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ABSTRACT 
We present a novel metric for information capacity of full-
body movements. It accommodates HCI scenarios involv-
ing continuous movement of multiple limbs. Throughput is 
calculated as mutual information in repeated motor se-
quences. It is affected by the complexity of movements and 
the precision with which an actor reproduces them. Compu-
tation requires decorrelating co-dependencies of movement 
features (e.g., wrist and elbow) and temporal alignment of 
sequences. HCI researchers can use the metric as an analy-
sis tool when designing and studying user interfaces. 
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INTRODUCTION 
A fundamental problem for human–computer interaction 
(HCI) is to identify user interfaces that effectively map hu-
man movement to virtual movement. To assess joint hu-
man–computer performance, the “tempting but naïve” solu-
tion is to examine average speed and accuracy in a task 
[21]. This approach, however, overlooks the fact that data 
from easy and from difficult motor acts are incommensura-
ble. Information theory has contributed to the measurement 
of user performance in HCI by providing a metric that col-
lapses data on speed and accuracy into a single metric: 
throughput (bits/s, or bps) [7,12,13,21]. Throughput is often 
measured as statistical variability in aimed movements 
wherein the user brings an end-effector (pointer) on top of a 
spatially expanded target. Information capacity denotes the 
rate at which the user could have sent messages, given her 
speed and accuracy for given target properties. Selecting 
targets with the mouse, for instance, yields throughputs of 
3.7–4.9 bps [17]. Although the metric has been contested, 
no better alternatives exist for comparing performance 
across tasks, conditions, and devices.  

This paper extends the measurement of throughput from 
aimed movement to full-body movement—that is, multiple 
contributing limbs in continuous movement that does not 
need to be aimed at targets prescribed by an experimenter. 

In so-called configural movements, the goal is to produce a 
shape or pattern in movement. This can be contrasted to 
aimed movements, wherein only the end point of movement 
counts. Examples would be drawing on a surface with mul-
tiple fingers, gesturing in the air to conduct a virtual orches-
tra, and dancing with motion sensors. In these examples, a 
user’s ability to produce desired shapes reliably is more im-
portant than where in the space the movement ends.  

Our method takes as input motion data with any number of 
movement features (observation points on the human body). 
It calculates throughput from mutual information of two or 
more deliberately repeated movement sequences. Our defi-
nition of mutual information captures the intuition that a 
skilled actor can produce complex (surprising) movements 
and reenact them precisely at will. Figure 1 illustrates com-
plexity and reproducibility with the example of drawing a 
shape. For instance, linear motions with constant velocity, 
no matter how accurately repeated, are predictable and thus 
of low throughput. Analyzing precision in repeated efforts 
allows us to distinguish the controlled from uncontrolled 
aspects of movement. A newborn, for example, while able 
to produce complex-looking movements, does not have the 
capacity to reproduce them. 

The metric is useful in HCI, because high throughputs po-
tentially make more information available to an external 
observer such as a user interface—there are more “messag-
es” the user could have sent by moving the body.  

 
Figure 1. Information capacity is the mutual information of 
repeated movements (here: blue and light-blue trajectories), 

determined by their complexity and the precision of reproduc-
tion. Highly complex and precisely reenacted movements yield 

the highest throughputs.  
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APPROACH  
The concept of information capacity here follows the 
Gaussian channel interpretation of Paul Fitts [6,7,12] but 
applies it to mutual information I(x; y) in movement se-
quence x and its repetition y. I(x; y) denotes the reduction in 
bits in entropy of x when y is known. Since our I(x; y) ex-
cludes most of the uncontrolled movements and inaccura-
cies due to the actor’s inability to repeat the movement pre-
cisely, it provides a measure of the controlled information 
in x and y. Computation is done in five steps (see Figure 2): 

In Step I: Motion Capture, an actor is asked to carry out a 
movement and repeat it as precisely as possible. The motion 
of movement features is sampled. This procedure allows 
users to find natural ways to move—the only demand is that 
the same movement be repeated. In contrast, we believe 
that in some studies of aimed movements, constraining tra-
jectories to end at experimenter-defined targets lowers 
throughputs. In Step II: Complexity Estimation, an auto-
regressive model is fitted to each movement feature. We 
take the residuals as an indicator of its complexity, or its 
“surprisingness.” In Step III: Dimension Reduction, latent 
variable models are fitted to the residuals of x and y, reduc-
ing the co-dependencies among features. Non-linear dimen-
sion reduction is preferred in multi-feature motion data in 
order to avoid overestimation of throughput. In a violinist’s 
movement, for example, it decreases correlation between 
the elbow and the wrist. In Step IV: Temporal Alignment, 
the best alignment of frames between x and y is identified. 
Temporal alignment is necessary in multi-feature data be-
cause the corresponding movement features of x and y may 
be differentially out of sync. In Step V: Mutual Infor-
mation, I(x; y) is calculated by taking the frame-by-frame 
correlations of the model of x and y after dimension reduc-
tion. Throughput is now estimated as I(x; y) per second. 

