Modeling



may be irrelevant.

Often we have a large set of potential regressors, some of which
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Subset Selection Problem

Often we have a large set of potential regressors, some of which
may be irrelevant.

The MDL principle can be used to select a subset of them by
comparing the total code-lengths:
S| +1

. n
min | 5 logy RSSs + — log, n|

where RSSs is the RSS obtained by using subset S of the
regressors.
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Subset Selection Problem

Often we have a large set of potential regressors, some of which
may be irrelevant.

The MDL principle can be used to select a subset of them by
comparing the total code-lengths:

S| +1

. n
min | 5 logy RSSs + — log, n|

where RSSs is the RSS obtained by using subset S of the
regressors.

= Exercise 10.
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Complexity =

Information +
Regularity +
Algorithm

Noise
Randomness
+  Compressed file

Denoising means the process of removing noise from a signal.
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Denoising

Complexity = Information + Noise
Regularity — + Randomness
= Algorithm + Compressed file

Denoising means the process of removing noise from a signal.

The MDL principle gives a natural method for denoising since the
very idea of MDL is to separate the total complexity of a signal
into information and noise.
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Denoising

Complexity = Information + Noise
Regularity — + Randomness
= Algorithm + Compressed file

Denoising means the process of removing noise from a signal.

The MDL principle gives a natural method for denoising since the
very idea of MDL is to separate the total complexity of a signal
into information and noise.

First encode a smooth signal (information), and then the difference
to the observed signal (noise).

Teemu Roos Introduction to Information-Theoretic Modeling



is to use wavelets.

One particularly useful way to obtain the regressor (design) matrix
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One particularly useful way to obtain the regressor (design) matrix
is to use wavelets.

Image by Gabriel Peyré

[m} = =

Teemu Roos Introduction to Information-Theoretic Modeling




Occam'’s Razor
MDL Principle
Universal Source Coding
MDL Principle (contd.)

Wavelet Denoising

Modern MDL

Histogram Density Estimation
Clustering

Linear Regression

Wavelet Denoising

[EEE TRANS. SIGNAL PROCESSING. VOL. 7. NO. 7, 2009

MDL Denoising Revisited

Teemu Roos Member, Petri Myllymiki, and Jorma Rissanen Fellow

Abstract— We refine and extend an earlier minimum de-
scription length (MDL) denoising criterion for wavelet-based
denoising. We start by showing that the denoising problem can be
reformulated as a clustering problem, where the goal is to obtain
separate clusters for informative and non-informative wavelet
coefficients, respectively. This suggests two refinements, adding a
code-length for the model index, and extending the model in order
to account for subband-dependent coefficient distributions. A
third refinement is the derivation of soft thresholding inspired by
predictive universal coding with weighted mixtures. We propose
a practical method incorporating all three refinements, which is
shown to achieve good performance and robustness in denoising
both artificial and natural signals.

Index Terms— Minimum description length (MDL) principle,
wavelets, denoising.

Teemu Roos

(both of which include the Gaussian and d¢
densities as special cases).

A third approach to denoising is based
description length (MDL) principle [16]-[2(
ent MDL denoising methods have been su;
[21]-[25]. We focus on what we consider
MDL approach, namely that of Rissanen [24
is two-fold: First, as an immediate result
extending the earlier MDL denoising mett
new practical method with greatly impro
and robustness. Secondly, the denoising p
to illustrate theoretical issues related to the
involving the problem of unbounded paran
and the necessity of encoding the model cl
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Example: Denoising

Noisy PSNR=19.8 | MDL (A-B) PSNR=32.9

Teemu Roos Introduction to Information-Theoretic Modeling



Modern MDL

Occam's Razor n 5 . .
MDL Principle E;letsc:egrrlanm Density Estimation
Universal Source Coding e

. Linear Regression
MDL Principle (contd.) Wavelet [%enoising

Example: Denoising

Teemu Roos Introduction to Information-Theoretic Modeling



Occam’s Razor m:f:r:am%l_ensit Estimation
MDL Principle & Y

Clustering
Linear Regression
Wavelet Denoising

Universal Source Coding
MDL Principle (contd.)

Example: Denoising

[m} = =
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Example: Denoising

[m} = =
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Example: Denoising

[m] = = =
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Example: Denoising

[m] = = =
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Thanks for listening!
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