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Chapter 1

Introduction

The popularity of cellular telephones has increased tremendously during the
recent years, and the trend doesn’t seem to be slowing down. In August 2000
the number of cellular telephone users in the world was about 570 millions.
With the average rate of a quarter of a million new subscriptions per day, the
total number of subscribers is expected to reach one billion in only a couple of
years (UMTS Forum, 2000). These numbers are remarkable for such a young
technology: the first cellular telephones were introduced not earlier than in
the late 1970s. After two decades, at the turn of the millennium, cellular
telephones have developed enough to compete with fixed-line telephones.
Recent advances in digital cellular technology allow transmission of not only
speech, but also text and data with speed comparable to fixed-line networks.
In this introductory chapter we shall take a cursory look into the basics and
history of cellular technology, and discuss some of its novel applications.

A fundamental concept of cellular telephone networks is a cell.! The
operating area of a cellular network is divided in cells, each of which is
associated with one base station. For simplicity, the cells are often presented
as if they had a hexagonal form, as shown in Figure 1.1, although in real life,
they overlap each other in a way that allows mobile units to communicate
with several base stations in most locations. The idea of cellular layout is to
allow efficient use of bandwidth: in GSM systems, for instance, each cell is
allocated a group of frequency bands which is completely different from the
group allocated to the neighboring cells. This way two cells can operate on
the same frequency without interfering with each other, as long as the cells
do not overlap.

Without doubt, mobility is the most important feature of cellular tele-
phone systems. Small-scale mobility is provided by the cordless radio inter-

1See (FTSC, 1996) and (Rappaport, 1996) for definitions of telecommunications terms.
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Figure 1.1: An idealized diagram of a cellular network layout.

face between base stations and mobile units. Allowing mobile units to access
the network through any base station in the network results in large-scale
mobility. Moreover, modern cellular systems perform hand-overs, i.e. change
the active base station on the fly without interrupting an active call.

During the 1980s several countries adopted analog cellular networks, in
the United States AMPS, and in some European countries and in the Nordic
countries TACS and NMT respectively (Rappaport, 1996). At that time the
systems were often disabled due to lack of sufficient network coverage and
capacity. Transmission of other than speech was not considered necessary,
and it would have been difficult with the low-performance analog technol-
ogy. The first digital GSM cellular network started its operation in 1991.
Currently GSM network have been installed in more than 100 countries, and
the shift from analog to digital technology is accelerating. Digital technology
provides an easy way to transmit textual information, and this possibility
is exploited by the SMS technology allowing users of GSM handsets to ex-
change text messages. The transmission speed of a GSM network is sufficient
for speech communication and exchange of SMS messages, but the need for
data transmission drives the development towards technologies with higher
transmission speed.

The next step from GSM will be GPRS. The first commercial GPRS
network started operating in the end of the year 2000. Current GSM networks
can be upgraded to GPRS with additional network components. Thus its
cost compared to building a completely new network infrastructure is small.
The effective data transmission speed of GPRS is expected to be between 20
and 65 kilobits per second, which is an improvement over 9.6 kilobits of GSM
networks. What is perhaps even more important than increased transmission
speed, is that unlike in GSM, a packet-switched protocol is used in GPRS.
In practical terms, GPRS is better suited for transmission of text, binary
and graphical data than GSM, and it allows billing based on the amount of



transferred data. The latter feature is essential to interactive applications,
because no cost should assigned to the time the user views the response. In
contrast, in GSM systems billing is always based on connection time.

Until the recent years the development of cellular telephone handsets has
primarily focused on decreasing the size of the devices and increasing battery
capacity. Lately the emphasis has been shifting to improving the functional-
ity of the devices. Some recent products anticipate the symbiosis of cellular
telephones and PDAs with their e-mail, notebook and calendar features. The
SIM Application Toolkit (ETSI, 1998) and WAP (WAP Forum, 1998) stan-
dards mark milestones in the evolution towards multi-functional telephones.
Both of them allow operators and third parties to develop specialized appli-
cations for GSM handsets, without the necessity to modify the handset.

All these technological advances would be of little use without co-
evolution of the ways in which they are exploited. Among the most inter-
esting ways to exploit the possibilities of modern communication technology,
is the concept of location-aware computing: devices which can be located
or which can locate themselves, and services based upon them. These so
called location-based services have great potential in areas such as personal
security, navigation, tourism, and entertainment. The most obvious location-
based service is one answering questions like “Where am 17", and “Where is
the nearest shop/bus-stop/hospital?”. Now that graphical and interactive
applications are technically feasible, it would even be easy to implement an
application which presents a map labeled with a mark saying “You are here”.
Secondly, location can be thought as a filter for the ever-increasing amount
of information available to us every day. People usually don’t want to know
about daily offerings of supermarkets, let alone of those which are located
hundreds of kilometers away.

Location information can be useful for other people than the user of the
location-aware device as well. For instance, people often want to know where
their friends are, companies want to know where their delivery vehicles are,
rescue officials want to know where injured people are, and so forth. In the
United States location-based services, and in particular location of the origin
of emergency calls has been considered so important, that it is becoming
obligatory for the local network operators to provide means for it. This so
called Enhanced-911 requirement is scheduled to become effective in October
2001. Similar actions have been considered in the European Union as well.

At this point one may have a concern about possible illegal and uneth-
ical use of information concerning individuals’ whereabouts. It seems that
scientists and engineers are not expected to bother their minds with consid-
erations of the goods and evils of the technological advances they pursue; it
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was once said by a certain physicist? that

“ When you see something that is technically sweet, you go ahead and
do it and you argue about what to do about it only after you have had

7

your technical success.

However, regulative actions are being carried out in order to prevent such
problems. With this in mind, we turn our look back to technical considera-
tions.

The location of a cellular telephone can be estimated using radio signals
transmitted or received by the telephone. Some location estimation methods,
such as GPS, are based on signals transmitted from satellites, while others
rely on terrestrial communication. Additional costs to the service provider
are minimal in systems based on existing cellular network infrastructure.
However, the location estimation accuracy of such systems is often inadequate
for many location services. Improving the accuracy of location estimation
systems based on the existing cellular network infrastructure would be very
useful. It is the main motivation of this thesis.

One of the most severe problems facing cellular telephone systems is the
complex propagation of radio waves in environment with obstructions and
reflecting objects. In order to ensure good coverage in their cellular networks,
operators use so called cell planning tools which are based on radio wave
propagation models. Such models use information about the environment
and combine it with knowledge about phenomena such as signal attenuation,
reflection, diffraction and interference. The dependency between the location
of the receiver and observable signal properties is important for location
estimation as well. Despite this fact, the fusion of propagation models and
location estimation is rarely mentioned in the literature.

Radio wave propagation, and location estimation are dealt in great de-
tail in the literature. These topics are the concern of the first chapters of
the thesis: Chapter 2 presents the principles of radio wave propagation and
propagation models, and in Chapter 3 we describe some existing location es-
timation systems. After reviewing relevant literature, we will discuss location
estimation from a point of view which is different from the traditional, geo-
metric one. In particular, a location estimation system based on a statistical
propagation model will be proposed in Chapter 4. Finally, some concluding
remarks are presented in Chapter 5.

2(USAEC, 1954) as quoted in (ASME, 2000)



Chapter 2

Radio Wave Propagation

With location estimation systems based on radio signals, it is important
to know the propagation properties of electromagnetic radiation. Phenom-
ena, such as signal attenuation, reflection, scattering and diffraction have
important roles in location estimation. Their importance is emphasized in
non-satellite systems which have to operate in complex propagation environ-
ments, such as urban or mountainous areas. This chapter addresses the most
important theoretical aspects of radio wave propagation and reviews some
propagation models based on them.

2.1 Principles

The basic concept in the theory of electromagnetic radiation is an electric
field, which is always related to electric current (see Asimov, 1966). An
electric field E is defined by its direction and magnitude at each point. The
magnitude, denoted by |E|, is measured in units of volts per meter (V/m).
Periodic fluctuations of an electric field are called radio waves. Radio waves
can be decomposed in orthogonal components, typically the horizontal and
the vertical component. The ratio of the magnitudes of the two components—
or equally: the direction of the electric field—defines the polarization of the
wave (see NAWC, 1997). For instance, if the magnitude of the vertical
component is always zero, i.e. the direction vector is always parallel to the
horizontal axis, the wave is said to be horizontally polarized.

An electric field corresponds to a power density flow F, measured in
watts per square meter (W/m?), which is proportional to the square of the
magnitude of the electric field. Given the power density flow, the gain of a
receiving antenna, G, which depends on the physical size of the antenna and
frequency, the wave length A\, and the system hardware loss, L, the received
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power is given by

FG, )\
P, = .
B L

(2.1)

Even though the wave length A appears in Equation (2.1), it does not follow
that the received power would increase proportionally to the square of the
wave length, because the wave length also affects the gain of the receiving
antenna G,. In fact, if the physical size of the antenna and the power density
flow are constant, the wave length terms cancel each other out, and thus the
received power is independent of the frequency. However, the frequency can
indeed affect the power density flow due to interactions with the propagation
medium. This issue will be discussed in the following sections.