To assess the potential of the method for research and de-
sign in HCI, we report on three proof-of-concept studies. 
Study I studies information in a ballerina’s performance, 
and Study II analyzes trajectories in aimed movement. 
Study III examines human factors in the bimanual gestur-
ing scenario of the movie Minority Report.  

We conclude by discussing limitations and use in HCI. 

Background: Information in Aimed Movements 
Because of space limitation, we refer the reader to existing 
reviews [7,13,21] and provide only the basics here. For dis-
crete aimed movements, throughput TP is given by 

TP = ID / MT     (1)  

where MT is movement time and ID the index of difficulty. 
It is determined by the width of target W and its distance D:  

 ID = log2 (D / W + 1) [12], and  (2a) 

 ID = log2 (2D / W) [6].   (2b) 

A variant generalizes a constant TP over a range of D and 
W conditions [21]. When MT obeys Fitts’ law, 

MT = a + b ID,     (3)  

throughput is calculated as the slope of Fitts’ model: 

 TP = 1 / b.     (4) 

The benefit of using TP as an index of user performance is 
that it is found to be (relatively) robust to changes in the us-
er’s performance objective, or the speed–accuracy tradeoff. 
For example, trying to reach the target too rapidly results in 
lower accuracy, but TP remains in a constant range. A vari-
ant takes changes in performance objective into account by 
scaling W according to observed inaccuracies: The effective 
width is defined via the distribution of offsets from target 
center We = 4.133 σ [13,17]. Extensions of Fitts’ law mod-
els to continuous aimed movements [1] covered only path 
width and length originally but were later extended to cur-
vature [11]. However, to our understanding, these models 
have no interpretation in information theory. 

Our metric shares with Fitts-TP the Gaussian channel inter-
pretation of movement as a limited transmission channel 
[4]: “information capacity is limited only by the amount of 
statistical variability, or noise, that is characteristic of re-
peated efforts to produce the same response” [6: p. 262]. In 
our metric, changes in direction and velocity during move-
ment determine complexity. As with the idea of We, varia-
bility in trajectories among the repeated efforts affects the 
total complexity of the repeated performance x and y. Our 
metric is also sensitive to changes in performance objec-
tives (Study II).  

Figure 2. Overview of computation steps in calculating information capacity (TP) in full-body movement. 
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Figure 3. To estimate complexity, second-order autoregressive 
models are fitted to movements x (above) and y (bottom). Re-

siduals εt expose the “innovativeness” of the trajectory. 

COMPUTATION 
We here present details for computing I(x; y).  

Step I: Motion Capture 
A pair of movement sequences is recorded in controlled 
conditions wherein an actor is asked to carry out a sequence 
(x) and repeat it as precisely as possible (y).  

When performing y, the actor starts in the same initial posi-
tion and posture. The repetition should take (about) as long 
as the original sequence. Multiple sequence pairs can be 
recorded, and throughput averaged over pairwise compari-
sons, but the unit of analysis is always a pair, and we focus 
here on that case. The administration of repetitions and the 
metric itself are agnostic of movement constraints: Trajec-
tories in aimed movements can be analyzed, as we show in 
Study III. However, sometimes imposing constraints may 
lead to underestimation or overestimation of capacity, as in 
the case of sliding movements on a physical surface.  

The collected data on x represent a movement sequence 
with a single movement feature or a set of them moving in 
time in a 2D or 3D coordinate system. Let x = x-1,..., xn de-
note a sequence where xt gives the value of the measured 
feature at time t. Similarly, we denote by y = y-1,..., yn the 
repeated sequence of the same length. The multi-feature 
case is a vector of such sequences (see Step III).  

Step II: Complexity Estimation 
We let the complexity of a sequence be given by its entro-
py. We assume that both x and y follow a second-order au-
toregressive model (see Figure 3): 

 xt = β0 + β1 xt−1 + β2 xt−2 + εt
(x),   (5) 

 yt = η0 + η1 yt−1 + η2 yt−2 + εt
(y),   (6) 

where β0, β1, β2, and η0, η1, η2 are real-valued parameters to 
be tuned via least squares. We start the sequence from x−1 
instead of x1 for notational convenience: the first two en-
tries guarantee that an autoregressive model with a look-
back (lag) of two steps can be fitted to exactly n data points 
(Figure 3). The benefit of a second-order model is its sim-
plicity and interpretability: it captures the physical principle 
that once the movement vector (direction and velocity) is 

specified, constant movement contains no information. The 
errors (or “innovations”) ε(x) and ε(y) are assumed to be zero 
mean Gaussian variates. Since the two sequences are sup-
posed to be instances of the same movement pattern, they 
will typically be correlated. We denote the Pearson correla-
tion coefficient of ε(x) and ε(y) by ρ ∈ (−1,1). The innova-
tions for different time frames t ≠ t′ are assumed to be inde-
pendent of each other. After parameter fitting, we obtain the 
residuals 

   t t t ( 0 1 t−1 2 t−2),      (7)      

   t t t  (! 0  !1 t−1   !2 t−2),  (8) 

where t and t denote the predictions obtained by plug-
ging in least squares estimates 0, 1, 2, and !0, !1, !2, re-
spectively. This formulation captures complexity as the 
shape of trajectory.  

