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Abstract

We consider the problem of learning Bayesian network models in a non-informative
setting, where the only available information is a set of observational data, and no
background knowledge is available. The problem can be divided into two different
subtasks: learning the structure of the network (a set of independence relations),
and learning the parameters of the model (that fix the probability distribution from
the set of all distributions consistent with the chosen structure). There are not many
theoretical frameworks that consistently handle both these problems together, the
Bayesian framework being an exception. In this paper we propose an alternative,
information-theoretic framework which sidesteps some of the technical problems
facing the Bayesian approach. The framework is based on the minimax-optimal
Normalized Maximum Likelihood (NML) distribution, which is motivated by the
Minimum Description Length (MDL) principle. The resulting model selection cri-
terion is consistent, and it provides a way to construct highly predictive Bayesian
network models. Our empirical tests show that the proposed method compares fa-
vorably with alternative approaches in both model selection and prediction tasks.

1 Introduction

Bayesian networks [1,2] are one of the most popular model classes for multi-
variate data. Learning a Bayesian network from data reveals the probabilistic
structure of the domain and provides a tool for predicting future observa-
tions. Under certain restrictions and assumptions, Bayesian networks even al-
low principled speculations about the causal mechanisms of the domain, and
provide estimates about effects of interventions [3].
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Traditionally, learning of Bayesian networks has been divided in two sepa-
rate tasks: learning the structure of the network that represents conditional
independence relations, and learning the parameters that specify the joint
probability distribution, see [4]. The methods for learning the structure are
usually based on either conditional independence tests [5,6], or some scoring
function such as a posteriori probability or description length, see [7]. These
methods are not totally separate and there are also some hybrid methods [8,9].

Methods based on conditional independence tests are sensitive to choice of
significance levels. Furthermore, since they are based on interpretation of
Bayesian network structures as sets of independence assumptions, they do
not usually offer a natural way to learn the parameters for the structure.

The popular Bayesian BDeu [10] criterion for learning Bayesian network struc-
tures has recently been reported to be very sensitive to the choice of prior
hyperparameters [11,12]. On the other hand, some alternative model selection
criteria, like the Akaike information criterion (AIC) [13] and the Bayesian
information criterion (BIC) [14], are derived through asymptotics, and their
behavior is suboptimal for finite sample sizes, nor do they suggest a particular
way to learn the parameters for Bayesian networks. To our knowledge, apart
from the methods presented in this paper, the Bayesian approach is one of
the very few frameworks that offer a theoretically coherent solution to both
structure and parameter learning.

For large networks, the study of different scoring criteria is hindered by the fact
that learning the network structure is NP-hard for all popular scoring criteria
[15], even if these criteria have a convenient characteristic of decomposability,
which allows incremental scoring in heuristic local search [16]. However, owing
to recent advances in exact structure learning [17,18], it is feasible to find
the optimal network for decomposable scores when the number of variables
is about 30 or less. This makes it possible to study the behavior of different
scoring criteria for problems of realistic size without the uncertainty stemming
from heuristic search.

In this paper we introduce a new decomposable scoring criterion for learning
Bayesian network structures, the factorized normalized maximum likelihood
(fNML). This score features no tunable parameters, and thus avoids the sensi-
tivity problems of Bayesian scores. We show that the new criterion is asymp-
totically consistent. Unlike AIC and BIC, it is derived in closed form for finite
sample sizes, and it has a probabilistic interpretation as a distribution which
has a certain minimax optimality property.

We also use the predictive form of the normalized maximum likelihood (NML)
model [19] to find well predicting parameters given the learned network struc-
ture. This new method for learning the parameters, which we call the factor-
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ized sequential normalized maximum likelihood (fsNML), is a natural exten-
sion of the fNML model selection criterion for predictive purposes. In order
to demonstrate the theoretical validity of fsNML, we give a non-asymptotic
upper-bound on the logarithmic loss (or code length) of the fsNML predictions
relative to the optimal parameters – for a fixed graph structure, the fsNML
predictions are never (for any data-set) much worse than those obtained by op-
timizing the parameters with hindsight. Both the fNML and fsNML methods
are motivated by the Minimum Description Length (MDL) principle, see [20,7].

The rest of the paper is structured as follows. In Section 2, we first introduce
Bayesian networks and the notation needed later. In Section 3, we first briefly
review the most popular decomposable scores, after which we are ready to
introduce the fNML criterion for structure learning. In Section 4 we turn our
focus to the parameter learning and introduce our sNML based solution. We
then describe the empirical experiments and their results in Section 5. The
paper ends with discussion in Section 6 and a short conclusions in Section 7.
Proofs for the central results can be found in appendices at the end of the
paper.

2 Bayesian Networks

We assume the reader to be familiar with Bayesian networks (for a tutorial,
see [4]), and only introduce the notation needed later in this paper.

A Bayesian network defines a joint probability distribution for an m-dimen-
sional multivariate data vector X = (X1, . . . , Xm). We will only consider cases
in which all the variables are discrete, so that variable Xi may have ri different
values which, without loss of generality, may be denoted {1, . . . , ri}.

A Bayesian network consists of a directed acyclic graph G and a set of con-
ditional probability distributions. We specify the DAG with a vector G =
(G1, . . . , Gm) of parent sets so that Gi ⊂ {X1, . . . , Xm} denotes the parents
of variable Xi, i.e., the variables from which there is an arc to Xi. Each par-
ent set Gi has qi (qi =

∏
Xp∈Gi

rp) possible values that are the possible value
combinations of the variables belonging to Gi. We assume a non-ambiguous
enumeration of these values and denote the event that Gi holds the jth value
combination simply by Gi = j.

The local Markov property for Bayesian networks states that each variable is
independent of its non-descendants given its parents. Formally, this is equiv-
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alent to the following factorization of the joint distribution:

P (x | G) =
m∏

i=1

P (xi | Gi). (1)

The conditional probability distributions P (Xi | Gi) are determined by a set
of parameters, Θ, via the equation

P (Xi = k | Gi = j, Θ) = θijk,

where k is a value of Xi, and j is a value configuration of the parent set Gi.
We denote the set of parameters associated with variable Xi by Θi and define
Θij = (Θij1, . . . , Θijri

).