Because the values of received power vary over a wide range, it is conve-
nient to use logarithmic scale. A ratio of two quantities can can be presented
in decibels (dB) which indicates the logarithm of the ratio multiplied by ten.
The unit of decibelwatt ({BW) is the ratio of power referenced to one watt.
Conversions between watts and decibelwatts are made with the following two
equations':

P [dBW] = 10 log(P [W]). (2.2)
P[W]=10""%". (2.3)

For instance, 0 dBW is equal to one watt, 10 dBW is equal to 10 watts, 20
dBW is equal to 100 watts, etc. The unit of decibelmilliwatt (dBm) is de-
fined similarly as the ratio of power referenced to one milliwatt. Conversions
between two decibel units, for instance, decibelwatts and decibelmilliwatts,
can always be performed simply by adding a constant to the original value.
The following two equations are used for converting decibelwatts to deci-
belmilliwatts and wvice versa:

P [dBm| = P [dBW] + 30, (2.4)
P [dBW] = P [dBm]| — 30. (2.5)

Because of the simple relationship between different decibel units, we will
hereafter simply use the word decibel to refer to any kind of decibel unit. In
such cases all decibel quantities must be expressed in the same units.

!The notation “log(-)” is used to denote base 10 logarithm, while the natural logarithm
is denoted by “In(-)”.
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2.1.1 Free-space Attenuation

Because a wave front proceeds in three dimensions, the maximum received
power at distance d must decrease in the inverse of the area of a sphere with
radius d. If the absorption loss of the propagation medium is ignored, the
power density flow, F', is given by

i (2.6)

dmd?

where Pr is the transmitted power, G is a factor depending on the trans-
mitting antenna, and d is the distance (see Rappaport, 1996; Walke, 1999).
Combining Equations (2.1) and (2.6) gives the received power, which is usu-
ally given in decibels:

Pr [dB| = Pr [dB] + 101og(Gr) + 101log(Gr) + 20 log())
— 201og(d) — 22.0. (2.7)

Equations (2.6) and (2.7) are valid only in free-space environment, where
there are neither reflections, absorption, diffraction nor other distortions.
If the line-of-sight between the transmitter and the receiver is obstructed,
the received signal power is significantly lower than the free-space equations
suggest. Furthermore, they do not necessarily give a good approximation
even in line-of-sight conditions.

2.1.2 Absorption

In any real-world communication system, the signals propagate in some
medium. In wireless terrestrial systems the medium is mainly the atmo-
sphere and, in lesser degree, materials such as glass, concrete, wood, etc.
Due to interactions with the medium, the signal loses a certain proportion of
its remaining energy on every unit of distance it propagates. Thus, absorp-
tion causes the power density flow to decrease proportionally to 7%, where
d is the distance, and v is a constant depending on the properties of the
medium and signal frequency. This means that in decibel scale, the loss is
linear with respect to the distance.

Absorption loss is particularly great in the upper microwave region, where
the frequencies are above 10 GHz. With these frequencies the absorption due
to atmosphere becomes comparable to the free-space attenuation, especially
in heavy rain conditions and with long transmitter—receiver distances (Xu
et al. ,2000). With frequencies used in most wireless communication systems,
below 10 GHz, the atmospheric absorption is insignificant with distances up
to 10 km.
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Absorption caused by other media than air is generally very strong. More-
over, in addition to absorption, obstructions cause the wave to be reflected,
which further decreases the amount of energy passing through. Taking into
account both reflection and absorption, the total attenuation per obstruction
is typically 1-20 dB below 10 GHz, and 1-60 dB above 10 GHz (Rappaport,
1996).

2.1.3 Reflection

Reflection occurs when a wave meets an obstacle with size much bigger than
the wave length. The part of the wave that is not reflected back loses some of
its energy by absorbing to the material and the remaining part passes through
the reflecting object. In terrestrial communication systems the waves usually
reflect from ground, producing a two-ray path between the transmitter and
the receiver, shown in Figure 2.1. The plane of incidence is defined as the
plane containing both the incident ray and the reflected ray, and the angle
of incidence is the angle between the reflecting surface and the incident ray.

transmitter

receiver

a a

L A I,

Figure 2.1: Two-ray ground reflection model.

The received signal consists of the direct line-of-sight ray and the reflected
ray. The two rays arriving to a receiver can have different phase and in the
worst case they cancel each other out. The magnitude of the reflected signal
depends on the Fresnel reflection coefficient, which depends on the properties
of the reflecting ground, the frequency of the wave, and the angle of incidence.
Roughness of the reflecting surface causes the propagating waves to scatter
in all directions, and therefore, the reflection coefficient of a rough surface is
smaller than the one of an otherwise identical but flat surface. In general, the
reflection coefficient is different for the vertical and the horizontal component
of the wave. In such cases, reflection can change wave polarization.

Figure 2.2 presents the attenuation curve of the two-ray model with cer-
tain parameters. The exact equation corresponding to the two-ray model is
given in (Rappaport, 1996, p. 87). It can be seen from the figure that with
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long distances the two-ray model coincides with the fourth-power approxima-
tion, which is given by

— 40log(d) — 22.0, (2.8)

where the received power is proportional to the inverse of the fourth power
of the distance rather than the square of the distance which appears in the
free-space model.

50 = T T T T T T
55 oo — S Eree-space model ciii N
-60 : : s e Two- cray- modet"
-65 R P Ath powef apprexrmation T
-70 : ‘ :
-75
-80
-85
-90
-95
-100
-105
-110
-115

Received power (dB)

0 1000 2000 3000 4000 5000 6000 7000
Transmitter-receiver separation (m)

Figure 2.2: The received power referenced to the transmitted power as a func-
tion of the transmitter—receiver distance according to the free-space model
(Equation (2.7)), the two-ray model (Rappaport, 1996, p. 87), and the
fourth-power approximation of the two-ray model (Equation (2.8)). The
parameters are: transmitter elevation = 50 m, receiver elevation = 2 m, fre-
quency = 900 MHz, relative permittivity of the ground = 15, antenna gains
and system loss = 1.0 (no loss).

2.1.4 Diffraction

According to Huygen’s principle, all points on a wavefront are point sources
of secondary waves propagating to all directions. Therefore, each time a radio
wave passes an edge such as a corner of a building the wave “bends” around
the edge and continues to propagate into the area shadowed by the edge.
This effect is called diffraction. In Figure 2.3 the transmitter is situated near
an obstacle. The arrows describing the direction of propagation indicate how
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the signal reaches the areas around the corner due to a source of secondary
waves situated at the corner of the obstacle. Note that the single source of
secondary waves shown in Figure 2.3 is only one of the infinite number of
such sources on the wavefront.

The more the waves have to bend around a corner, the more they lose
their energy. Therefore the areas to which the rays have to bend more, gain
relatively less additional field strength than the areas to which the rays can
proceed almost linearly. The field strength of the secondary waves is much
smaller than the one of the primary waves. In practice the diffracted waves
can be neglected if there is a line-of-sight between the transmitter and the
receiver.

Figure 2.3: Diffraction.

2.2 Propagation Models

Prediction of radio wave propagation is useful in activities such as allocation
of bandwidth, cell planning and location estimation. Propagation models are
used to predict the properties of the propagating waves, usually the received
signal power and its variability. It is also possible to predict polarization,
time dispersion, frequency selectivity and other properties that affect the
performance of communication systems (Damosso & Correia, 1998; Fleury &
Leuthold, 1996).

The theoretical aspects mentioned above can be taken into account on
various levels of abstraction, depending on the amount of available informa-
tion about the environment, and the required accuracy of the predictions.
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For instance, when planning satellite communication or radio links spanning
tens of kilometers, sufficient accuracy is often reached by taking into account
free-space attenuation, absorption and ground reflection. On the other hand,
in urban areas reflections and diffraction caused by buildings and scattering
caused by trees have a strong influence on wave propagation. Based on how
much information about the environment the models use, they can be divided
into the categories of general and site-specific models. The division can be
further refined as shown in Figure 2.4. For descriptions of the individual
models listed in the figure, see (Damosso & Correia, 1998; Andersen et al. |
1995; Rappaport, 1996; Wolfle & Landstorfer, 1999). The different groups of
propagation models are discussed in the following.

[ Propagation Models }

General

- Okumura

- Hata

- Feuerstein et al.
- Log-distance

- Ericsson MBP

Site-specific

Geographical

- Seidel
- Wolfle & Landstorfer

Ray-optical

- Ray-tracing
- Ray-launching

Figure 2.4: Classification of propagation models.

2.2.1 General Models

General models typically describe the field strength as a function of the
distance between the transmitter and the receiver. The two-ray ground re-
flection model and its approximations described in the previous section are
examples of general models. The models usually include some factors such as
ground properties, or the Fresnel reflection coefficient in the two-ray model.
One of the most popular general models is the Okumura model (Rappaport,
1996). It consists of the free-space loss (Equation (2.7)) and a correction
factor. The correction factor is given by a function of the distance and
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the frequency of the signal. Okumura presented the functions graphically as
curves. Different curves exist for open, quasi-open, suburban and urban area.
Later, Hata used the empirical data presented by Okumura and gave math-
ematical formulae known as the Hata model, which closely fits Okumura’s
curves. The Hata model was extended by the COST-231 working commit-
tee to higher frequencies in order to include the 1800 MHz frequency band
used in some cellular telephone systems. A drawback of the Hata-Okumura
models is that they are restricted to distances of one kilometer or more.

The log-loss (a.k.a. log-distance) model is an extension of the basic free-
space attenuation of Equation (2.7). The received power is given by

Pr [dB] = Pr [dB] + f + 1 log(d) + e, (2.9)

where 3y and (3, are parameters indicating how the signal strength decreases
as a function of the distance, and e is an error term. If the value of 3, is —20
the attenuation corresponds to the free-space model, and with the value —40
it corresponds to the fourth-power approximation.