Step III: Dimension Reduction 
In handling of p-dimensional sequences, p > 1, where each 
time frame xt is composed of p measured movement fea-
tures, xt ( ,..., ), it would be invalid simply to add 
up the information throughput of all of the features. For us 
to calculate the “genuine” capacity of the leg, any correla-
tion in the movement of the knee and the calf must first be 
removed. We therefore perform dimension reduction.  

Our preferred solution is Gaussian Process Latent Variable 
Modeling (GP-LVM)[16] administered separately on the re-
siduals of x and y. GP-LVM models have been used to 
model human movement, such as walking [18]. In our ex-
perience, GP-LVM provides more effective dimension re-
duction than does Principal Component Analysis (PCA), 
which is limited to linear relationships. Using GP-LVM 
typically reduced TPs by a factor of 2–4 when compared to 
PCA. However, GP-LVM is (very) slow to compute. We 
have learned that, most of the time, dimension reduction 
with PCA preserves the order of TPs and can be used if ab-
solute throughput values are unimportant. 

For computation, we utilize Fast GP-LVM [10] to transform 
the two sequences and obtain two new time series, r(x′) and 
r(y′). Each frame in the new sequences represents a latent 
variable corresponding to a frame in the original sequence. 
Figure 4 shows a projection of a GP-LVM model with three 
latent dimensions.  

For this step, the residuals of sequences are normalized 
such that each feature has mean zero and unit variance. Sca-
leinvariance is essential for the comparison of fine-grained 
and gross movements.  

As we discuss in the next section, the number of latent vari-
ables (dimensions) in PCA/GP-LVM should be decided 
case by case by keeping reconstruction error at an accepta-
ble level. In our studies, we have used RSME (root square 
mean error) as an indicator of reprojection error and used 
.05 as our criterion for an acceptable level. 
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Figure 4. Two dimension-reduced dances: The plots are GP-

LVM model manifolds with three latent dimensions. 

Step IV: Temporal Alignment 
A problem in predicting one motion sequence from another 
is possible temporal misalignment of the sequences and 
their features. Single-feature sequences can be aligned 
manually, but this is impossible with a large number of fea-
tures. Even in carefully repeated movements, some features 
are more out of sync than others (e.g., the toe could lag be-
hind the wrist). Hence, in prediction of the tth frame of x, 
the most useful frame of sequence y may be not the tth 
frame but the (t+δ)th one, δ ≠ 0. Therefore, we must tempo-
rally align frames in x with frames in y.  

Our solution is to align sequence pairs with Canonical Time 
Warping (CTW), a state-of- the-art technique for aligning 
sequences that describe human behavior [22]. CTW uses 
the more traditional Dynamic Time Warping [1] as an initial 
solution but improves it by adopting features from Canoni-
cal Correlation Analysis. The result is a pairwise alignment 
of x and y, ix,y, such that each frame in x is matched to the 
most likely frame in y. To achieve this, CTW duplicates 
some of the frames in each sequence so as to “slow down” a 
sequence at suitable points. When measuring throughput, 
we skip duplicated frames in sequence x in order to avoid 
unnecessarily magnifying their impact. Hence, if frame t is 
duplicated in sequence x such that in the aligned sequence 
frames t and t + 1 are identical, we skip the (t + 1)th frame 
(of both x and y) when computing throughput. It is im-
portant to note also that in Step II we compute the residuals 
of both sequences from the unaligned sequences where 
there are no duplicate frames. Figure 5 shows an example in 
which two ballet sequences (Study I) have been aligned.  

Step V: Mutual Information and Throughput 
Under models (5) and (6), the differential entropy of each 
sequence can be estimated by plugging the residual vari-
ance into the familiar formula for the Gaussian entropy: 

            
,  ,        (9) 

where  is the residual variance of x. 

The mutual information, which yields the reduction in bits 
in the entropy of one sequence when we are given the other, 
is now fully determined by the residuals and, in particular, 
their correlation ρ: 

.   (10) 

However, since we do not in general know the true correla-
tion coefficient, we need to estimate it from the data, which 

causes some statistical error. The statistical variation of the 
mutual information estimate obtained by plugging the em-
pirical correlation coefficient into Eq. (10) can be character-
ized by means of results from classical likelihood ratio test 
theory [3,8]. In the case ρ = 0, the estimator asymptotically 
follows a χ2 distribution scaled by a factor 0.5 or, equiva-
lently, a Gamma distribution Γ (k = 1 / 2, θ = 1), and in the 
case ρ ≠ 0, its distribution is asymptotically Gaussian, cen-
tered at the true value of ρ. Hence, in the former case, the 
estimator has a positive asymptotic bias given by 0.5 times 
the mean of a χ2 distributed random variable, !"#!(!) 2 ~ 
0.731 bits, where e denotes the Euler constant. Although we 
do not know in advance which of the two cases holds for 
each feature of the data sequences, we subtract the bias 
!"#!(!) 2 from each feature, which gives a conservative es-
timate of I(x; y). Consequently, we estimate 
!!!!!!!!!!I !; ! = − !