For learning Bayesian network structures we assume a data D of N complete
independent and identically distributed (i.i.d.) instantiations of the vector X,
i.e., an N ×m data matrix without missing values. It turns out to be useful to
introduce a notation for certain parts of this data matrix. We often want to
select rows of the data matrix by certain criteria. We then write the selection
criterion as a superscript of the data matrix D. For example, DGi=j denotes
those rows of D where the variables of Gi have the jth value combination. If we
further want to select certain columns of these rows, we denote the columns
by subscripting D with a corresponding variable set. As a shorthand, we write
D{Xi} = Di. For example, DGi=j

i selects the ith column of the rows DGi=j.

Since the rows of D are assumed to be i.i.d., the probability of a data ma-
trix can be calculated just by taking the product of the row probabilities.
Combining equal terms yields

P (D | G, Θ) =
m∏

i=1

qi∏

j=1

ri∏

k=1

θ
Nijk

ijk , (2)

where Nijk denotes number of rows in DXi=k,Gi=j. We also define a vector
~Nij = (Nij1, . . . , Nijri

) and a sum Nij =
∑ri

k=1 Nijk.

For a given structure G, we define the maximized likelihood,

P̂ (D | G) = sup
Θ

P (D | G, Θ). (3)

Note that P̂ (D | G) does not define a probability distribution for the data since
the maximizing parameters depend on the data D at which the likelihood is
evaluated, and hence the sum over all data-sets is generally greater than one.
It is not difficult to show that the maximizing parameters in (3) are simply
the relative frequencies found in data: θ̂ijk = Nijk/Nij, where Nij denotes the

number of rows in DGi=j; in case Nij = 0, we define θ̂ijk = 1/ri. We often drop
the dependency on G when it is clear from the context.
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3 Model Selection

As said in the introduction, methods for learning the structure of a Bayesian
network based on data can be (with only a little violence) divided into those
based on independence tests and those based on scores. Here we focus on the
score-based approach.

A scoring function is simply a function of the structure G and observed data D
which evaluates different structures according to their goodness in the light of
the data D; the higher the score, the better the structure. A scoring function
Score(G,D) for learning a Bayesian network structure is called decomposable,
if and only if it can be expressed as a sum of local scores

Score(G,D) =
m∑

i=1

S(Di, DGi
), (4)

for all G and D.

Many popular scoring functions avoid overfitting by balancing the fit to the
data with the complexity of the model. A common form of this idea can be
expressed as

Score(G,D) = log P̂ (D | G)−∆(D, G), (5)

where ∆(D,G) is a complexity penalty.

The maximized likelihood P̂ (D | G) (Eq. (3)) factorizes by the network struc-
ture, and for the decomposable scores discussed in this paper, the complexity
penalty can also be factorized. Hence, we can write the penalized scores in the
factorized form (4), with the local scores given by

S(Di, DGi
) = log P̂ (Di | DGi

)−∆i(Di, DGi
). (6)

Different scores differ in how the local penalty ∆i(Di, DGi
) is determined.

3.1 AIC and BIC

The Akaike information criterion (AIC) and the Bayesian information criterion
(BIC) are two popular decomposable scores for learning Bayesian network
structures. The local penalty terms for these scores are

∆BIC
i =

qi(ri − 1)

2
ln N, and ∆AIC

i = qi(ri − 1),

where qi(ri−1) is the number of (free) parameters required to specify the condi-
tional distribution of Xi given its parents. If we denote by kG =

∑m
i=1 qi(ri−1)
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the total number of free parameters for structure G, the overall scores become

BIC(G,D) = P̂ (D | G)− kG

2
ln N,

AIC(G,D) = P̂ (D | G)− kG,

respectively.

Both of these complexities are independent of the actual data, and only depend
on the arities ri of random variables and the structure of the Bayesian network.
These scores do not have any additional user-defined parameters; in this sense
they are as objective as the fNML score we propose later.

3.2 Bayesian Dirichlet scores

Bayesian Dirichlet (BD) scores assume that the parameter vectors Θij are
independent of each other and distributed according to Dirichlet distributions
with some hyper-parameter vector ~αij = (αij1, . . . , αijri

) ∈ Rri . We let ~α ∈
Rk′G , where k′G =

∑m
i=1 qiri is the total number of hyper-parameters, denote

the concatenated vector of all the hyper-parameters. The local BD score is
given by

SBD(Di, DGi
, ~α) = log P (Di | DGi

, ~α) =
qi∑

j=1

log P
(
DGi=j

i | DGi=j
Gi

, ~αij

)

=
qi∑

j=1

log
∫

P (DGi=j
i | DGi=j

Gi
, Θij) Dir(Θij ; ~αij) dΘij (7)

=
qi∑

j=1

log


Beta(~αij + ~Nij)

Beta(~αij)


 ,

where Dir(Θij ; ~αij) denotes the Dirichlet density, and Beta is the multinomial
Beta function

Beta(α1, . . . , αK) =

∏K
k=1 Γ(αk)

Γ(
∑K

k′=1 αk′)
.

With all αijk = 1, we get a K2-score [21], and with αijk = α/(qiri) we get
a family of BDeu scores popular for giving equal scores to different Bayesian
network structures that encode the same independence assumptions. BDeu
scores depend only on a single parameter, the equivalent sample size α. Recent
studies on the role of this parameter show that network learning under BDeu
is very sensitive to this parameter [11,12].

For comparison, we can write the BD-score as a penalized maximized likeli-
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hood with penalty

∆BD
i (Di, DGi

) =
qi∑

i=i

log


 P̂ (DGi=j

i | DGi=j
Gi

)

P (DGi=j
i | DGi=j

Gi
, ~αij)


 .

This penalty is always non-negative since the maximized likelihood is always
at least as great as any convex combination of the individual likelihoods (see
Eq. (7)). The BD penalty is data-dependent and it is controlled by the hyper-
parameters αijk. The asymptotic behavior is well studied [7]. However, when

learning Bayesian networks, the data parts DGi=j
i are often very small, which

makes the asymptotic results less useful.