2.2.2 Geographical Models

The propagation of radio waves is well-known on macroscopic level. If geo-
graphic information such as earth topography, land use maps, building data,
etc., is available, one can use geographical models to predict propagation.
Such models can be used before the communication system is implemented,
which is necessary whenever the predictions are used for optimization of the
performance of a system yet to be build. For instance, the so called ray-
optical models use reflection and diffraction equations to model the paths of
the signal, see e.g. (Wolfle & Landstorfer, 1999; Athanasiadou et al. , 2000;
Corazza et al. , 1996). There are two main approaches to ray-optical models:
ray-launching and ray-tracing, see Figure 2.5. In the former several rays are
“launched” from the transmitter to all directions. The rays proceed straight
on until they hit an obstacle creating one or more reflected or diffracted
rays. A prediction of the resulting field is computed by considering at each
point all the rays that have passed through the point. Alternatively, in the
ray-tracing approach, one starts from some point in the prediction area, and
considers potential rays arriving to that point from all directions.

When no empirical data is available, the ray-optical approaches produce
the most accurate predictions. However, their use if often prohibited by
the lack of detailed and up-to-date information about the environment, and
the fact that they are very time-consuming. Some preprocessing techniques
are proposed to manage the latter problem (Hoppe et al. , 1999). In ad-
dition to ray-optical models there are also other geographical models. For
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b)

_ _

Figure 2.5: Ray-optical models: (a) ray-launching, and (b) ray-tracing. The
rays which affect the field at point (21, y;) are denoted by solid arrows. The
transmitter is denoted by the black dot on the left side of the obstruction.

instance, neural networks have been used to predict the signal strength inside
buildings using some attributes derived from the floor-plan as inputs to the
network (Wolfle & Landstorfer, 1998, 1999).

2.2.3 Empirical Models

Empirical models use data collected in the same location where the model is
used. Therefore, in contrast to general and geographical propagation models,
empirical models can be used only when the system is already in operation.
The data is used in a way similar to statistical inference—in fact, many
empirical models are statistical— to obtain information on the parameters of
the signal in different parts of the area. Empirical models are potentially very
accurate, because their predictions? correspond to the actual propagation
phenomena even when no information about the environment is available.
Disadvantages of empirical models are that collecting the measurements can
require a lot of work, that they can not be exported to other areas than the
one from which data was collected, and that they need to be reconstructed
every time the environment changes.

2In this context the word predict is used in the statistical sense, referring not necessarily
to prediction of the future but to prediction of any information that is not known by the
predictor.



Chapter 3

Location Estimation Methods

Obtaining the location of a mobile unit is called location estimation. Syn-
onymous terms include: radio location, radio navigation, position location,
positioning, and so forth. Several location estimation systems are reviewed
in (Rappaport et al. , 1996) and (Syrjarinne, 2001). A vast majority of
applications of location estimation use the GPS satellite navigation system
which provides location estimates with an accuracy of a couple of meters. Al-
ternatives to satellite-based systems are developed to avoid problems, such
as lack of coverage between high buildings and indoors, and high energy-
consumption of the devices. These techniques use signals between the mobile
unit and terrestrial transmitters or receivers. The transmitters (or receivers)
can be either dedicated for this purpose or be a part of a communication
system, such as a cellular telephone network.

By using the location of the serving base station of a cellular network, one
can easily obtain a very rough location estimate. More accurate estimates re-
quire measuring the strength, time delay, angle of arrival or other properties
of the signals transmitted between the mobile unit and the base stations. In
the geometric approach to location estimation the measurements are trans-
formed into distance and angle estimates. Non-geometric approaches are
possible but unusual. However, we argue that they have certain advantages
over the geometric ones, and we will return to this question in Chapter 4.
This chapter presents the principles of location estimation with focus on the
geometric approaches.

3.1 Architectures

There are several ways to distribute the location estimation process between
the mobile unit and the other components of the system. First of all, the

14
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observed signals can be sent to the mobile unit (downlink) or by the mobile
unit (uplink). In addition, the component performing the actual location
estimation can be different from the one that observes the signals. Different
combinations of solutions to the above design choices correspond to four main
architecture types, discussed below.

In mobile-based architectures the mobile unit performs the necessary mea-
surements of downlink signals to infer its own location without any uplink
communication. In order for this to be possible the network has to broad-
cast some assistance data, such as the locations of the base stations.! If the
assistance data is provided as a point-to-point transmission requested by the
mobile unit, the architecture is called network-assisted. Unlike in network-
assisted architectures, capacity is no problem in mobile-based architectures.

If the mobile unit performs the measurements and transmits the results
to the network to be processed, the architecture is mobile-assisted. Architec-
tures in which the network receives signals from the mobile unit and performs
the necessary operations to estimate the mobile unit’s location are called
network-based architectures. Perhaps the most severe problem of network-
based architectures is the so called hearability problem: the mobile unit ad-
justs its transmission power in order to ensure that the active base stations
receives its signal with minimal energy consumption. Therefore the other
base stations do not necessarily receive the signal as required.

3.2 Algorithms

Location estimation can be performed using several different kinds of mea-
surements. Traditionally the approaches have been geometric: the mea-
surements are transformed into distances or angles with respect to a group
of reference points, for instance base stations. A location estimate is then
derived using basic geometry. The number of independent measurements
related to different reference points depends on the used algorithm. Geomet-
ric approaches are not directly able to use more than the minimum number
of measurements, although this would in most cases improve the accuracy.
Therefore many variations, most of them ad hoc, are proposed. The basic
geometric algorithms are presented in the following sections. Some examples
of non-geometric approaches are presented in (Latapy, 1996; Willassen, 1998;
U.S. Wireless, 2001).

!Such broadcasts would not be a technical problem in cellular networks. However, the
operators are often very secretive about the layout of their base stations.
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3.2.1 Angle of Arrival

In the Angle of Arrival (AOA) location estimation method the direction of the
signal arriving from the mobile unit to two base stations is measured (Rap-
paport et al. , 1996). If the location of the base stations is known, one can
use triangulation to infer the location of the mobile unit. If more than three
angle measurements are available, they are not necessarily compatible due to
angle measuring errors, and one has to apply more complicated means to ob-
tain a location estimate. Angle measurements require additional hardware,
such as antenna arrays, to be installed to the network.

3.2.2 Timing-based Algorithms

If the time delay between transmitting and receiving a signal is known, one
can estimate the distance by multiplying by the speed of light. Three dis-
tance estimates can be used to estimate location with the Time of Arrival
(TOA) method. It is obvious that even a small error in the clock at either
the transmitting or the receiving end causes a major error in the distance
estimate.

Usually the mobile unit can not be synchronized accurately enough to
directly obtain the time used by the signal to travel between a mobile unit
and a base stations. One solution to get around the synchronization problem
is to use differences in the time delays of several base stations instead of

absolute times. Time differences are used in the Time Difference of Arrival
(TDOA) method. The basic TDOA equation is

rij = \/(xl — x)2 + (yi — y)2 — \/(x] — x)2 + (y; — y)2, (3.1)

where 7; ; is the difference in the time delays between the mobile unit and
base stations ¢ and j, (x;, ;) and (z;,y;) are the coordinates of base stations
i and j, and x and y are the coordinates of the mobile unit. Equation (3.1)
defines hyperbolic curves and three base stations are required for a location
estimate.

If measurements corresponding to more than three base stations are avail-
able in either TOA or TDOA methods, the incompatibility problem men-
tioned in conjunction with the AOA method, can arise. In such cases spe-
cial heuristics have to be applied to obtain a location estimate. The TDOA
method is successfully applied in the GPS system and a version of it for GSM
networks is standardized with the title Enhanced Observed Time Difference
(E-OTD) (Rantalainen & Pickford, 1999).
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3.2.3 Signal Strength

If the signal strength is known, the distance can be estimated in a way
similar to one used in the TOA method. Therefore, TOA algorithms are
applicable to signal strength measurements. Some non-geometric algorithms
based on signal strength measurements have been presented as well (Latapy,
1996; Willassen, 1998). It has been suggested that signal strength is not
sufficient for accurate location estimation, meaning that accuracies below a
few hundred meters are not achievable (Syrjarinne, 2001).

3.3 Existing Location Systems

Some existing location systems, based on either satellites or cellular net-
works, are reviewed in the following. Most of the systems are commercial
products and information about them is mainly provided by companies which
license them. Therefore, the credibility of the information presented below
is questionable.

3.3.1 Satellite-based Location Systems

Satellite-based location systems, often called satellite navigation systems, and
among them especially GPS, are used extensively in military and commercial
applications, such as vehicle tracking, navigation, and clock synchronization.
Advantages of the GPS system include worldwide availability, high accuracy
and the fact that it is free for everyone. GPS is applicable only in areas where
there is a simultaneous line-of-sight to several satellites. This rules out the use
of conventional GPS systems, for instance, under dense foliage, between high
buildings and indoors. In addition, it requires relatively expensive hardware
in handsets.

The Russian satellite navigation system, GLONASS, is in principle similar
to GPS. However, its functionality is currently limited because there are
only nine of 24 satellites operating (Bretz, 2000). The European Union is
also planning a satellite navigation system, called Galileo. According to the
current plan, Galileo will start operating between 2005 and 2008.

