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I. INTRODUCTION with the solution due to Shtarkov, [9],
The NML (Normalized Maximum Likelihood) universal . f(In.é(xn))
model has certain minmax optimal properties but it has two fvmp (™ M) = 67 (1)
shortcomings: the normalizing coefficient can be evaluated "
a closed form only for special model classes, and it does C, = /f(y”;@(y"))dy".

not define a random process so that it cannot be used for

prediction. We present a universednditional NML model, This has been generalized to general parametric modekslass
which has minmax optimal properties similar to those of thié [7] to provide a universaNormalized Maximum Likelihood,
regular NML model [9], [8], [1]. However, unlike NML, the NML, model with excellent properties. However, the normali
conditional NML model defines a random process which cdfg coefficient can be evaluated easily only for restrictemtied

be used for prediction. It also admits a recursive evaluati¢lasses, and the model does not define a random process. This
for data compression. The conditional normalizing coedfici means that it cannot be used for prediction and its evaloatio

is much easier to evaluate, for instance, for tree machhmes t for data compression is difficult.

the integral of the square root of the Fisher informationhiat ~ Given a sequence of integets = m +1 < t; < ..., <

NML model. For Bernoulli distributions, the conditional NM ts = n consider

model gives a predictive probability, which behaves like th L(x"-é i) =

Krichevsky-Trofimov predictive probability [3], [9], acally Pty Uhs

slightly better for extremely skewed strings. For some nhode A sttt .

classes, it agrees with the predictive probability foundiea log1/f(a™;0m) + Z > logl/f(rala’; )

by Takimoto and Warmuth, [10], as the solution to a different J=0 =y

more restrictive minmax problem. as the ideal target for the code length obtainable with the

We also calculate the CNML models for the generalizegiodel class. This in general provides a shorter target fer th
Gaussian regression models, and in particular for the casgginable code length than the previous one, and in faetsgiv
where the loss function is quadratic, and show that tkelarger likelihood than the traditional ‘maximum likelibd'.
CNML model achieves asymptotic optimality in terms of th@he maximizing family of ML estimate$d, } is obtained for
mean ideal code length. Moreover, the quadratic loss, whigh= m+1,¢t; = m+2,...,n, or that the maximum likelihood
represents fitting errors as noise rather than predictioorgr is actually given by
can be shown to be smaller than what can be achieved with

the NML as well as with the so-called plug-in or the predietiv fla™) = f(@™;0,) H Fazt™;6,). )
MDL model. Pt
Il. TWO MINMAX PROBLEMS This suggests the following minmax problem. For @t m
Consider the model class\t;, = {f(z";0)}, 0 = 1 f(pt 1
01,...,0,, and data sequences’ = zi,...,n, for n = min  max log (@, 2;0(z", ) 3)
1,2,.... Let m be the smallest numberfor which the ML q(elet=1) @ q(z|zt~1)

estimated, = 6(z') can be computed. Actually, by lettingThe solution is given by theonditional NML models

k vary the numbermn could be reduced, but for the sake of A

simplicity we keep it fixed. The number Flzelzt™Y) = ACRTIC (4)
log 1/ f(z"; 6)

has been considered as the ideal target for the code length

obtainable with the model class, [1], which, however, is n

attainable, becausg(«"; 6,,) is not a probability distribution.
This leads to the minmax problem

K
K, = /f(xtfl,x;é(xtfl,x))da:.

%his is proved the same way as the solution to Shtarkov’s
problem: First, replacing the numerator by the density fiomc
. (4) does not change the solution, and the maximized ratio
) f(z™;0,) of the two density functions (4) ang(z|z‘~!), which is not
min max log ———=, L g .
g an q(zm) smaller than unity, is made unity when the latter is selected



equal to the former. We mention that there is another maxmimodels, the regret of the CNML model (4) satisfies for all
problem in terms of the mean code length with the sansequences the inequality
solution, [8], namely

f(X|:ct*1;é(a:t’1,X)) R(f, 2") :=In 1/f(:v")—1n 1/f(:v",é(x")) < %ln(n—i—l)—i—%,

max min F, log — ,
9 a qg(X|zt—1) . .
and that the worst case sequence is when the string of length
where the expectation is taken with respecyte g(x|z'~!) 2n has n-1 ones, or, in effect, the random string.
ranging over all distributions. The maxmin value equals the For data compression the performance in the worst case
minmax value. Finally, these minmax—-maxmin problems als@quence is less important than the per symbol code length as
hold unconditionally. a function of the symbols’ occurrence counts. The common
It is clear that the normalizing coefficient;, which in  performance index is the regret, which, however, takenelon
general is a function of'~!, is easier to calculate, at leasigives a misleading picture of the performance of a code
numerically, than the normalizing coefficient in the NMLbecause its relevance depends on the per symbol code length.