3.3 Factorized NML

The factorized normalized maximum likelihood (fNML) score is based on the
normalized maximum likelihood (NML) distribution [22,23]. The NML distri-
bution for the model class M (which may or may not be a Bayesian network)
is the unique distribution solving the minimax problem

min
Q

max
D′

P̂ (D′ | M)

Q(D′ | M)
, (8)

where Q ranges over all distributions.

As originally shown by Shtarkov [22], the solution of the above minimax prob-
lem is given by

PNML(D | M) =
P̂ (D | M)

∑
D′ P̂ (D′ | M)

, (9)

where the normalization is over all data sets D′ of the same size N = |D|. The
log of the normalizing factor is called parametric complexity or regret 1 . The
NML distribution is a central concept in modern minimum description length
(MDL) methods, see [7,20].

Evaluation of the normalizing sum is often hard due to exponential number of
terms in the sum. Currently, there are tractable formulas for only a handful of
models; for examples, see [7]. In the case of a single r-ary multinomial variable
and the sample size N , the normalizing sum is given by

Cr
N =

∑

k1+k2+...+kr=N

N !

k1! k2! · · · kr!

r∏

j=1

(
kj

N

)kj

, (10)

1 In general the term regret is used to describe the loss to the post-hoc optimal
model, i.e., regret(P, D,M) := log P (D | M)− log P̂ (D | M).
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where the sum goes over all non-negative integer vectors (kj)
r
j=1 that sum to

N . A linear-time algorithm for the computation of Cr
N was introduced recently

in [24].

Given a data set D, the NML model selection criterion proposes to choose the
model M for which the PNML(D | M) is largest. After taking the logarithm
the score is in a form of penalized log-likelihood,

log PNML(D | M) = log P̂ (D | M)− log
∑

D′
P̂ (D′ | M);

the complexity penalty can be interpreted as a measure of how well the model
can fit datasets D′ of size N on the average.

Because of the score equivalence of the maximum likelihood score, the NML
score is score equivalent as well. However, it can be shown not to be decom-
posable. Sacrificing the score equivalence, we propose a decomposable version
of this score, which penalizes the complexity locally similarly to the other
decomposable scores. Specifically, we propose the local score

SfNML(Di, DGi
) = log PNML(Di | DGi

) = log


 P̂ (Di | DGi

)
∑

D′i
P̂ (D′

i | DGi
)


 , (11)

where the normalizing sum goes over all the possible Di-column vectors of
length N , i.e., D′

i ∈ {1, . . . , ri}N .

Since equation (11) defines a (log-) conditional distribution for the data col-
umn Di, adding these local scores together yields a total score that defines a
distribution for the whole data. In this sense fNML can be seen as an alterna-
tive way to define the marginal likelihood (or evidence) for the data

log PfNML(D | G) =
m∑

i=1

log PNML(Di | DGi
).

At the same time, combining the local scores yields an enumerator that equals
the factorization of the maximum likelihood, thus the whole score can be seen
as a penalized maximum log-likelihood with local (data-dependent) penalties

∆fNML
i (DGi

) = log
∑

D′i

P̂ (D′
i | DGi

). (12)

The following observation follows from the factorization of the maximum like-
lihood by the parent configurations, and it is crucial for efficient calculation
of the local penalty term.

Theorem 1. The local penalty of fNML can be expressed in terms of multi-
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nomial normalizing constants

∆fNML
i (DGi

) =
qi∑

j=1

log Cri
Nij

,

where Cri
Nij

is the normalizing constant of NML for an ri-ary multinomial model
with sample size Nij.

Proof. The penalty is defined as the sum of maximized likelihoods over all
possible column vectors D′

i:

∑

D′i

P̂ (D′
i | DGi

) =
∑

D′i

qi∏

j=1

ri∏

k=1

(
N ′

ijk

Nij

)N ′
ijk

,

see Eq. (2), where the maximum likelihood parameters θ̂ijk = N ′
ijk/Nij are

substituted for θijk, and N ′
ijk denotes the number of times the parent configu-

ration j co-occurs in DGi
together with the occurrence of value k in D′

i. In the
sum, rows (terms) with parent configuration j are independent of all the other
rows with some other configuration, j′, and hence we can switch the order of
the product and summation to get 2

∑

D′i

P̂ (D′
i | DGi

) =
qi∏

j=1

∑

D′
DGi

=j

i

ri∏

k=1

(
N ′

ijk

Nij

)N ′
ijk

=
qi∏

j=1

Cri
Nij

.

Taking the logarithm on both sides concludes the proof.

Theorem 1 makes it possible to implement the calculation of the fNML model
selection criterion as efficiently as other decomposable selection criteria for
Bayesian networks [25]. However, it should be noted that the model search
problem remains difficult as the parent assignment problem (i.e., choosing the
best parent set for a variable) is known to be NP-hard with all popular scores,
including BDeu, AIC, BIC, NML and fNML [26] .

To conclude this section we show that asymptotically, and under mild regular-
ity conditions, the fNML score belongs to the (large) class of BIC-like scores
that are consistent. Other scores in this class include most Bayesian and MDL
criteria. The regularity conditions required for BIC-like behavior typically ex-
empt a measure zero set of generating parameters, such as the boundaries of
the parameter simplex. The following theorem gives sufficient conditions on
the penalty term that guarantee consistency for exponential family models.

2 Recall that the notation D′DGi
=j

i refers to the i’th column of the rows where the
parent configuration is given by j.
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The theorem requires that the number of candidate models is finite, which
is always true in the case of Bayesian networks when the number of nodes is
limited.

Theorem 2. For (curved) exponential families, if data is generated by an i.i.d.
distribution p, and the penalty term is given by 3 1

2
k log N +Op(1), where k is

the number of parameters then, asymptotically, the model containing p that
has the least number of parameters will be chosen with p-probability tending
to one as the sample size N grows.