Until recently the accuracy of plain GPS location was about 100 me-
ters. More sophisticated equipment used prelocated reference points in the
so called differential GPS scheme to obtain accuracy of approximately one
meter. However, in the beginning of May 2000 the United Stated Depart-
ment of Defense removed the so called selective availability from the satellite
signals, thus eliminating the main source of inaccuracy of GPS for civilian
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users. Since then the accuracy of plain GPS without differential corrections
has been a couple of meters (FGCS, 2000).

Some GPS systems, such as SnapTrack (SnapTrack, 2001) and Tid-
get (Belle et al. , 1997), use only a sensor recording a “snapshot” of the GPS
data and transmit it to a server to obtain a location estimate. SnapTrack uses
a network of supporting GPS receivers to demodulate the satellite naviga-
tion message, thus being able to use the supporting receivers to perform the
task which requires the highest signal level in the GPS location estimation
procedure. The supporting receivers also provide aiding data to the mobile
unit, enabling it to extract the necessary information from a weaker signal
than conventional GPS receivers. SnapTrack has reported accuracy of 3-100
meters even inside buildings and severe blockage and multipath conditions,
which would be a remarkable improvement compared to conventional GPS
systems.

3.3.2 Network-based Location Systems

Many location estimation systems that are based on the signals transmitted
between a cellular telephone and the network are proposed. These so called
network-based location systems® are used in order to avoid the necessity to
integrate GPS hardware to handsets or to serve as fall-back systems in loca-
tions where GPS is not available. Many network location systems use special
receivers to monitor signals from cellular phones. The receivers can be placed
either at base stations or separate sensor stations. Systems based on time
measurements are usually synchronized with GPS receivers or high-precision
clocks.

Implemented location estimation systems using TDOA implemented with
additional hardware include Cellocate (Cell-Loc, 2001), TruePosition (True-
Position, 2000), and Cursor (CPS, 2001). Nokia has also implemented a test
version of its TDOA system (Ruutu, 2000). Additional hardware is used also
by GeoPhone (Radix Technologies, 2001) which is based on a TDOA/AOA
hybrid, Telesentinel (KSI, 2001) using AOA, and RadioCamera (U.S. Wire-
less, 2001; Driscoll, 1998). RadioCamera is an empirical system which mon-
itors the mobile unit’s transmission to obtain “fingerprints” of the multipath
characteristics of the signal. The fingerprints are compared to a database
of fingerprints with known coordinates. The system has been reported to
achieve accuracy of 86 meters in 67 percent of location requests in both ur-
ban and rural environments as well as in outdoor and indoor conditions (U.S.

2Note that the term network-based location system does not imply a network-based
architecture.
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Wireless, 1999).

Current systems requiring no additional hardware either to the mobile
unit nor the network components have severe accuracy problems. By using
the serving base station’s location as a location estimate yields an average
error of about one kilometer or more, depending on the density of the base
stations. A location estimation system developed by ModelSoft uses signal
strength measurements made by the mobile unit (ModelSoft, 2001). In both
rural and urban areas 95 percent of the location estimates are said to be
within 1000 meters of the true location. The system will be implemented
in GSM handsets manufactured by Benefon and it will be supported by a
Finnish GSM carrier Radiolinja (ModelSoft, 1999). CellPoint (CellPoint,
2001) and Alcatel (Kelsey Group, 2000) have also developed location esti-
mation systems requiring no additional hardware. The required software
modifications are implemented with the SIM Application Toolkit technology.



Chapter 4

Statistical Location Estimation

In this chapter a statistical approach to location estimation is presented. The
basic idea is to construct a statistical model which describes the distribution
of signal strength at any given location, and to use the model to estimate
the mobile unit’s location when the signal strength is observed. In fact, the
model in question is a sort of a propagation model and therefore propagation
modeling is strongly linked to this approach. The use of a statistical model
allows certain theoretically and practically feasible solutions in the location
estimation phase. The approach is different from most of the other location
estimation systems presented in the literature.

The chapter is organized as follows: We shall first give a detailed descrip-
tion of a suitable propagation model and show how its parameters can be
estimated from empirical data. The rest of the chapter deals with location
estimation using the model. The elementary probability theory and statistics
used in this chapter can be found in, for instance, (DeGroot, 1986).

4.1 Propagation Model Description

A propagation model predicts some properties of a radio signal at a given
location. If the “output” of the model is a probability distribution of the
signal’s properties, the model is statistical, as opposite to a deterministic
model which gives a single value for each of the predicted properties. Signal
strength!, denoted by s, will be used throughout this chapter, although the
approach is applicable to any observable property or properties of the signal.

'In principle the terms field strength and signal strength refer to the magnitude of an
electric field. However, in this context they are used as if they were synonymous to the
received power which depends on the magnitude of the electric field through the power
density flow and the receiving antenna as described in Chapter 2.

20
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4.1.1 Single Transmitter Model

The log-loss model defined by Equation (2.9) in Chapter 2 can be used as
a statistical propagation model as long as the distribution of the error term
e is defined. If a zero-mean Gaussian distribution with a constant variance
is used, the model is a linear regression model? with three parameters: two
regression coefficients, 3y and [3;, which define the mean value of the signal
strength at a given distance, and the variance of e denoted by ¢2. The mean
value of the signal strength is given by

pu(d,p,0) = p + By + P log(d), (4.1)

where p is the transmitted power in decibels, and 6 denotes the set of pa-
rameters.

The transmitters of cellular networks are often directed to some direction
of transmission to which the transmitted power is higher than to other di-
rections. Therefore, the log-loss model can be improved by adding a term
which depends on the deviation between the direction of the receiver and the
direction of transmission. The deviation is denoted by d, and its values are
between zero and 180 degrees (see Figure 4.1).

In addition to the parameters of the log-loss model, the improved log-loss
model has an additional parameter, 35, which is related to §. The mean value
of s is given by

p(d,8,p,0) = p+ Bo+ Bilog(d) + (20 log(d)
=p+ Bo+ (51 + B26) log(d). (4.2)

It can be seen on the second row of Equation (4.2) that if the deviation, 4, is
constant, the improved model is identical to the normal log-loss model with
(1 replaced by (1 + (320. In other words, attenuation obeys the log-loss model
along any straight line originating from the transmitter. Figure 4.2 shows
values of p evaluated using Equation (4.2).

The distribution of s is Gaussian with the following p.d.f.:

f(s]d, o,p,0) = \/%a eXp[_%(s—u(cié,p,H)) ] (4.3)

2Tt is important to remember that the term linear does not imply that the model can
not contain non-linear functions. For instance, in our model the average signal strength is
linear with respect to the logarithm of the distance.
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transmitter

Figure 4.1: The deviation, §, between the direction of transmission and the
direction of the receiver as measured from the transmitter.
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Figure 4.2: An illustration of the average attenuation evaluated using Equa-
tion (4.2). The transmitter is located in the center of the area and its direc-
tion of transmission is towards the upper right corner of the area.
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4.1.2 Multiple Transmitters Model

We have now described how the distribution of the signal strength is evalu-
ated with respect to one transmitter. Let us now extend the model to deal
with several transmitters. First, because several channels, each operating
on a separate frequency range, are used simultaneously in cellular networks,
there are actually as many signal strength variables as there are channels.
Let s; denote the signal strength of channel j, and ¢; denote the channel of
transmitter ¢. Second, transmitters are classified depending on their trans-
mission properties and location with respect to buildings. For instance, the
signal received from an indoor transmitter is usually weaker than the signal
received from an outdoor transmitter at the same distance, because of the at-
tenuation caused by buildings. In order to take these differences into account,
we use different parameters for each transmitter type. Let ¢; € {1,... k},
where k is the number of different types, denote the type of transmitter 7,
and let @ denote the parameters of all transmitter types. The parameters of
transmitter type j are denoted by 6(j). Thus, the parameters of transmitter
i are denoted by 6(t;).

If there are two transmitters on the same channel they cause interference
and it is difficult to predict the resulting field strength. However, the situa-
tions in which two transmitters on a same channel are close to each other are
intentionally avoided while planning the layout of the network, and thus the
signal strength of no more than one transmitter is likely to be significant. In
such cases we assume the signal strength at a given location to be distributed
as if the only transmitter were the one whose mean signal strength according
to Equation (4.2) is higher at that particular location. The strongest signal
is not necessarily the one of the nearest transmitter, because of the effect
of the direction of transmission and differences in the parameters between
different transmitter types.

Thus, each transmitter has location, denoted by [;, type, denoted by t;,
direction of transmission, denoted by «;, and transmitted power, denoted by
pi- Let g; denote the p.d.f of the signal strength of channel j, given that the
measurement is performed at location [. It is given by the equation

gi(s11,0)E f(s|dl, L), AL, i), piv 0(t)) (4.4)

where d(l,1;) is the distance between locations [ and l;, A(l,l;, ;) is the
deviation at location [ with respect to a transmitter located at [; and directed
to ;. The index 7 is chosen so that it maximizes the mean signal strength:

i = argmaxu(d(l,li), Al L, o), pi, G(ti)), (4.5)

{i:c;=5}



24 CHAPTER 4. STATISTICAL LOCATION ESTIMATION

where function g is given by Equation (4.2). Thus, when the propagation
parameters, and the location, channel, direction of transmission, and trans-
mitted power of the transmitters are fixed, an estimate of the distribution of
s;, for each channel j, is available for every location. We shall next consider
how to deal with the unknown propagation parameters.