! !"#! 1 − !! − !"#!(!) 2                      (11) 
where the last term is the bias correction.  

The above method applies to unidimensional sequences. 
After the dimension reduction step, each movement se-
quence is represented as a sequence of (low-dimensional) 
feature vectors. In Step V, we handle each feature inde-
pendently as described above and sum the obtained mutual 
information estimates to obtain the total throughput esti-
mate Îtot. We can then calculate TP in a multivariate se-
quence x conditioned on sequence y as Îtot(x; y) per second: 

     !" ! ! = !!!"! !;!
! = − !

! !"#! 1 − !! − !
!!! !"#

!
(!),      (12) 

where R denotes the frame rate (frames per second). 

Implementation 
Computation takes, on average, about 2.5 seconds to run for 
two 111-feature ballet sequences of 1,100 frames, and about 
7.5 s for another two dances approx. four times that length. 
With regard to the number of movement features, computa-
tion time scales linearly. However, times are longer with 
dimension reduction. While PCA adds only a few seconds, 
GP-LVM takes hours to days for such data. Below, we run 
some of our analyses with PCA. The caveat is that the abso-
lute TPs values will be overestimated. 

 
Figure 5. Two CTW-aligned sequences in the Ballet data. Each 
line is a one-dimensional movement feature. The y-axis shows 

deviation from starting position. The alignment of the first 
(top) and the second repetition (bottom) is nearly perfect. 
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Figure 6. Left: The effect of noise in motion capture data on 
TP (PCA-based). Right: The effects of latent dimensions in 
GP-LVM on reprojection error (RMSE) and TP. Note that 

both the noise and the RMSE are relative to the standard de-
viation of the raw data. 

TECHNICAL ASSESSMENT 
We now report some technical properties of the metric. 

Robustness to Noise in Motion Capture 
Most studies of aimed movements have employed meas-
urement instruments in which the level of noise is low. 
Noise is inevitable in motion capture data, however [20]. 
Ideally, the metric would tolerate a level of noise that does 
not obscure controlled aspects of movement. To understand 
the effect of noise, we added white noise with zero mean 
and variance to each feature to a dance from the Ballet data 
(Study I). Dimension reduction was done with PCA. Figure 
6 (left) shows that even a small amount of additive white 
Gaussian noise—standard deviation of about 6 x 104 times 
the residual variance of each component—can halve the TP. 
In the movement of the dancer’s toe, this corresponds to 
~0.5 mm deviations. The result that increasing noise de-
creases TP and ultimately levels it is also a good sanity 
check: large noise makes the movements ridiculously com-
plex, but because the two noise sequences are uncorrelated, 
the capacity decreases to zero. 

Because of the sensitivity of the metric, we recommend 
smoothing data whenever noise may be a problem. We pre-
fer cubic spline interpolation and Butterworth filtering, 
which are commonly used in analysis of motion data [20]. 
In our experience, this solution avoids rough smoothing that 
would decrease TPs.  

Effects of Components in Dimension Reduction  
The efficacy of dimension reduction is dependent on the 
number of components. Again, in studies of aimed move-
ments, dimension reduction has not been an issue. In our 
case, an ideal metric decorrelates mutual information 
among movement features and achieves a tolerable level of 
error in modeling of the data with minimum components.  

To chart the effect of component number, we manipulated 
the number of components in a GP-LVM model. As data 
we chose a segment from the dance Adagio (temps lié) in 
Study I. We charted RSME as an indicator of reprojection 
error and used .05 as our criterion for an acceptable level. 
Reprojected residuals differ from original data on average 

less than .05 units. Figure 6 (right) shows the result: com-
ponent counts 6–9 are the first to reach the acceptable level. 
For component count 9, TP is around 160. Because the ide-
al number of latent dimensions in Step III varies from one 
dataset to another [18], we recommend choosing a model 
that reaches a tolerable level of reprojection error with the 
lowest number of components. 

Effects of Temporal Alignment 
An undesirable consequence of temporal alignment in Step 
IV is that we lose information about the temporal accuracy 
of the repetition. This is a drawback for activities wherein 
synchrony and timing are essential. To assess the impact of 
CTW, we compared TPs with and without it. In the Ballet 
data (Study I), we observed some increases in GP when 
CTW was performed. In the case of overly fast rapid caging 
of the hand (see below), however, CTW brought a seven-
fold increase. We recommend analyzing TPs both with and 
without CTW when synchrony and timing are critical. 

Static and Repetitive Movement 
For a feasibility test, we checked whether very simple 
movements produce low TPs as they should. The following 
data (with repetitions) were collected via a PhaseSpace sys-
tem with 12 Impulse cameras at 120 fps: 

• Standing still (6001 frames) 
• Balancing on one foot (1280 frames) 
• Rapid caging of the palm (1698 frames) 

In addition to optical markers for the full body, markers 
were placed on all fingers and both sides of the wrists. One 
of the co-authors served as the participant. We used CTW 
and GP-LVM with six latent dimensions.  