Proof. The proof is very similar to the proof of Prop. 1.2 of [27] (see also
Remark 1.2 therein); the main difference is that while in [27], the penalty
term is defined by a fixed sequence that is the same for all models (except of
course for the factor k), in our case the penalty terms are random and may
depend on the model. The proof consists to two parts. Assume first that a
model G1 with kG1 parameters does not contain the true distribution p, and
that another model, G2, with kG2 parameters does contain p. Then we find
that there is an ε > 0 such that

log P̂ (D | G1) + N
ε

2
< log P̂ (D | G2)

with p-probability tending to one, as N → ∞ [27]. Hence any penalty term
that grows sublinearly in N (such as 1

2
k log N) is eventually dominated by

the Nε/2 difference in the log-likelihoods, and the correct model G2 is chosen.
Secondly, assume that contrary to the first part of the proof, both models G1

and G2 contain the true distribution p, but we have kG1 > kG2 . Then, following
again the proof of Prop. 1.2 in [27], we find that

∣∣∣log P̂ (D | G1)− log P̂ (D | G2)
∣∣∣ = Op(1),

i.e., the difference between the maximized log-likelihoods is bounded in the
limit in probability. Hence, the difference between the penalty terms, which
is of order 1

2
(kG1 − kG2) log n, dominates, and the simpler of the two models

is chosen eventually with p-probability tending to one. From these two cases,
it follows that among a finite set of candidates the simplest of the models
containing p is eventually chosen.

Since Bayesian networks are curved exponential families [28,29], it now re-
mains to prove that the penalty term of fNML satisfies this property.

3 The notation f(N) = Op(1) indicates that the left-hand side is bounded in the
limit in probability, i.e., that for any ε > 0, there is a constant M > 0, such that
eventually Pr[|f(N)| > M ] < ε as N →∞.
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Theorem 3 (Asymptotically fNML behaves like BIC). Assuming that the
maximum likelihood parameters are asymptotically bounded away from the
boundaries of the parameter simplex, the local penalty of fNML behaves as

∆fNML
i (DGi

) =
qi(ri − 1)

2
log N +O(1),

almost surely, where the O(1) term is bounded by a constant independent
of N .

Proof. By Thm. 1, the local penalty is a sum of logarithms of multinomial
normalizing constants, log Cri

Nij
. The logarithms of the constants follow, in

turn, by Thm. 1 in [23], under suitable conditions on the model class, the

asymptotic form k
2
log Nij

2π
+ ln

∫ √
|I(θ)| dθ + o(1), where k = ri − 1 is the

number of parameters, and I(θ) is the Fisher information matrix. The required
conditions hold for the multinomial model, and further, the value of the Fisher
information integral is known and finite; for both these results, see e.g. [30].
Hence, we get for the normalizing constants the approximation 4

log Cri
Nij

=
ri − 1

2
log Nij +O(1). (13)

Under the assumption that the maximum likelihood parameters are bounded
away from the boundaries, the strong law of large numbers implies that the
counts Nij grow linearly in the total sample size N almost surely, i.e., Nij/N =
η + o(1) a.s. for some 0 < η < 1. Taking logarithms on both sides yields

log Nij = log N +O(1) a.s. (14)

Plugging (14) into (13), and adding together the qi terms yields the result.

The total fNML penalty becomes then

∆fNML(D) =
m∑

i=1

∆fNML
i (DGi

)

=
m∑

i=1

qi(ri − 1)

2
log N +O(1) =

1

2
k log N +O(1) a.s., (15)

where qi(ri−1) is the number of parameters (associated with the ith variable).
The almost sure convergence in (15) implies the convergence in probability
required in Thm. 2, and hence, fNML is consistent.

4 Note that here the convergence happens surely, without any probabilistic quali-
fications since the normalizing constant Cri

N is not a random variable. (The counter
Nij is random, but in (13) the statement holds for an increasing sequence of Nij .)
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4 Prediction

The scoring methods described in the previous section can be used for se-
lecting the best Bayesian network structure. However, much of the appeal of
the Bayesian networks rests on the fact that with the parameter values in-
stantiated, they define a joint probability distribution that can be used for
probabilistic inference. For that reason, the structure selection is usually fol-
lowed by a parameter learning phase. Next we will first review the standard
Bayesian solution, and then in Section 4.2 introduce our new information-
theoretic parameter learning scheme.

4.1 Bayesian Parameter Selection

In general, the Bayesian answer for learning the parameters amounts to in-
ferring their posterior probability distribution. Consequently, the answer to
determining the predictive probability

P (dnew | D,G) =
∫

P (dnew | θ,G)P (θ | D,G)dθ

avoids selecting any particular parameter values. The actual calculation of
the integral can be hard, but with the assumptions behind the BDeu score,
the task becomes trivial since the predictive posterior probability of a new
vector coincides with its probability calculated using the a posteriori expected
parameter values

θ̃BD
ijk =

Nijk + αijk∑ri
k′=1[Nijk′ + αijk′ ]

.

This choice of parameters can be further backed up by a prequential model
selection principle: since the BDeu score is just a marginal likelihood P (D |
G,α), it can be expressed as a product of predictive distributions

P (D | G,α) =
N∏

n=1

P (dn | Dn−1, α) =
N∏

n=1

P (dn | θ̃(Dn−1, α)),

where Dn−1 = (d1, . . . , dn−1) denotes the first n− 1 rows of D. Since we have
selected the structure that has the strongest predictive record when using the
expected parameter values, it is very natural to continue using the expected
parameter values after the selection.
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4.2 Sequential NML Parameter Selection

Having proposed a non-Bayesian method for structure learning, it would be
intellectually dissatisfactory to fall back to the Bayesian solution in the pa-
rameter learning task — in particular, as the Bayesian solution again depends
on the hyperparameters. Hence, in accordance with the information-theoretic
approach we introduce a solution to the parameter learning task based on a
minimax criterion.

The so called sequential NML model [31,19] is similar in spirit to the factorized
NML model in the sense that the idea is to obtain a joint likelihood as a prod-
uct of locally minimax (regret) optimal models. In sNML, the normalization
is done separately for each observation (vector) in a sequence:

PsNML(D | M) =
N∏

n=1

P̂ (dn, D
n−1 | M)

∑
d′ P̂ (d′, Dn−1 | M)

, (16)

where M is the model class with which the maximized likelihoods are defined.
For Bayesian networks family, for instance, the M would be a network struc-
ture G. In the following, we will mainly discuss the multinomial case, where
each dn is a single categorical datum — in Sec. 4.3, the Bayesian network case
will be reduced to a collection of multiple multinomials.