4.2 Estimation of Propagation Parameters

In most propagation models there are some parameters whose values can
not be derived from the underlying theory. These parameters are typically
somehow related to the environment and hence, there are no universally good
values for them. In such cases, it is obligatory to use empirical data to obtain
information about the parameter values. Note, however, that it is generally
unjustified to assume the existence of some true parameter values which are
referred to in the following quote:

“ In many statistics problems, the probability distribution that gener-
ated the experimental data is completely known expect for the values
of one or more parameters. 7 (DeGroot, 1986, p. 311)

When modeling phenomena as complex as radio wave propagation the as-
sumption is certainly incorrect. Instead of trying to find the real parameter
values, a more realistic goal would be to maximize the expected predictive
accuracy. Because even this is often beyond our capabilities, it is a com-
mon practice to maximize the likelihood of the parameters. This results in
the simple, but generally unjustified and suboptimal maximum likelihood
approach, which we will use.

In our case the propagation parameters for each transmitter type are es-
timated from data consisting of signal strength measurements, each labeled
with the corresponding channel and location of the receiver. The trans-
mitter information consists of the already mentioned properties, namely the
location, channel, direction of transmission, and transmitter power of each
transmitter. Based on the data we need to estimate the parameters 3y, 51, B2
and o of Equations (4.2) and (4.3) for each transmitter type.

As a preprocessing step the transmitter information is combined with the
signal strength measurements in order to produce a table consisting of the
following columns:

1. received signal strength, denoted by s = s(1), ... s,

2. transmitter-receiver distance, denoted by d = d®, ..., d™,
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3. deviation between the direction of transmission and the direction of the
receiver, § = 0, ..., 6 and

4. transmitted power, p = pm, ... p".
5. transmitter type, denoted by t = ¢, ... ¢,

Filling in fields 2-5 requires that the source of each measured signal is iden-
tified, also in cases where there are several transmitters on the same channel.
In such cases we assume that the signal is coming from the transmitter which
is nearest to the receiver, although in principle Equation (4.5) should be used,
and these two criteria do not always agree. This is a deliberate pragmatic
choice: Using Equation (4.5) would require treating the ambiguous cases as
missing data because @, whose value is unknown, appears in the equation.

We shall next describe how to obtain maximum likelihood estimates
(MLEs) of the parameters, or approximations thereof, from empirical data.
First, the simple case where none of the data is missing is discussed, after
which a solution to the realistic missing data case is presented.

4.2.1 Maximum Likelihood from Complete Data

Evaluating the MLEs from complete data can be performed easily by ex-
ploiting the fact that, what we have is in effect a set of linear regression
models. By minor rearrangements, the problem can be formulated in such
a way that standard methods for solving MLEs for linear regression models
can be applied.

Given fully observed data vectors, s, d, §, p and t, the likelihood, £(8),
is a product of the conditional p.d.f.’s of the individual observations:

L(8) = H f(s(i) | d® 50 p®) g(t(i)))
i=1

= - 1 1 /s —p® 2
- oy o <_5<W> ) (46)

where o(t)) denotes the parameter o of transmitter type t@, and p® is
given by

i) df. i i i i
pl S pu(d?, 69, p@, 6(19)). (4.7)

The factorization of £(@) is based on the assumption that the variables
s, .., s™ are independent and identically distributed.
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The terms in (4.6) can be arranged in k& groups where each group corre-
sponds to one of the k transmitter types. Within each group j we use the
notation s, ¢4}, §%3) plid) and p9) to denote the observations related
to the group. For instance, s{'? denotes the signal strength of the first ob-
servation having ¢) = 2. The value of t®), and hence also §(t))) and o (t®),
is constant for each 7 belonging to the same group, and we can write the
likelihood function as

n@) 1 [ slid) — i\
.1[ \/ﬂa()exp<_5< o(j) ))]

() ()]

where n(j) is the number of terms having t® = j, and the sum of squared
errors, SSE(j), is given by

l\s
||
E»

I

J

n(j)
.\ df. i.j 0,93\ 2
SSE(j) = Z(S< 9 — ,J>)
i=1
ng) N
= Z(S<Z’]> _p<z’]> _ ﬁU(])
i=1

— B1(j) log (") — Ba () 6<"’f>log(d<i’j>))2. (4.9)

It is now fairly easy to verify that each of the k terms in (4.8) is determined
by the parameters of the corresponding transmitter type only, and we can
maximize £(0) by maximizing each term at a time. Those familiar with
linear regression notice that the terms are actually the ones used for obtaining
MLEs for linear regression models.

Without proof—one can be found in (DeGroot, 1986)—we state that the

maximum likelihood estimates® ﬂo( ), 51( /) and ﬂ/Q-\(j) are independent of

a/(\'), and that they can be obtained by minimizing SSE(j). Using matrix
notation? the solution is given by

BG) = (Z()" 2() ™ Z()T Y()), (4.10)

3We denote the MLE of a variable by X.
4The notation AT denotes the transpose of matrix A, and the inverse of matrix A is
denoted by A~!.
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—

where 3(j), Z(j), and Y (j) are defined as

e~ <1:j> _ <17]>
. S p
— 4f /8/0\(]) df S<2’]> _ p<27]>
BU) = 16G)| YU)= :
Pa(7) s} _ pln().d)
7.])

Z(j) = |. : : : (4.11)
1 log(dm@ri)) 51 og(dmi)a)

Finally, the MLE of ¢(j) can be obtained from

7 - [SSEG)
(7) nG) (4.12)

The value of SSE(j) is obtained by fixing the values of the [-parameters
to their MLEs given by Equation (4.10). Equations (4.10) and (4.12) give
us the MLEs of the parameter in closed form when the data is complete.
The somewhat more complicated missing data case is discussed in the next
section.

Example 1. Figure 4.3 shows an artificial data set containing 66 observa-
tions. The path loss values plotted on the vertical axis are the same values that
are contained in matriz Y (j). The data was generated by sampling from the
propagation model presented in this chapter. Table 4.1 shows the parameters
used for generating the data, and the MLEs evaluated using Equations (4.10)
and (4.12).

parameter actual MLE
B -30.00 -36.43
04 -10.00 -8.77
B2 -0.0400 -0.0413
o 10.0 9.8

Table 4.1: The actual parameter values used when generating the data set
of Example 1, and the corresponding MLEs.
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Figure 4.3: Mean path loss curves obtained from sample data. Small blots
represent observed path loss values at varying distances from the transmitter.
The two curves show the mean path loss to the direction of transmission
(0 = 0°), and to the opposite direction (6 = 180°).

4.2.2 Maximum Likelihood from Incomplete Data

In our case some of the signal strengths can not be directly observed because
of two reasons related to the measuring device. First, the signal strength
values are binned, i.e. rounded to the accuracy of one decibelmilliwatt. Sec-
ond, after each measurement operation the signal strength of only seven
channels—those with the strongest signal—is reported. The only informa-
tion about the other channels is that their signal strength value does not
exceed any of the seven known values. In such cases we say that the signal
strength variable is truncated at a point given by the smallest of the seven
known values.

Let the random vector o = oV, ... 0™ denote the observations. For
simplicity we assume that the observations are labeled in such a way that
the first m variables correspond to binned observations and the n — m other
ones correspond to truncated observations. Thus, the relationship between
o and s is defined by

O(Z)_gg S(Z)<0(1)+§ fOYZE{l,,m}

st §0(“+% forie {m+1,... n}, (4.13)
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where the accuracy is determined by €, whose value can be, for instance,
1.0 dBm.

The likelihood function for incomplete data, L7 (the Z stands for incom-
plete) for an observation vector o is given by

O(l)—l——
H/ (s | d®, 50 pli), Q(t(i))) ds

() —¢

oli )+_
H / (s | d® L0(tD)) ds. (4.14)

i=m+1

The equation is analogous to the likelihood function for complete data given
by Equation (4.6). However, it is not straightforward to derive a closed
form solution analogous to the complete-data solution.® Instead, there is a
method which can be used to approximate a local maximum of the likelihood
function from incomplete data, namely the Expectation—-Maximization (EM)
algorithm (Dempster et al. , 1977; McLachlan & Krishnan, 1997).

The EM algorithm can be applied whenever it is possible to evaluate
the expected value of the logarithm of the complete data likelihood (log-
likelihood). In order to evaluate the expected log-likelihood we need a proba-
bility distribution for the missing signal strength values. In the EM algorithm
the distribution is obtained by fixing the parameters to some hypothetical
values, say 0"). The expectation of the log-likelihood function, denoted by
Q(0, 0(’")), is then evaluated in the expectation step using the equation

Q0,0 L E{inc(0) 6"}, (4.15)

where £(0) is the complete-data likelihood, given by Equation (4.6). In the
mazximization step the parameter values are replaced by ones which maximize
the expected log-likelihood, thus giving

0" = arg moax Q(6,0"), (4.16)

where 0 denotes the parameters on step r. The algorithm consists of
repeating these two steps, one after the other. It can be shown that the
likelihood of the parameter values is never decreased during an iteration.
Thus, if the algorithm converges, it converges to a local maximum of the
likelihood function.