universal model. The CNML probabilities are not determined by the symbols’
occurrence counts only, and the analysis appears to beudiffic
I1l. M ARKOV MODELS Instead we calculate in Figure 1 its worst case regret asasell
We begin with the Bernoulli clas§ = {P(z; p)}, where the the per symbol code length for strings of length 30, and also
parametep = P(1). The ML estimate is given by(z") = Show for the sake of comparison the well known analytically
ny/n, wheren; = 3, z, is the number of 1's in". If ng = computed results of three other models, the Laplace and
n — n, the maximized likelihood is Krichevsky-Trofimov predictors as well as the NML universal
AL s o model (1). We see clearly, that all the models give aboutlequa
P(z";ny/n) = (?1) (?0) . per symbol code length, except for strings where the ratio of

the count of symbol one to the length of the strings is close to
The conditional NML predictive probability can be writtes a zero or one. These are precisely the strings where significan
compression can be obtained, and we see that the CNML
(11 + 1) e(na) . .
, (5) code gives the best compression for them — even better than
(no +1) e(no) + (n1 +1) e(ma) the Krichevsky-Trofimov predictor. We also see that altHoug
wheree(ng) = (1+1/ng)™ ande(n;) = (1+1/n;)™; take the Laplace predictor has by far the smallest regret forrothe
e(k) =1 for k = 0. strings, its significance is minor.

The same conditional probability functiof(1]z") was  Shtarkov also gave the conditional CNML probabilities for
found in [9], where it was shown to converge to théarkov classes of models. For the sake of completeness and
Krichevsky-Trofimov predictive probability the reason that they solve the minmax problem (3) we rederive
them for binary Markov models and tree machines. Since the

P(1|z") =

Pgr(1]z™) = M Markov class does not belong to the exponential family the
n+1 techniques given in [10] to solve the narrower problem (8) wi
It was also found later in [10], in effect, as the solutionlte t not work. However, the solution to the wider problem happens
following minmax problem to remain in the Markov class, and the same solution solves
o1 A 1 also the narrower minmax problem.
min max log fla*™ ;002" z)) . (6) Consider a Markov model, either of a fixed or variable order,
6 =z f(z]zt=1;0) defined by a tree machine with state space {s}. The states

This type of minmax problem is much harder to solve tha@d'€ Séquences of binary strings and the st.ate transitians ar

the minmax problem (3), and the authors’ derivation is quié€fined as followss — (s, z;), where (s, ;) is the longest

complicated. Furthermore, the solution requires boundssin SUffix of the concatenate of the stringand the symbotr,

restrictions on the data™, even for the exponential family that falls in.S. For instance ifS' = 0,01, 11, then(01,0) = 0,

of models studied in the cited reference, unless the data & (01,1) = 11, and so on. The model is defined by the

bounded as in the Bernoulli case. Since in the Bernoulli caS&es, the state transitions, and the binary probassilitie-

the solution to the wider problem (3) lies in the same Berfioufl£’(0]s), s € S} at the states. Hence, given an initial staje

family it clearly has to coincide with the solution to (6). ~ @nd its probabilityP(so), which we set to unity for it cancels
Neither Krichevsky-Trofimov predictive probability noreh N the following formulas, the probability of the string® is