One advantage of a row-by-row normalization is that it immediately leads to a
natural prediction method: having seen a data-matrix of size (N − 1)×m, we
can use the locally minimax optimal model for the N ’th observation vector,
obtained as the N ’th factor in the product (16), as a predictive distribution.

That sNML gives a good predictive method can be demonstrated by showing
that predicting with it never yields much worse a result than predicting the
data while taking advantage of knowledge of the post-hoc optimal parameter
value(s).

For a simple Bernoulli model implies a neat bound on the regret of sNML.

Theorem 4 ([32]). For the Bernoulli model 5 , a result by Takimoto and War-
muth [32] , the regret RsNML(D, N, 2) of any binary sequence D of length N
is upper-bounded by

RsNML(D,N, 2) := log P̂ (D)− log PsNML(D) ≤ 1

2
log(N + 1) +

1

2
.

5 The number 2 in RsNML(D, N, 2) denotes that there are two categories in the
data.
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This is better than, for instance, what can be obtained by either the Laplace
predictor, i.e., mixture with uniform prior, or the Krichevsky-Trofimov pre-
diction, i.e., mixture with Dirichlet(1/2, . . . , 1/2) prior, see [32].

For a categorical datum with K different values, the following bound can be
obtained.

Theorem 5. For any categorical (discrete) data D of length N , the regret of
the sNML model is upper-bounded by

RsNML(D, N,K) ≤ 1

K

K−1∑

k=1

N log
N + k

N
+ k log

N + k

k
.

We give an elementary proof of this statement in Appendix C. A relaxed
version of the bound is as follows:

RsNML(D, N, K) ≤ (K − 1)
[
K − 1

K
log

(
N

K − 1
+ 1

)
+

1

2

]
;

for K = 2, this agrees with the binary case above.

In theory, using sNML for determining a predictive distribution P (d | D, G)
would be straightforward. Furthermore, since the fNML was introduced as a
computationally feasible version of the NML, we would still want to use a pre-
diction scheme based on NML, thus the sNML would be a natural choice. In
practice, however, using sNML for Bayesian networks faces two major prob-
lems. Firstly, it is not computationally feasible to calculate the normalizing
term (at least in the näıve way), since the number of possible values of a
single data vector may be prohibitively large. Secondly, we set ourselves to
learn the parameters for the selected Bayesian network, and it turns out that
the predictive distribution PsNML(d | D, G) cannot necessarily be obtained
with any parametrization of the structure G (see Appendix A for a counter-
example). In the Bayesian case, the predictive probability can be obtained
with the expected parameter values, but for NML we have no such luck.

4.3 Factorized Sequential NML

PsNML(d | D, G) did not directly offer us a method for determining the model
parameters. On the other hand, Bayesian expected parameters can be inter-
preted as predictive probabilities for a one-dimensional categorical datum:

θBD
ijk = P (dnew,i = k | DGi=j

i , G, αij),

where dnew,i denotes the value of the ith variable in the predicted vector.
In analogy to this, we propose to use the corresponding sNML predictive
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Fig. 1. A schematic illustration of alternative ways to obtain minimax optimal mod-
els by normalizing the maximized likelihood P̂ (D | G). left to right: In NML, the
normalization is done over the whole data matrix in one go. In factorized NML
(fNML), each column is normalized separately. In sequential NML (sNML), each
row is normalized separately. In factorized-sequential NML (fsNML), the normal-
ization is done entry-by-entry, in either the row or column order (the result is the
same either way).

probability distribution to set the parameters, i.e,

θfsNML
ijk = PsNML(dnew,i = k | DGi=j

i , G).

We call this approach factorized sequential NML (see Figure 1). For categorical
data this yields a spiced-up version of the Laplace’s rule of succession

θijk =
e(Nijk)(Nijk + 1)∑ri

k′=1 e(Nijk′)(Nijk′ + 1)
,

where e(0) = 1, and otherwise e(n) = (n+1
n

)n → e as n grows.

This selection of parameters defines a joint probability distribution in a similar
spirit as PfNML:

PfsNML(D | G) =
m∏

i=1

qi∏

j=1

PsNML(DGi=j
i ),

where the probability PsNML(DGi=j
i ) is given by (16) for univariate categorical

data with ri different values. In contrast with NML, where normalization is
done over the whole data matrix in a single, huge summation, or sNML, where
normalization is done over data vectors of length m, the normalization in
fsNML is very simple since it can be carried out a single entry at a time.

Theorem 6. Given a Bayesian network structure G, the regret of the fsNML

15



distribution for any N ×m data matrix D is upper-bounded by

RfsNML(D, N, G) := log P̂ (D | G)− log PfsNML(D | G)

≤
m∑

i=1

qiR̄sNML (N/qi, ri) ,

where qi and ri denote the number of parent configurations and the arity of
variable Xi, respectively, and R̄sNML(N

qi
, ri) is the worse case univariate regret

[R̄sNML(N ′, K) = maxD′ RsNML(D′, N ′, K)] bounded by Thm. 5.

Proof. Since both P̂ (D | G) and PfsNML(D | G) factorize similarly, we have

RfsNML(D, N,G) = log P̂ (D | G)− log PfsNML(D | G)

=
m∑

i=1

qi∑

j=1

[
log P̂ (DGi=j

i )− log PsNML(DGi=j
i )

]

=
m∑

i=1

qi∑

j=1

RsNML(DGi=j
i , Nij, ri)

≤
m∑

i=1

qi∑

j=1

R̄sNML(Nij, ri).

The proof of Thm. 5 in Appendix C actually shows that the bound for
R̄sNML(Nij, ri) is tight. The R̄sNML is convex, and since we have

∑
j Nij = N ,

the maximum of the innermost sum above occurs when all the Nij are equal
to N/qi, thus we have

RfsNML(D, N,G) ≤
m∑

i=1

qi∑

j=1

R̄sNML(Nij, ri)

≤
m∑

i=1

qiR̄sNML(
N

qi

, ri).