5As usual, the phrase “not straightforward” is used as an indirect way to say that the
author is not aware of such a solution.
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It now remains to be shown how to obtain a set of parameter values from
Equation (4.16). By taking the logarithm of £(8), given by Equation (4.6),
and substituting it into Equation (4.15) we get

n

| S 0\ 2
Q0.9 = E{Z [—% In(2r) — In(o(1¥)) - %(ﬁ) ]

=1

(4.17)

By switching the order of the expectation and sum operators and taking
terms that are independent of s outside of the expectation, the equation
becomes

Q0.0) =) {—% In(2r) — In(o (1))
1 ; M 2
_WE{(SU o)

0’}} (4.18)

Like in the complete data case the function to be optimized, Q(8,8"),
can be rearranged into to k£ terms each depending on the parameters of one
transmitter type only. Therefore we can find the maximizing parameters
for each transmitter type at a time. Let @Q;(6(j),6'(j)) denote the terms of
Q(0,0") that are determined by the parameters of transmitter type j. For
each type j, we have

Q;(07),0'(j) = — =X In(27) — n(j) In(0(j)) — =——— SESE()),
(4.19)

where SESE(j) is the sum of expected squared errors given by

n(j)

SESE(j) £ Y [E { (609 — pifi)? \ 0’(j)}]. (4.20)

The value of B(j) which maximizes Equation (4.19) is given by (see Ap-
pendix A for a proof)

BG) = (ZH)" Z(5)) " 2()" Y () (4.21)

—

where 3(j),% and Z(j) are defined by Equation (4.11), and Y (j) is defined

—

6The notation (B(j) is used, although the solution is in fact the maximizer of
Q;(0(4),6'(4)), not the (incomplete-data) likelihood.
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as

E{s9) [ 0'(5)} — pta)

Y & E{s@:ﬁ‘ﬁ’.(j)}_p(?:j) | o

Thus, in order to obtain estimates of the J-parameters we need to evaluate
the expected value of s, for each j € {1,... ,k} and i € {1,...,n(j)}.
For binned observations, the expected value of s is (see Appendix A for
a proof)

B{s9 | 0(j)} =

(4.23)

where ® is the cumulative distribution function of a Gaussian distribution
with zero mean and unity variance; 1/ is the mean signal strength value
according to the log-loss model with parameters ¢'(j):

P p(d9 400 plid) g () (4.24)
and a7 and b7} are given by
(4.4) _ % _ M’<i:j>

o'(j) ’ o'(j)
Because the value of s/ is known to be within the range ol + £, its

expected value must also be within the same range. The difference between
the exact solution and 0% is bound by the equation

;.7 df. O
PRGY)RL

(4.25)

BE{s"7) | 9'(j)} — o] < - (4.26)

[Nl e}

Thus, the expectation can be approximated by ot
For truncated observations, the expectation of s{7) is given by (see Ap-
pendix A for a proof)

_exp(—%(b<i’j>)2) U’(j) + H’<i’j>

V27 B(b)

where b7} is given by Equation (4.25).

E{s"10'(j)} = : (4.27)
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The value of o(j) maximizing (4.19) is given by (see Appendix A for a
proof)

— _ |SESE(j)
0(])_’/771(]') . (4.28)

In order to evaluate SESE(j), which appears in Equation (4.28), we need a
closed form solution for the expected squared error E { (s — p{:0)2 | ¢/ (5) 1.
For binned observations, it is given by (see Appendix A for a proof)

E{(Sm — pli)? 9’(j)}

L 20" (W = p) (exp(=5(a")?) — exp(=5(6")%))
V2 (B(009) — B(ali)))
() — a2, (4.29)

where a7 and b%9) are given by Equation (4.25), and p(7) is obtained by
using the estimates of the -parameters given by Equation (4.21). A reason-
able approximation to Equation (4.29) is given by (0! — pu{1))2  because
s{9) is known to be within the range of) £ £7

For truncated observations, the expected squared error is given by (see
Appendix A for a proof)

E{(s“’j> — pliay? ‘ 9’(])}

207G (W — ) eXf(—%(b“’]))Q) (5 — Y2 (4.30)
By looking at Equation (4.30) one can see that the last two terms can be
ignored, if we assume that the difference |p/(*7) — p9)|, i.e. the difference
between two consequent estimates of the mean signal strength value, is very
small. Unless the EM-algorithm does not converge at all, this is guaranteed
to be the case in the long run.

"Such an approximation is in fact implicitly used every time finite-precision values are
treated as precise ones. This was the case also in the complete-data case of the previous
section.
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We now have closed form solutions for the parameters maximizing Equa-
tion (4.19): Equation (4.21) for 3(j) and Equation (4.28) for o(j). By using
them for each transmitter type j € {1,...,k} we obtain the parameter vec-
tor 6 maximizing Equation (4.15). This vector is all that is needed to solve
Equation (4.16), and in fact, all that is needed to perform an iteration of the
EM algorithm.

Example 2. Figure 4.4 shows an artificial data set containing 66 observa-
tions, 37 of which are binned, while the 29 other ones are truncated. For
truncated observations, the figure shows the truncation point which is known
to be higher than the unknown path loss value. Table 4.2 shows the parameters
used for generating the data, and estimates obtained with the EM-algorithm.
The data set of Example 2 is the same as the one used in Fxample 1 with
the exception that in Example 2 some of the observations are truncated. Note
that the parameter estimates given in Tables 4.1 and 4.2 are very much alike,
which shows that the difference between the actual values and the ones ob-
tained with the EM-algorithm are mainly caused by the relatively small sample
size, not for instance, by the incomplete data.

-60 r ' I | | | |
o binned <
70 AN e
-80 | o & Qdegrees - i
R S S © + 180 degrees -
L <> T
R w0 g e+ —+ i |
= > I :
& 00| o 000 ++<> ¢ o ) R —
\c; ."n~<..><><? ?) +<> ¢ ¢ ++ 0 +
8 -110 + 0 & B2 + i+ < J& T4+ > > ]
< - L + T v _
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Figure 4.4: Mean path loss curves obtained from sample data. Small symbols
represent binned (¢) and truncated (+) path loss values at varying distances
from the transmitter. The two curves show the mean path loss to the direc-
tion of transmission (6 = 0°), and to the opposite direction (§ = 180°).
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iteration Bo o3 I o
1 -51.84 -6.38 -0.0280 9.4
2 -48.57 -6.98 -0.0313 9.4
3 -44.58 -7.59 -0.0337 9.5
4 -42.01 -7.98 -0.0352 9.5
5 -40.36 -8.23 -0.0362 9.6
6 -39.27 -8.40 -0.0368 9.6
7 -38.52 -8.51 -0.0373 9.7
8 -38.01 -8.59 -0.0376 9.7
9 -37.65 -8.65 -0.0378 9.7
10 -37.40 -8.69 -0.0379 9.7
11 -37.22 -8.71 -0.0380 9.8
12 -37.09 -8.73 -0.0381 9.8
13 -37.00 -8.75 -0.0382 9.8
14 -36.94 -8.76 -0.0382 9.8
15 -36.89 -8.76 -0.0383 9.8
16 -36.85 -8.77 -0.0383 9.8
17 -36.83 -8.77 -0.0383 9.8
18 -36.81 -8.77 -0.0383 9.8
19 -36.80 -8.78 -0.0383 9.8
20 -36.79 -8.78 -0.0383 9.8
21 -36.79 -8.78 -0.0383 9.8
22 -36.78 -8.78 -0.0383 9.8
23 -36.78 -8.78 -0.0383 9.8
24 -36.78 -8.78 -0.0383 9.8
25 -36.77 -8.78 -0.0383 9.8
actual -30.00 -10.00 -0.0400 10.00

Table 4.2: The values of the parameter estimates for EM-iterations 1-25 with
the data set of Example 2. The algorithm has converged with the precision
used in the table by iteration 25. The actual parameter values used when
generating the data set are shown at the bottom of the table.
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4.3 Estimation of Location

Given the estimates of the propagation parameters 0, the p.d.f. of the field
strength of channel j at location [ is given by g, (s; |, 6), where g; is defined
by Equation (4.4). The posterior p.d.f. of the location variable [ is given by
the Bayes rule®:

1,6) (i
pi1s,0) = L LD (4.31)
Jo(s |V, 0)m(l)dl
where s is a vector consisting of the field strength values s; for each channel
j,and g(s | 1, ) is the likelihood function given by

g(s]1,0) = Hg]sj|l0 (4.32)

and 7 is the prior p.d.f. of the location variable.

However, Equation (4.32) is not directly applicable for practical location
estimation purposes if some of the signal strength observations are trun-
cated.” It is not the actual signal strength vector, s, that is observed, but
the observation vector, o, whose relation to s is the following:

€ € oo
oj—§§ Sj<0j+§ ifjeB
€
Sj S Oj + 5 lfj € T, (433)
where B is the set of binned channels, and 7 is the set of truncated channels,
and the accuracy of the measurements is determined by e.
Now that the propagation parameters, 6, are fixed, the likelihood function

is defined with respect to the location variable, [, and thus, the likelihood
function is given by

(0|1, 8) H/OJ+ (511,8)) ds

JjEB

H/OJ ’ i(s11,0)) ds (4.34)

JET

8The application of the Bayes rule might be opposed by some people who prefer tradi-
tional statistical theory over its Bayesian correspondent (Box & Tiao, 1973; Berger, 1980).
The primary concern of the opponents is usually related to the concept of prior distri-
butions. However, in this case the results obtained with traditional statistical methods
would be similar to the ones presented here, as we will note later.