As expected, balancing and standing produced virtually ze-
ro TPs, both TPs < 0.25 bps. As the person is standing still, 
residuals in complexity estimation are negligible. In balanc-
ing on one foot, swaying produces more complex move-
ments in Step II, but because swaying is poorly matched 
from one sequence to another, even with CTW, TPs are 
negligible. This is not to say that balancing would not be 
motorically difficult, for it is [5]. And fitness games such as 
Nintendo Wii Fit Balance Board measure variation during 
balancing for score calculation. However, for an external 
observer such as an interface, it carries no information after 
observation of the initial pose. 

However, rapid, repeating caging of the palm—a 
motorically trivial movement for an adult—
yielded a very high TP = 287.7 bps 
with GP. One drawback of the se-
cond-order autoregressive model is 
its short “memory”: a human observ-
er can easily detect repeats in a 
movement, but the model considers each repetition as sur-
prising as the first instance. However, when CTW was re-
moved, TP fell by a factor of 6.7, to 43 bps. The actor’s 
high TP was achieved at the expense of accuracy in timing. 
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Figure 7. Top: Image from the recording of the Ballet dataset. 

Bottom: Snapshots of a sequence and its repetition. 

STUDY I: BALLET 
Computer vision and other sensors have enabled the map-
ping of almost any movement feature of a user’s body to 
virtual movement; but how can we measure such perfor-
mance and learn about it for design? In principle, a re-
searcher could set up movement targets in a laboratory and 
chart the capacity of a user’s limbs in aimed movements, 
one at a time and in combinations. This would be time-
consuming, however, and would not capture information in 
trajectories or of the individual limbs.  

Study I is a proof of concept demonstrating the suitability of 
our metric for analyzing very complex full-body perfor-
mance. We study a skilled and highly overlearned multi-
limb performance, ballet, as an analogue of the “highly 
overlearned” tapping movements in Fitts' studies [6]. We 
calculate throughput in a ballerina’s movement to under-
stand the metric in a situation wherein all movement fea-
tures of the body are skillfully controlled for longer periods 
of time. We disregard the question of how actually to map 
physical movement to virtual movement in a real applica-
tion and focus on how much information there is in theory.  

Method 
We recorded the performance of a teacher of classic and 
romantic ballet with several years of experience (Figure 7). 
Out of her vast repertoire, she was asked to select dances 
that would be fast, be complex and engage as many limbs 
as possible. The repetitions were to be as precise as possi-
ble, both temporally and spatially. These movements could 
be repeated as many times as desired until she was satisfied 
with the quality of the repetition. To assist her in quality-
control, she was given the opportunity to see her perfor-
mance from the recording device. Six sequences were even-
tually chosen (see Table 1).  

The recordings were performed in a motion capture lab us-
ing Vicon with 12 F40 cameras at 120 fps. For each frame, 
the data contain p = 111 features, corresponding to the 3D-
coordinates of 37 markers. Butterworth smoothing was ap-
plied. For calculation of TP, we used PCA for all sequences 
with 90% of variance explained. PCA was carried out for 

the full sequence. We also calculated TP from the averages 
of GP-LVM performed on three segments of 500 frames. 
This analysis was carried out with and without CTW.  

Findings 
TPs for the dances are listed in Table 1. The table shows a 
range of 208 to 584 bps with GP. The worst-performing 
dance involved slow movement and stopping movement in 
static postures. The best-performing dance, by contrast, fea-
tured fast movements, circlings, and jumps. 

Obviously, estimating TP from a single sequence yields a 
gross overestimation and the raw number per se is not in-
formative. For instance, if the ballerina were to achieve 100 
bps, she would move the 37 markers such that she sends 
one message out of 2100 alternative (distinguishable) mes-
sages per second! Achieving such rates in HCI would be 
impossible since the other implied dances would be re-
quired of the dancer. The metric can, however, be used for 
closer analysis of factors contributing to performance. 

To understand the accuracy of timing and synchrony, we 
compared TPs with and without CTW (Table 1). Without 
CTW, the TPs are considerably reduced for some dances, 
but not for all. In contrast, the dance with the highest TP 
had almost no reduction when CTW was skipped. Figure 7 
shows a matched sampling (from frames 0–3,960) of the 
dance and its repetition.   

Furthermore, to understand which 
limbs are the best candidates for con-
trolling an interface, we estimated 
limbs’ contribution to the capacity. 
We averaged raw TPs per movement 
feature across the dances. As the adja-
cent figure shows, the two hands and 
the right foot had the largest through-
puts, all above 12 bps. Markers for the torso, head, and dis-
tal parts of the feet had far lower values. This analysis re-
veals a laterality effect (left vs. right hand) and that torso 
and leg movements may be less well-rehearsed and im-
portant aspects of the teacher’s dancing. An interface de-
signer could use such information when mapping human 
movements to virtual controls. 