5 Experiments

It is not obvious how to compare different criteria for learning Bayesian net-
work structures. If the data is generated from a Bayesian network, one might
say that the task is to recover the data generating network, but if the generat-
ing network is complex, and the sample size is small, it may be more rational
to pick a simpler model than the ”correct” one. This simplicity requirement is
often backed up by arguments about the prediction, or generalization, capa-
bility of the model. However, it is not always clear how the network structure
should be used for prediction.
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We divide our experiments in two parts. First, we estimate how well different
criteria manage to identify the network structure, when a fixed structure is
used to generate artificial data. In the second part, we evaluate the predictive
accuracy of the learned networks by complementing the structural learning
methods with the corresponding method for learning the parameters. In this
case, we use real data from the UCI repository [33].

5.1 Model Selection

We first generated data from different networks with five nodes, and then
studied how the generating network structures were ranked among all the
possible networks by different scoring criteria.

We generated 100 different 5-node Bayesian network structures with 4 edges
and another 100 structures with 7 edges. The variables were randomly as-
signed to have between two to four values (ri ∈ {2, 3, 4}). For each network,
we generated parameters by two different schemes. The first scheme exactly
matched the assumptions of the BDeu score with α = 1.0, i.e., the parame-
ters were distributed according to θij ∼ Dir( 1

riqj
, . . . , 1

riqj
). The other scheme

was to generate the parameters independently from a Dirichlet distribution
θij ∼ Dir(1/2, . . . , 1/2). This distribution was selected for two reasons: first,
compared to the uniform distribution, the Dir(1/2, . . . , 1/2) prior puts more
mass near the boundaries of the parameter space and therefore, makes the
generating structure more identifiable, and secondly, it has a special role in
information theory as the “least favorable” prior of the multinomial model,
see e.g. [34]. From the minimax regret point of view, it is reasonable to as-
sume that the mixture with Dir(1/2, . . . , 1/2) prior is similar to the NML (and
especially fNML) distribution, see [35].

For each network (structure + parameters), we generated 100 data sets of 1000
data vectors, and studied how different scoring criteria ranked the structure
of the generating network among all the 5-node networks as a function of
(sub)sample size.

Not surprisingly, the results indicate that when parameter generation mecha-
nism matches the assumptions of the BDeu(1.0) score, BDeu(1.0) usually also
ranks the generating structure higher than the other scores (Figure 2(a)). How-
ever, fNML behaves very similarly. The density of the network (4 vs. 7 edges)
is not a very significant factor. If anything, the similar behavior of fNML and
BDeu(1.0) is more pronounced in networks with 7 edges (not shown in the
figure). For the parameter-free scores AIC and BIC, the underfitting tendency
of BIC can be clearly detected whereas AIC tends to rank the generating net-
work higher. Qualitatively these two scores seem to behave similarly to each
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(a) BDeu(1.0) scheme
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(b) Dir(1/2, . . . , 1/2) scheme

Fig. 2. The rank of the true structure (lower is better) for different scoring criteria
as a function of sample size when the parameters for a 5-node, 7-edge network
were generated by the BDeu(1.0) and Dir(1/2, . . . , 1/2) schemes. The lines show
the median over 100 repetitions, error bars indicate upper and lower quartiles.

other.

Switching the parameter generation scheme to independent Dirichlets with
αijk = 1

2
usually also switches the ranking ability of fNML and BDeu, while

the behavior of AIC and BIC stays mostly unaffected. For example, the results
of Figure 2(b) were obtained using the same network structures as Figure
2(a). Only the parameter generation scheme was changed from BDeu(1.0) to
Dir(1/2, . . . , 1/2). For dense networks fNML often appears as a clear winner.

5.2 Prediction

In order to evaluate the predictive accuracy of the methods, we selected 20 UCI
data sets with less than 20 variables, so that we can use exact structure learn-
ing algorithms [18] that eliminate the uncertainty due to the heuristic search
for the best structure. We then compared our method, the fNML-based struc-
ture learning and fsNML parametrization, with the state-of-the-art Bayesian
method, the BDeu score and expectation parameters 6 . The equivalent sam-
ple size hyperparameter α for the Bayesian learning was set to 1.0. We also
included a Bayesian score BD1/2, where both the structure learning and the
parameter learning were conducted by setting all hyperparameters αijk = 1/2.

The comparison was done by creating 100 random train and test splits (50%–
50%) of each data set, and then using each training data set for learning three
Bayesian networks, one with each method. The Bayesian networks were then
used to determine the predictive probability P (dnew | G, Θ) for each vector in

6 We have omitted AIC and BIC from these experiments, since it is not clear how
the network structures selected by them should be used for prediction
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the test data.
Table 1
Summary of the prediction experiment.