91f there are no truncated observations, i.e. all the observations are binned, Equa-
tion (4.32) is applicable because one can use the center points of the bins as approximations
to the actual values of the signal strength variables, unless the bins are very wide.
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The corresponding posterior p.d.f. of the location variable is then
A o|l,0)r(l
Silo.d)— _selLB)
[glo|l',0)n(l")dl

The denominator of the right hand side of Equation (4.35) is constant
with respect to [ and thus, the posterior p.d.f. of the location variable is
proportional to the numerator:

p(l]o,0) x g(o]|l,0)x(l). (4.36)

(4.35)

In theory, the location variable might be continuous in R?. In that case,
no proper uniform prior 7 would exist.!’ In practice, however, the location
variable is always restricted to some area, and thus, a uniform prior can be
used. Of course, if an informative prior is available, it should be used instead.

A location estimate is chosen depending on the penalty function, which
defines how different errors are penalized. Two reasonable estimates are the
maximum a posteriori location, i.e. the location maximizing Equation (4.36),
and the expected value of the location variable. The latter minimizes the
expected value of the squared error of the location estimate. If a uniform
prior is used, the maximum a posteriori location is the same as the maximum
likelihood estimate of [, which would probably be the solution preferred by
advocates of the traditional statistical theory.

Because no closed form solution for either the maximum a posteriori value
or the expected value is available, the location variable must be discretized.
One can, for instance, split the area into squares of fixed size, say 50 x 50
meters, and use the center point of each square to evaluate the distribution
of the field strength variables in that particular square. After discretization
the maximum a posteriori value can be obtained simply by going through
each of the squares and choosing the value which maximizes Equation (4.36).
The expected value of the location variable can be obtained by calculating
an average of the location variable weighted by Equation (4.36).

Evaluating the empirical performance of the presented method requires
that the layout of a cellular network is known. Such information is only
accessible to network operators. We will therefore present only an illustrative
example using an artificial network layout, shown in Figure 4.5.

Example 3. Figure 4.5 represents a hypothetical network layout. Figure 4.6
shows four examples of the posterior p.d.f. of the location variable, the re-
sulting mazimum a posteriori location estimate, and the expected value of the

10A prior 7(x) is proper if it is non-negative, w(z) > 0, for all z, and it integrates to
one, [7w(z)dr = 1. A uniform prior 7(z) = ¢, where ¢ is some constant, violates the latter
condition, unless the range of z is finite.
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Figure 4.5: A hypothetical network layout consisting of ten transmitters.
Arrows indicate direction of transmission, and labels indicate channels. Note
that channels one and two are both shared by two transmitters.

location variable with artificial signal strength measurement results. In graph
(a), signal strength of channel two is known to be —55 dBm, and information
concerning the other channels is nonexistent. Most of the probability mass is
concentrated within two elliptical areas around the channel two transmitters.
In graph (b), in addition to channel two, signal strength of channel siz is ob-
served to be —60 dBm. Observing the signal strength of channel siz resolves
the ambiguity caused by the fact that two transmitters share channel two, and
therefore the p.d.f. in (b) becomes unimodal.

Graphs (c) and (d) illustrate the effect of truncated observations. In both
cases the following signal strength were observed:

Channel 1: -70 dBm Channel 3: -75 dBm
Channel 4: -70 dBm Channel 8: -65 dBm

However, the two cases differ with respect to the other channels (2, 5, 6,
and 7); in (c) no information concerning them is available, unlike in (d),
where the signal strength of those channels is truncated at -75 dBm, i.e. the
signal strength values are known to be less than or equal to -75 dBm. By
comparing graphs (c) and (d), one can see that the truncated observations
can be very useful when estimating location.
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Figure 4.6: Examples of the posterior p.d.f. of the location variable with
different signal strength observations. Labels indicate the maximum a poste-
riori estimate (“MAP”), and the expected value (“E”) of the location variable.
In graphs (b) and (c) they are practically identical.



Chapter 5

Conclusions

After a short introduction to cellular telephone systems, we presented the
principles of radio wave propagation and propagation models. The emphasis
was on prediction of signal strength, although several other signal properties
can be used in location estimation. An overview of the conventional loca-
tion estimation methods was then given. In Chapter 4, which is the main
contribution of the thesis, a statistical location estimation method based on
a propagation prediction model was presented. To conclude, we shall now
discuss some lessons learned during the process of developing a location es-
timation method, and writing this thesis.

The conceptual development of location estimation methods has been
modest after the ancient Egyptians and Greeks invented the art of trian-
gulation. The problem has been mostly considered by engineers, and con-
sequently, a majority of proposed solutions are geometric in nature. For
instance, the Angle of Arrival method is nothing more than triangulation. In
addition to triangulation, some geometric methods, such as Time of Arrival,
and Time Difference of Arrival—which is used in the GPS system—are based
on distance measurements rather than angle measurements. The geometric
solutions work very well in certain situations. However, if the signal prop-
agation environment differs significantly from ideal conditions, the distance
or angle measurements are unreliable. In such cases, serious problems occur
because the various measurements are inaccurate at best, incompatible at
worst. Special ad hoc heuristics have to be applied in order to compensate
for these errors.

In this thesis, an alternative approach to the location estimation problem
was taken, which we call the statistical approach. Here signal properties,
such as signal strength, angle of arrival and propagation delay, are treated
as random variables which are statistically dependent on the locations of
the transmitter and the receiver, and the propagation environment. In this

39
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respect, the conceptual difference between the two approaches is clear: In the
geometric approach the reasoning goes from the measured signal properties
to the location of the transmitter, whereas in the statistical approach, the
emphasis is on the propagation model, which describes the dependency of the
measured signal properties on the location variable, that is, the reasoning
proceeds from the location to the signal properties. This is the kind of
reasoning that is typical to statistics in general. In statistical terms, the
propagation model is a sampling distribution whose parameters—in the first
phase, the propagation parameters, and in the second phase, the location
variable—we wish to estimate.

The problem of incompatible measurements is not present in the statisti-
cal approach, unlike the geometric ones, because no matter how unlikely the
combination of measurement results, it is always possible. Of course, if the
propagation model does not fit well the actual propagation phenomena and
the environment, the propagation prediction accuracy, and accordingly, the
location estimation accuracy is poor. However, whereas the only possibility
to enhance the accuracy of the geometric location estimation methods is to
increase the accuracy of the angle and distance measurements, this is not
the case with methods based on the statistical approach. Their accuracy
can be enhanced also by switching to an other propagation model, which is
better suited for predicting the relevant signal properties in the environment
in question.

The advantages of the statistical approach include also certain types of
flexibility, which presented itself in the present work. In our case, the ob-
servations made by the mobile unit in order to be located, were associated
with a set of channels whose signal strength was known, and an other set
of channels, whose signal strength was only bounded from above. We called
the latter kind of partial observations truncated. The geometric approach
provides no principled way of exploiting the information contained in the
truncated observations. However, as we saw in Chapter 4, the statistical
approach lends itself easily to exploiting any kind of observations, partial or
complete.

To be realistic, one has to say that the few empirical results presented in
this thesis suffice to prove nothing more than the theoretical validity of the
proposed location estimation method. In order to show its practical merits
one should provide results obtained with real-world data.

The statistical approach is by no means restricted to the use of signal
strength measurements. One could also use angle or timing measurements,
as long as the used propagation model is capable of handling them. The
flexibility of the approach allows also the fusion of different types of mea-
surement results, for instance, signal strength and timing information. Using
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the terminology of Chapter 2, the propagation model considered in this work
belongs to the class of general models. In other words, the model does not
take into account the effect of the heterogeneity of the propagation environ-
ment. Another interesting line of investigation is the application of empirical
propagation prediction methods to location estimation. Our guess is that
there is some potential in such solutions.
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Appendix A

Proofs

Proof of Equation (4.21). The values of 5y(j), 51(j), and (5(j), maximiz-
ing Q;(0(7),0'(j)) can be obtained by setting the partial derivatives of the lat-
ter, with respect to the former, to zero. The first two terms of Q;(0(j),¢'(5)),
given by Equation (4.19), do not depend on the 3-parameters. Thus, the par-
tial derivatives depend on the third term only, and we get

0Q;(0(7).0'(j)) _ 950(j)"*SESE(j) _ 1 0 SESE())

d Bi(7) 9 Bi(7) 20(5)> 0Bi(j)

for each i € {0,1,2}. Note that SESE(j) does depend on the -parameters.
In order to obtain the partial derivative of SESE(j) with respect to the

[-parameters, we manipulate SESE(j). From the definition of SESE(j) in
Equation (4.20) it directly follows that

(A1)

n(j)

SESE(j) = ) _ [E { (509 — plia))?

()}

9/(]-)} _9E {S<z‘,j> 1 59)

<
Il
_

J

Z[E{(SM)?

i=1

=

3

o)}

+E{W) [00)}|- (2)

Because the value of u{"7) does not depend on the unknown variable, s,
the former can be taken outside the expectation operators, and we get

n(j)

SESE(j) = Z[E{(S<i,j>)z

=1

9/(]-)} — 2,09 B {S<m‘>
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The derivative of the above, with respect to (;(j), is

0 SESE(j) _ z(:) 0 E{(s")" | 0()}
9 Bi(J) : 9 Bi(J)

=1

") 5 uo9) B {569 | ()} ni) 5 (M<i,j>)2
2T 550) 2 San @Y

i=1

In the above, the expectation of s/ depends on parameters ¢'(7), not on
6(j). Therefore it is also independent of 3y(j), 51(j), and £2(j), and the first
sum in Equation (A.4) equals zero.