Sequence TP  TP  TP (GP) 
 (raw) (PCA) CTW No CTW 

Tombé pas de bourrée, Italian fouetté, 
piqué turn, jeté en tournant 

4092 1307 584 510 

Adagio (passé devant développé, ara-
besque, écarté devant pas de bourré) 

198 107 393 323 

Petit jeté (glissade jeté, ballotté, ballon, 
entrechat, assemblé) 

3335 755 308 283 

Petit jeté (temps de cuisse, sissonne 
devant fermée, derrière fermée, sis-
sonne ouvért pas de bourrée) 

3013 764 238 191 

Adagio (temps lié, arabesque, pas de 
bourrée, balancé) 

1153 577 208 161 

Grand jeté (battement développé, 
chassé, grande jeté développé, ara-
besque, fouetté sauté, jeté en tournant) 

2654 698 267 141 

Table 1. Throughputs in six sequences in the Ballet data 
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Figure 8. The setup of a cyclical tapping task done in two con-

ditions: with and without an additional weight.  

STUDY II: CYCLICAL TAPPING WITH MOUSE 
Study II examines capacity in aimed movements in a cycli-
cal selection task carried out with a mouse on a desktop PC 
(Figure 8, top). We chose to replicate a well-studied variant 
of the Fitts paradigm in order to compare our metric to the 
Fittsian metric. Although here not intending to “express in-
formation” when moving towards a target, the user spends 
most of the total time on the way. Our metric complements 
the Fittsian metric by showing that variability in trajectories 
is not always reducible to the Fittsian TP.  

We predicted that our metric would show higher TPs in 
conditions wherein the approach trajectories can be kept 
close to each other. So with all else equal, decreasing W 
should increase TP. The shape of the curvature upon turn-
ing toward the next target should affect TP as well. A 
“spiky” turn would be surprising for the autoregressive 
model. To hamper such behaviors selectively, we added a 
condition with 4 kg wrist weight (see Figure 8).  

Method 
One of the authors carried out the experiment by using cus-
tom-made software that presented nine target circles on the 
monitor and recorded mouse clicks and movements at 96 
Hz. Each trial consisted of clicking through the circle three 
times. After removal of the first tap of each trial, this yield-
ed 26 clicks per trial. The D and W values were randomized 
from a range of 2.6 ≤ ID ≤ 6.1, but the encumbrance condi-
tion (4 kg) was administered in only two ID conditions: ID 
= 2.6 and ID = 6.1, both with three repeats.  

The subject was instructed to complete the task as quickly 
and accurately as possible. Plenty of practice was provided, 
both with and without the weight. The experiment was 
started only when performance with the weight had stabi-
lized. 

Findings 
When effective width We is used as W in Eq. (2b) is used, 
TPs for the 0 kg and 4 kg conditions were 3.8 and 2.45 bps, 
respectively. This is in line with the range of TPs in previ-

ous studies [17]. As expected, the added weight had a de-
creasing effect (see [6]). The fits of our Fitts’ law models 
were R2 = 0.90 and R2 = 0.93 for the two conditions, respec-
tively (note, however, that using stimuli from only two ID 
conditions within the 4 kg condition improves the fit).  

Our analysis reveals an interesting crossover when the nov-
el TP metric is used. We compared trajectories from the 
conditions ID = 2.6 and ID = 6.1 between the 0 kg and 4 kg 
conditions and considered the complete movement trajecto-
ries from the each trial. We averaged the TPs obtained from 
pairwise comparisons. Dimension reduction and smoothing 
were unnecessary in this case. 

The trajectories and TPs in each condition are presented in 
Figure 9. We made three observations: 1) In the unencum-
bered condition (0 kg), TPs are around 37 bps for both low 
and high IDs. Although MTs are higher in the high-ID con-
dition, the trajectories are more closely “packed,” which in-
creases TP. 2) When the 4 kg wrist weight is added, TP in 
the low-ID condition falls to 24 bps. 3) Surprisingly, how-
ever, when ID = 6.1, TP with the 4 kg wrist weight is again 
37 bps.  

We observed that, with the added weight, the subject rotat-
ed his hand carefully in the high-ID condition before start-
ing to move it toward the target. This is manifested in the 
closely aligned trajectories in Figure 9. Thereby the user 
compensated for the slower average movement velocity. In 
contrast, accurate premovement aiming was not necessary 
in the low-ID condition, since the targets were larger, and 
we saw more scattered trajectories and a reduction in TP.  

We conclude that the two TP metrics can be used technical-
ly in the same experiment. We also conclude that a higher 
Fitts-TP in aimed movements does not imply a higher TP 
obtained from our metric. 

 
Figure 9. Movement trajectories (size normalized) and TPs in 

a cyclical tapping task with mouse.  
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 Figure 10. Movement trajectories and throughputs when a 

constant inter-click interval of 1000 ms was enforced (ID 4.1). 