Data N m r̄i fNML BDeu1.0 BD1/2

abalone 4177 9 3.0 2.350± 0.019 2.346± 0.020 2.370± 0.020

adult 32561 15 7.9 2.620± 0.015 2.588± 0.014 2.647± 0.014

balance 625 5 4.6 4.347± 0.018 4.437± 0.039 4.385± 0.039

bc 286 10 4.3 3.991± 0.076 4.429± 0.103 4.016± 0.103

bc wisc 699 11 2.9 3.493± 0.022 3.542± 0.025 3.503± 0.025

diabetes 768 9 2.9 8.987± 0.006 9.207± 0.318 8.962± 0.318

ecoli 336 8 3.4 2.219± 0.001 2.220± 0.001 2.222± 0.001

glass 214 11 3.3 9.636± 0.095 10.586± 0.090 9.697± 0.090

heart cl 303 14 3.1 4.697± 0.044 4.827± 0.148 4.822± 0.148

heart hu 294 14 2.6 8.687± 0.099 9.105± 0.034 8.678± 0.034

heart st 270 14 2.9 9.241± 0.085 9.877± 0.079 9.273± 0.079

iris 150 5 3.0 3.718± 0.002 3.746± 0.002 3.722± 0.002

liver 345 7 2.9 4.539± 0.015 4.607± 0.016 4.540± 0.016

page blks 5473 11 3.2 8.407± 0.111 8.917± 0.218 8.577± 0.218

post op 90 9 2.9 1.679± 0.000 1.677± 0.000 1.680± 0.000

shuttle 58000 10 3.0 5.095± 0.005 5.122± 0.006 5.107± 0.006

thyroid 215 6 3.0 6.940± 0.003 7.035± 0.017 6.941± 0.017

tic tac 958 10 2.9 7.197± 0.048 7.472± 0.045 7.209± 0.045

wine 178 14 3.0 5.314± 0.081 6.277± 0.318 5.413± 0.318

yeast 1484 9 3.7 9.906± 0.001 9.990± 0.001 9.912± 0.001

The results of the predictive experiment are presented in Table 1. For each
data set, the table lists the number of data vectors N , the number of variables
m, the average number of values per variable (r̄i), and for each method the
average and the 1.96× standard deviation of hundred numbers (one for each
train-and-test split of the data), each of which is the average of the negative
logarithms of the predictive probabilities P (dnew | D) obtained by the method.

For example, the marking 9.636±0.095 for the data set glass and the method
fNML was obtained as the average and 1.96× standard deviation of hundred
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Fig. 3. Visualization of the prediction experiment. Each graph show the predictive
accuracies obtained with two methods, indicated by the horizontal and vertical
labels, in terms of average log-likelihood per data vector (greater values are better).
Error-bars show±1.96× standard deviation over 100 random train-test splits. Points
above the diagonal line represent cases where the method shown on the vertical axis
performs better.

numbers (s1, s2, . . . , s100), where each si was calculated by using the ith random
partition of the glass data (glass train

i , glass test
i )

si =
1

|glass test
i |

∑

d∈glasstest
i

− log PfNML(d | glass train
i ).

The predictive distribution PfNML was obtained by selecting the optimal struc-
ture using the fNML selection criterion, and then parametrizing the selected
structure by using the fsNML parameters.

In 15 data sets (out of 20) the NML-based method predicted better than the
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other methods, and never did it predict much worse. In almost all cases, the
difference between fNML+fsNML and the BD1/2 method is very small. The
results are shown graphically in Fig. 3. It also worth noticing that the good
performance of the fNML+fsNML did not come at an expense of increased
variance: 11 times (out of 20) our NML based method had a smaller variance
across the train-and-test splits than other methods, and only 5 times the
variance was larger, the other 4 times ending in a tie.

6 Discussion — On Likelihood Equivalence and (Again) Priors

Based on our results, it seems that minimax criteria lead to methods that are
competitive both in terms of structure learning and prediction, and, moreover,
robust with respect to changes in the parameter distribution. While this may
have been expected, the results also raise several questions.

For instance, it is curious that while our starting point, the regular NML
model, is likelihood equivalent — graphs encoding the same conditional in-
dependence assertions get the same score — the practical fNML and fsNML
criteria are not likelihood equivalent, and neither are the Bayesian Dirichlet
scores where the hyper-parameters are constant, such as the BD1/2 criterion.
These non-likelihood equivalent methods seem to outperform the BDeu crite-
rion. In fact, this appears to be the case even when the equivalent sample size
parameter is optimized with hind-sight [25]. Does this suggest that likelihood
equivalence is not necessarily a desirable property? In the current literature,
it is almost universally accepted even if some authors have drawn conclusions
similar to ours [9,36]. Or is it just the BDeu score (which was thought to be
the state-of-the-art) that is inferior? More extensive experiments with other
scores, including the NML score in cases where it is computationally feasible,
will hopefully help to resolve the question.

Perhaps already pointing towards an answer, our initial experiments (not re-
ported here) show that even if we drop the requirement of likelihood equiva-
lence, and set all the the Dirichlet parameters αijk to some constants, model
selection is still very sensitive to which constants we choose. In this light it
seems likely that the problem may be less due to likelihood equivalence than
to the already blamed parameter sensitivity. While in theory, it can be argued
that priors don’t matter too much, except for very small sample sizes, Bayesian
networks learned from multidimensional data can easily have parameters with
very little, if any, support in the data. In practice, we have almost always very
little data, and therefore, priors matter.

It is sometimes asked whether the NML corresponds to some special prior for
the parameters. Strictly speaking the answer is no: the fact that NML does
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not define a stochastic process is a proof of this, see e.g. [31]. However, there
are priors that are asymptotically “almost” minimax, and hence, necessarily
very similar to NML which is exactly minimax, see [35,7]. In particular, the
Dir(1/2, . . . , 1/2) prior is an important example in the multinomial case. In
fact, our results confirm that the BD1/2 method, which is based on this prior,
has similar robustness properties as our fNML/fsNML methods. So it is not
our claim that Bayesian methods are somehow at fault, but that it is essential
to have a principled way to protect oneself against unreasonable priors.

As for future work, it can be said that the proposed methods of fNML and
fsNML have been derived more by the logic of practicality rather than logic
of necessity. A natural, alternative approach for finding the parameters given
a Bayesian network structure is based on the idea of normalizing the joint
fNML likelihood PfNML(dnew, D | G) to get a predictive distribution. However,
it turns out that the resulting distribution may lie outside the set of distribu-
tions representable with G, thus no such parametrization is in general possible
(Appendix B). There is, however, another candidate that we are planning to
study: the minimax optimal predictive distribution conforming to G:

PG
sNML(dnew | D) = argmin

q(·)∈G
max

D

P̂ (dnew, D)
∑

d′ P̂ (d′, D)
,

where the minimization is over all distributions satisfying the conditional in-
dependence assumptions encoded by G. By definition, this distribution can be
obtained by parametrizing G. However, it turns out that the minimax condi-
tion alone does not yield a unique distribution, but further requirements are
needed. Even when PG

sNML is unique, it may be different from the PfsNML which
can be easily proved by finding a counter-example: for instance, a graph with
two binary connected binary variables, X0 and X1, and D = (d1) = ((0, 0))
will prove the point. Currently, there are efficient methods for solving the
parameters that yield PG

sNML(d) for only certain restricted network structures.