To see the similarity with the complete data case, we replace s(7) with
E {549 0'(j)}, in SSE(), given by Equation (4.9), and derivate with respect
to 3;(j), yielding

n(j) ) (E {S<i,j> ‘ 9/(])} B N<i’j>)2

p— 9 Bi(4)

R0 (B [#6)})°
— 9 Bi(4)

n(j) 9 M(z’,j) E{S<i,j) ‘ 9,(]-)} n(j) ) (M(z’,j>)2
_ N — - A.
2> 2 6,0) 2 950) 49

i=1

Like in Equation (A.4), the first sum on the right-hand side of Equation (A.5)
equals zero. The second and the third sum are identical to the second and
third sum of Equation (A.4). Thus, the partial derivatives (A.4) and (A.5) are
always equal. The roots of the derivatives are the MLEs of the 3-parameters.
Consequently, MLEs of the -parameters in the incomplete data case can be
obtained by replacing the unknown variables s(/) with the their expectations
E {s%) | #'(5)}, and using the same formula as in the complete data case,
given by Equation (4.10).

]

Proof of Equation (4.23). The distribution of 57 is assumed to be Gaus-
sian with mean g/(*/) and variance ¢’(j)?, with the additional constraint
olid) — £ < slid) < olbd) 4 <. Let variable X be defined as

(i) _ i)
b @i (A.6)
a'(4)
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The distribution of X is Gaussian with zero mean and unity variance. The
constraint becomes a7’ < X < b4} where

0<i7j> — % — MI<17]> O<i’j> + % — /‘L’<Z’J>

T . =0 A0
The expectation of X is!
1 blind) .
B = T o) Jyo T3 (A8

where ® denotes the cumulative distribution function of a Gaussian distri-
bution with zero mean and unity variance. Let functions f and g be defined
as

o) = —%x{ g(z) = exp(x). (A.9)

Let h be their composite mapping

1
h(w) = (g0 f)(x) = exp(—52%). (A.10)
The derivatives of f and ¢ are

f'(w) = ==, g'(z) = exp(z). (A.11)

From Equations (A.9)—-(A.11) it follows that the derivative of the composite
mapping is?

1

h'(z) = exp(—ixQ) (—x), (A.12)
and thus?
/—h'(x) dr = /x exp(—%xQ) dr = —exp(—%ﬁ). (A.13)

By applying Equation (A.13) to Equation (A.8), we get

exp(=3(a%9)?) — exp(= ()
V27 (®(b0D)) — ®(alid))
'For brevity, we denote the expectation of X by E{X}, instead of the full notation
E{X|X ~N(0,1), a!*) < X < bl },

2The derivative of a composite mapping is given by (go f)'(z) = ¢'(f(z)) f'(z).
3We thank Tomi Silander for the above proof of Equation (A.13).

B{X} = (A.14)
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From Equation (A.14), and the definition of X in Equation (A.6), it follows
that the expectation of s(7) is
BIs) | ¢} = BIX}o'(j) + 59

_ (eXP(_%(a<i’j>)2) - eXp(_%(b<i’j>)2)) a'(j) 4 i)

(A.15)

Proof of Equation (4.27). The only difference between a truncated and a
binned observation is that in the former there is no lower limit for s
Therefore, for a truncated observation, the expectation of s can be ob-
tained by letting the lower limit, o)) — £, approach minus infinity. In the
limit, both exp(—21(af")?) and ®(a’™¥) in Equation (A.15) become zero,
and the expectation becomes

exp(—L(09)?) o'(5)

E{s% | 0'(5)} = - + /), A.16
where b is given by Equation (A.7). O

Proof of Equation (4.28). The value of o(j) maximizing Q;(0(j),0'(5))
can be obtained by setting the partial derivative of the latter with respect
to o(j) to zero. The first term of Q);(6(j),0'(j)), given by Equation (4.19),
does not contain o(j). Thus, the contribution of the first term to the partial
derivative is zero, and the derivative becomes

0Q,(0().0'G)) __9n()n(()) 934 0l)? SESE()

0 o(j) N do(j) do(j)
N d In(o(j)) SESE(j) da(j)~?
= —n(j) 900) > ool) (A.17)

The two derivatives on the second row have analytical solutions, and we get

0Q;(00).0'G)) _ _n) , SESE() (A.18)

9 o(j) o)) o(h)?
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—

Let 0(j) denote the value of o(j) for which the value of the partial derivative
is zero. By solving o(j), we get

—@+SE/SE(3‘7):0 & 0(7):,/%. (A.19)
i) o)) n(j)

In order to show that o(j) is indeed the maximizer, not minimizer, of
Q;(0(5),0'(5)), we take its the second derivative, which is the derivative of
Equation (A.18):

_9n()o(j)~ | OSESE(j) o(1)™° _ n(j) _ 3SESE())
9 o(7) 9 o(j) o(4)? o(4)*

—

Substituting o(j), given by Equation (A.19), in the place of o(j), yields

(A.20)

n(j) _3SESE() _ n()* _ 3n(G) _ _ 4n()? (A21)
J/(\j)g (7/(\]')4 SESE(j) SESE(j) SESE(j) '

Because both the nominator and the denominator are squared quantities, and
therefore, always non-negative, the result is always ngrkpositive. Thus, the
second derivative of Q;(0(j),¢'(j)) is non-positive at o(j), which therefore is
the maximizer.

O

Proof of Equation (4.29). The distribution of s/ is assumed to be Gaus-
sian with mean p/¢7) and variance o'(5)?, and with the additional constraint
oltd) — £ < 5(t0) < oltd) 4 £, Let variable X be defined as

(i) _ i)
D (A.22)
o'(j)

The distribution of X is Gaussian with zero mean and unity variance. The
constraint becomes a®?) < X < b7 where

) _ e i) ) 1€ i)
g O s — gy — O g —
o' ()

(A.23)

)

o'(j)
From the definition of X, it follows that

E{s"10'(j)} = o' (G)E{X} + /", (A.24)
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and

B{(s")?10/(7)} = B{(Xo'() + )"}
= 0'() AN} + 20/ () B{X Y + (0 0)?,

(A.25)
The expectation of X? is
1 p{i5) 1
By = 2 exp(—a?) dr,  (A.26
e \/ﬁ(@(b@d))_@(a(i,j)))/aw) z° exp( 2:c) z,  (A.26)

where ® denotes the cumulative distribution function of a Gaussian distri-
bution with zero mean and unity variance. Let functions f and g be defined
as

1
fx) = ==, 9(w) = exp(=52°). (A.27)
From Equation (A.12) it follows that
/ 1 2
g'(x) = —zexp —5" (A.28)

Let h(z) be the product of f(x) and ¢'(x)
h(z) = f(z) ¢'(z) = —z (—x) exp(—%xZ) = 2 exp(—%xZ). (A.29)

From Equations (A.27) and (A.28) it follows that the integral of the
product is given by*

/h(a:) dv = —x exp(—%ﬁ) + /exp(—%xQ) dr. (A.30)

The integrand in the latter term is the density function of a Gaussian distri-
bution with zero mean and unity variance except that it lacks the constant
(27)~%. Therefore the integral can be replaced by v27 ®(z), and the equa-
tion becomes®

/h(m) dr = /x2 exp(—%xQ) dr = —x exp(%xQ) + V21 ®(z). (A.31)

g dr=fg— [gf du
®We thank Tomi Silander for the proof of Equation (A.31) presented above.
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From Equations (A.26) and (A.31) it follows that
—plid) exp(—%(bW))Q) + V21 &(pI))
Var(@(b) — (afi)
xp(=3(a9)?) + V27 B(at)
V27 (D (b)) — B (alia)))
a0 exp(—L(al0)2) — b9 exp(—
B V21 (D (b)) — @ (alii)))

By using Equations (A.24) and (A.25), we obtain a closed form solution for
the expectation of (57 — ;1))2 as follows®

B { (s~ o) | 0
= B{(s%9)2} — 2400 B{ s} 4 (puf19))2
= o' ()’ B{X?} +20(j) W/ WV E{X} + (/)
— 20" (j) PN E{XY + 2 pBI) ) (802
2

= o' (P B{X) +20/(j) (109 — p9) B{X} + (409 — )
(A.33)

E{X?} =

_alid)

@

(0)?)

1
2

+1. (A32)

Plugging in F{X?}, given by Equation (A.32), and F{X}, given by Equa-
tion (A.14), yields

V21 (®(b4:9)) — B(alian)) +0'(j)”
42 o' () (W9 — ) (exp(=3(a)?) — exp(=3(69)%))
V21 (B (b)) — B(ali)))
(W = ), (A.34)

Proof of Equation (4.30). The only difference between a truncated and a
binned observation is that in the former there is no lower limit for s
Therefore, for a truncated observation, the expectation of s can be ob-

tained by letting the lower limit, 09 — £, approach minus infinity. In the

SFor brevity, we use here the short-hand notations E{(s(*7))} and E{(s("/7)?}, instead
of their respective full versions E{(s¢*7?) | 6'(j)} and E{(s%>7))? | 6'(j)}.
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limit, all the terms in Equation (A.34) that are related to a!*/), namely
a'™ exp(—1(a)?), and exp(—1(a'*")?), and ®(a'™?), become zero, and
the expectation becomes

1
2

4 (D — pla)?,

(A.35)

where b7} is given by Equation (A.23). O