A Follow-up with Constant Time  
We hypothesized that the surprising benefit of the wrist 
weight in the high-ID condition should disappear if the user 
is forced to make quicker movements. Rushing in the rota-
tion-plus-aiming stage would result in less well-aligned tra-
jectories. To test this hypothesis, the same subject carried 
out the task in a condition wherein MT was kept at a con-
stant 1,000 ms with a metronome. The subject practiced 
performance before the experiment proper. Only one ID 
condition (4.1) was necessary for testing this hypothesis. 
After extensive practice, three trials were carried out per 
weight condition. The data were analyzed as previously.  

As Figure 10 shows, the trajectories in the 0 kg condition 
(mean of MT 999.1 ms, SD 0.0793, target hitrate 95.0%) are 
much more closely aligned in space. In the 4 kg condition 
(mean of MT 1,005 ms, SD 0.0777, 89.6%), TP is markedly 
lower than in the 0 kg condition, as expected. With the in-
creased tempo, it was indeed harder to perform accurate 
aiming in the premovement phase, which manifested itself 
in increased variability in trajectories. 

STUDY III: BIMANUAL IN-AIR GESTURING 
The problem of designing interfaces with full-body control 
is that the number of possible movements is too enormous 
to study empirically. One alternative would be to sample 
the space of possible movements aggressively [19] and av-
erage TPs. Another is to impose constraints in order to ex-
pose human factors relevant to interface design.  

Our solution is to divide the interaction space into move-
ment conditions and ask a user to produce an overlearned 
motor act, such as signing one’s name, in each condition. 
The overlearned motor act is a surrogate for the complex 
movements that a user could produce with practice. The 
idea in such manipulations is that learned motor programs 
retain some invariance when transferred from a familiar 
context to another [15]. For example, one can sign one’s 
name with the teeth or behind one’s back. The effects of 
constraints such as position, rotation, or scale on TP show 
how robust the user’s movements are to the conditions im-
posed by the interface. A usable interface sees uniformly 
high TPs across all commonly occurring conditions. 

As a feasibility study we investigate the now-famous in-air 
gesturing scene in the movie Minority Report (Figure 11). 
The case is intriguing, because such interfaces are touted 
without regard for the fact that bimanual continuous control 
suffers from interference effects [14]. As the critical condi-
tion we study the hand position’s effect. Inspired by the 
movie, we assume a user gesturing with both hands raised 
to a space of 120° of the field of view. With this manipula-
tion, we study whether user performance significantly 
changes if the hands are switched or operate at different dis-
tances from each other.  

Method 
In the experiment, the subject signs his name in the air with 
one hand and simultaneously makes another continuous 
movement, of the same duration, with the other hand (a G 
clef). The hands are interchangable. In our attempt to emu-
late the determination and skill of Captain John Anderton 
(played by Tom Cruise in the movie), our subject practiced 
the two movements, both in isolation and together, for three 
days before the experiment began. In the study, we divided 
the space in front of the standing subject into four seg-
ments, and asked him to perform the two movements in all 
combinations of segments such that the left hand is on the 
left side of the right hand. The dominant and the nondomi-
nant hand both performed the signature and the clef. In all, 
12 trials were recorded, each with enough repetitions that 
the subject was satisfied with the precision of the repetition 
we included in our data. In a surprise test afterward, we 
asked the subject to change the clef to another gesture of 
similar complexity (the letter “g”).  

One author, a healthy male in his twenties, volunteered for 
the task. We used the PhaseSpace system with 12 Impulse 
cameras at 120 fps and a full-body tracking suit with addi-
tional markers on the fingers and wrists. For simplicity, we 
restrict the analysis to the two index fingers. Since we were 
interested in a comparison within the study, PCA was used 
for dimension reduction. Capacity is calculated as the aver-
age of the three best TPs achieved within a condition. 

 
Figure 11.The Minority Report scenario is here studied in a 
task wherein a user produces bimanual gestures with two 

hands simultaneously. The segments of the movement space 
emulate those of an in-air UI. 
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Findings 
The adjacent figure 
shows as examples the 
best and the worst per-
formances (repetitions 
superimposed on top of 
each other). Four obser-
vations were made. 
First, not surprisingly, 
throughputs (PCA) were 
higher for the dominant 
hand, with 217.8 bps vs. 199.7 bps for the dominant and the 
non-dominant hand, respectively. Second, the user could 
express genuine information with two-hand interaction: 
Throughput was 182.7 bps with dominant hand removed, 
217.8 bps with non-dominant hand removed, and 322.1 bps 
with both hands. Thus, bimanual gesturing genuinely in-
creased TP from that of single-handed gesturing. Third, 
changing the G-clef gesture to the previously unpracticed 
movement hampered bimanual capacity: the average 
throughput decreased by about 100 bps, from 322.1 to 
220.5 bps. This TP is not far from the subject’s singlehand 
performance. Fourth, the most surprising observation was 
that making the movements such that the hands are close to 
each other lowered TP. As shown by average TPs (PCA) in 
the three best repetitions per condition, the actor’s perfor-
mance was at its best with one segment (_) between the left 
and right hands: 

  L R  313.3 bps 
   L _ R  353.0 bps 

L _ _ R  286.5 bps 

A theory of bimanual distraction suggests that the distrac-
tion in the condition with the hands close to each other 
(here 61 cm apart) is due to perceptual distraction: seeing 
both hands moving distracts from their control [14]. When 
the hands are further apart (94 cm), there is less distraction. 
When the hands are very far apart (125 cm), control is again 
more difficult, perhaps for biomechanical reasons. 