7 Conclusions

We have introduced a new probabilistic scoring criterion, the factorized nor-
malized maximum likelihood, for learning Bayesian network structures from
data when no background information is available. The score is decomposable,
which makes it easy to incorporate it to existing search heuristics and exact
structure learning algorithms. We also introduced an associated method for
determining the Bayesian network parameters. The theoretical analysis of the
methods shows that they lead to consistent model selection and predictions
that are never much worse than those obtained by optimizing the parameters
with hindsight. Together the methods provides a computationally efficient,
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completely objective and parameter-free approach for learning Bayesian net-
works, which applicable to both small and large data-sets.

Initial empirical tests are promising. We are particularly pleased with the good
predictive capabilities of the models learned with our approach: in many cases
the predictive accuracy was much better than with the standard BDeu score,
and never was it much worse. We argue that the comparative advantage of
the new methods over BDeu is due to the strong sensitivity of the latter with
respect to the parameter prior, a problem which our non-Bayesian methods
avoid. While there are also several open questions for future research, the
current results show that the proposed approach offers a theoretically well-
founded, robust method for learning Bayesian networks.
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Appendix A

The following example shows that the joint probability distribution

PsNML(d|D, G) =
P (d,D|G, θ̂(D, d))

∑
d′ P (d′, D|G, θ̂(D, d))
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cannot necessarily be presented with any parametrization of the network G.

Let G be a simple v-structure G = ({}, {X1, X3}, {}), and let the data D con-
sist of just a single 3-dimensional binary-vector [(0, 0, 0)]. A direct calculation
of PsNML(d | D,G) yields a probability distribution

P (d|D) 8
19

2
19

2
19

2
19

2
19

1
38

2
19
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38

d 000 001 010 011 100 101 110 111

.

In this joint probability distribution P (X1, X3) 6= P (X1)P (X3):

P (x1, x3|D) 10
19

4
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1
19

x1x3 00 01 10 11
,

P (x1|D)P (x3|D) 196
361

70
361

70
361

25
361

x1x3 00 01 10 11
.

However, all the parametrizations of the structure G yield distributions where
X1 and X3 are marginally independent, i.e., P (X1, X3) = P (X1)P (X3).

Appendix B

The following example shows that the joint probability distribution achieved
by normalizing PfNML,

PsfNML(d | D,G) =
PfNML(d,D | G)∑
d′ PfNML(d′, D | G)

,

cannot necessarily be presented with any parametrization of the network G.

Let G be a simple v-structure G = ({}, {X1, X3}, {}), and let the data D con-
sist of two 3-dimensional binary-vectors [(0, 0, 0), (0, 0, 0)]. A direct calculation
of PsfNML yields a probability distribution in which P (X1, X3) 6= P (X1)P (X3)

P (d | D) 32805
49729

2808
49729

4860
49729

2808
49729

2808
49729

416
49729

2808
49729

416
49729

d 000 001 010 011 100 101 110 111

.
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Appendix C: Proof of Theorem 5

We derive a regret bound for the categorical data of size N with K categories.
We start by reviewing the probability distribution of interest

PsNML(D) =
N∏

n=1

P̂ (dn, D
n−1)

∑
d′ P̂ (d′, Dn−1)

,

where we have denoted with Dn−1 the first n−1 data items of the sequence D,
and with P̂ (X) the maximum likelihood of the data X, P̂ (X) = P (X|θ̂(X)).
We denote with kn−1 the number of times the value k appears in Dn−1.

To anticipate the comparison of the PsNML with the P̂ , we write the P̂ in the
form

P̂ (D) =
N∏

n=1

P̂ (dn, D
n−1)

P̂ (Dn−1)
.

Now we compare the ratio

Q(D) =
P̂ (D)

PsNML(D)

=
N∏

n=1

P̂ (dn, D
n−1)

∑
d′ P̂ (d′, Dn−1)

P̂ (Dn−1)P̂ (dn,Dn−1)

=
N∏

n=1

∑
d′ P̂ (d′, Dn−1)

P̂ (Dn−1)

=
N∏

n=1

∑
d′

∏K
k=1(

kn−1+[d′=k]
n

)(kn−1+[d′=k])

∏K
k=1(

kn−1

n−1
)kn−1

=
N∏

n=1

1
nn

∑
d′

∏K
k=1(kn−1 + [d′ = k])(kn−1+[d′=k])

1
(n−1)n−1

∏K
k=1 k

kn−1

n−1

=
N∏

n=1

(n− 1)n−1

nn

K∑

k=1

(kn−1 + 1)kn−1+1

kn−1
kn−1

=
N∏

n=1

(n− 1)n−1

nn

K∑

k=1

(kn−1 + 1)e(kn−1),

where we have used the function e(x) = (x+1
x

)x that approaches the real
number e from below (e(0) = 1) when x grows. The sum within the product
obtains it largest when all the kn−1 are equal. Therefore we can bound the
ratio by
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Q(D)≤
N∏

n=1

(n− 1)n−1

nn

K∑

k=1

(
n− 1

K
+ 1)e(

n− 1

K
)

=
N∏

n=1

(n− 1)n−1

nn
(n + K − 1)e(

n− 1

K
)

=
N∏

n=1

(n− 1)n−1

nn
(n + K − 1)(

n + K − 1

n− 1
)

n−1
K

=
N∏

n=1

(n− 1)(K−1
K

)(n−1)(n + K − 1)
n+K−1

K

nn

=
N∏

n=1

(n− 1)(K−1
K

)(n−1)

n
K−1

K
n

(n + K − 1)
n+K−1

K

n
n
K

=
1

NN K−1
K

∏K−1
k=1 (N + k)

N+k
K

∏K−1
k=1 k

k
K

=
K−1∏

k=1

(
N + k

N
)

N
K (

N + k

k
)

k
K .

By taking the logarithm we get a bound for the regret

R(N,K) = max
D

ln(Q(D))

≤ 1

K

K−1∑

k=1

[
ln(

N + k

N
)N + ln(

N + k

k
)k

]
.

This concludes the proof.

By noticing that (N+k
N

)N ≤ ek and that (N+k
k

)k ≤ (N+K−1
K−1

)K−1 we get the
relaxed version

R(N,K) ≤ (K − 1)
[
K − 1

K
ln

(
N

K − 1
+ 1

)
+

1

2

]
.
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