DISCUSSION 
We have presented a novel metric for the information ca-
pacity of full-body movements. The new metric extends 
Fitts-TP metric by considering 

• the shape of continous trajectory as the source of in-
formation instead of target width and distance and 

• the accuracy of the reproduced movement as the source 
of noise instead of end-point variation. 

The known extensions of Fitts’ law from discrete to contin-
uous movements are predictive models of MT (e.g., [1,11]) 
and do not carry an interpretation in information theory. 
Moreover, they are incapable of dealing with multi-feature 
arbitrary trajectories in 3D space. Our metric allows re-
searchers to examine any scenario wherein users’ motion 
can be represented as a sequence of vectors of movement 
features, from mouse movements to full-body motion. Nat-
urally occurring movement can be analyzed, with the pre-

condition that the data include matchable repetitions.  

The metric is based on estimation of mutual information in 
repeated motor sequences. It should not be confused with 
the intrinsic difficulty of performing the movement nor with 
the motor system’s capacity. In fact, neuromechanically 
simple mechanisms can produce high TPs, and some com-
plex feats, such as balancing, have zero TP. Rather, the 
metric is best understood as an index of the information 
available to an external observer, as defined by the com-
plexity and reproducibility of observed movements.  

The new metric however, lacks one important feature of 
Fitts-TP: interpolation. Fitts-TP is relatively robust to 
changes in the target’s W or D. This is possible because it 
accounts for discrete aimed movements that are produced 
by a simple agonist–antagonist neuromechanical pattern 
[5]. With more complex motor control, interpolation cannot 
be expected, because even slight changes in movement may 
involve entirely different control patterns.  

The metric makes almost no assumption about the data, 
which makes it suitable for a wide range of uses. On the 
other hand, because of its generality, the absolute TP values 
are high when compared to the familiar range seen in aimed 
movements. This high range is expected, because the metric 
is based on high-frequency multivariate sampling of con-
tinuous movement but also because the model has no model 
of the performer, or the environment, as a prior. Even if the 
absolute values are high, however, we have shown that the 
metric responds as expected to conditions such as noise. To 
address the issue of high absolute values and improve the 
model, the most important goal for future work is to com-
bine the now-separate steps of complexity estimation, tem-
poral alignment, and dimension reduction in a single GP 
model. Further improvement can be achieved if complexity 
estimation is informed with a skeletal model of dimensions 
and movement ranges of bones and joints. 

Applications 
The metric can inform efforts in HCI where the expressive-
ness of continuous control is important. We foresee three 
use cases for the metric:  

1. Evaluation and comparison: The metric can be used 
to study the motor capacity allowed by novel interface 
designs and to compare alternative solutions. Both 
tasks involve collecting movement data that span the 
space of possible movements. Because most movement 
spaces are too large to be exhausted empirically, com-
plex overlearned patterns such as signatures (Study III) 
can be used to represent performance that users could 
attain with practice. Comparative studies should target 
obtaining a large number of comparable complex 
movements produced with each user interface.  

2. Analysis: We showed that the metric is sensitive to 
some well-known effects in motor control, such as that 
of laterality (Study III), encumbered movement (Study 
II), change in performance objective (Study II), and 

489 bps 

1 bps 



perceptual distraction of bimanual control (Study III). 
The metric can also be used to analyze the contribu-
tions of different limbs in users’ continuous full-body 
movements (Study I) and to expose performance-
affecting factors (Study III). Temporal alignment 
(CTW) can be dropped for estimation of the accuracy 
of timing and synchrony. The metric can also expose 
patterns in trajectories of aimed movements (Study II). 

3. Exploration: Because the metric allows studying 
throughput independent of a intermediary device or 
target conditions, it can be used to explore potentials 
for user interfaces. For example, if there are multiple 
ideas on how a game could be controlled, they can be 
compared through asking users to produce the same 
movement sequences within each condition. 

Unlike with Fitts-TP, calculation of the novel metric is 
computationally intensive, particularly if GP-LVM is used. 
Intensity is unavoidable, because the metric must account 
for multiple movement features moving over time. Moreo-
ver, it must addess three issues inherent to throughput cal-
culation in multi-feature data: estimating the complexity of 
a trajectory, decorrelating interrelated features, and aligning 
sequences in time. Future work can explore efficient simpli-
fications to this pipeline. 

To help practitioners apply the metric, we provide a Web 
service. After sending movement data, the user chooses pa-
rameters for the five steps in the computation. The output 
contains an overall TP, a breakdown by movement feature, 
and the optio of analyzing different time segments. We pro-
vide a converter from angular representation (angles of 
joints) to the coordinate system (x, y, z position).  
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