related Laplace probability, given by

ny+1 P(z™;0) = [[ Plails(z'™)),
TL+ 2 ) t

Pr(1|z™) =

has been shown to have any particular optimality propertyhere the state(z!) is the longest suffix of the string! =
Takimoto and Warmuth [10] showed that for the Bernoulliy,. .., z, that falls inS.
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Fig. 1. The per-symbol code-length and regret for four ursige models in the Bernoulli case.
The maximized likelihood is given by The maximized likelihood is given by its negative logarithm
n najs\ for t >m as
P :v";é ")) = = = , 7 o t o 2T (1
o =115 (5 O /%3 = Linge/i) + 0w 2 g
« «
where n;;, = n,,(z") denotes the number of times thewhere \, = A(7,...,7n) depends on all the past ML
sequencesi occurs inz™ and ny = . n,,. Also, n = estimates. Regarg, = F(z,7;) as a function ofy,, given
> s ns. Puttings = s(z™) we then obtain with straightforward the other variables. Witl; = ; — 4; put
calculations the conditional m
P(1la™) (n0js + De(no):) Smoo= Dl = (@ im)| (12)
x = . =
(n0|s + l)e(nO\s) + (nl\s + 1)6(n1|s) ’ 1t
We see that this generalizes the Bernoulli case in a natural 5 = Z [€:]% = 811 + |é]*. (13)
way. The generalization to non-binary alphabets is sttéigh i=m+1
ward as shown in [9]. By (3) define the conditional density functions for- m
IV. GENERALIZED GAUSSIAN FAMILY 2 _ 1 lye — 9>\
| _ _ Faly™) = g (1 =2E (14
We consider the family of regression models t 811
—t/a
[e3 1
Fy" 1 Xns X) = Zy e i il 8 K = / ( E - z)tf) dy,
t—1
n — _ ~
where y" = y1,...,y, are real valugd dataX, =\ herem + 1 is the smallest value of for which O(yt, Xy) is
[Z1,...,%,] is the k x n regressor matrix of columnsg;,

defined. Notice thaf; for t > m depends ony; through the
estimaten; = 7(y*|X;), which makes; a fitting error called
?or in the minmax problem (3) rather than a prediction error.
Given an initial density functiory(y™) we get the density

9: = F(Z4,n) aregression function with &component vector
parametem, and A and o positive parameters, the latter kep
constant. The normalizing coefficient is given by théh

power of

2 function
Zy==2"YT(1/a), (9)
- “ Fy"1Xn) H Fly'ay™). (15)
and it is seen not to depend an =1
The maximum likelihood value ok is given by We are mainly interested in the Gaussian case 2 and the
j— n (10) absolute value casey; = 1, where the normalizing integrals

ad iyl — Gel® can be evaluated in a closed form.
which depends on all the past and the present valueg.of A. Gaussian family

Let 7, = 7(y', X;) denote the ML estimate of the parameter \We consider the linear-quadratic regression problem, eher

7; i.e. one that minimizes the sum the datay™, X,, are modeled as follows
k
Z ly: — F(zi,m)|* v =VT e =Y b te, (16)

i=1



{e:} being an iid sequence from a normal distribution of zerthe integral becomes
mean and variance?. The regressor matriX(; consists either

of fixed numbers, not given by™, or as in AR models it is K, = Vi1 / (1+2 t/QdZ
given by the columns of; = col{y:—1,...,y:—x}. Consider 1—d;
the representation of the data 1
= YRt (M) . @)
- Ut
— = 5, — 1B
Yo = bilbe + € = Z beitri + €, (17) " the second equality by the fact thats seen to have Student’s
) ) z-distribution.
where the ML estimates, written now as row vectéfs=  The conditional density function is then given by
bi1,...,bi are given by /2
5 _ 1 (1—dy) Ut
e [ 2 |
by = 0(y'|X:) = V;:Z%yg (18) Fory™) K [ St-1 YT 1o,
(26)
Vi = (X, X)) With a density functiorg(y™|X,,) for the initial data, which

] we do not pick here, we get
the prime ’ indicating the transpose. For the sake of compar-

ison consider also the representations

FW"1Xn) = ay™ Xm) H Flly™ /K (27)
ye = bi1Ti+e (19) t=m-+1
yr = bLT + én). (20) We give without proof the asymptotic mean ideal code

L . . , . length for the case where the data are generated by (16), and
The predictorzib;—; of y; is sometimes called the "plug-in’ o regressor variables are nonrandom satisfying
predictor, because the parametief the process are replaced

by the ML estimates from the latest past data, not incluging 1 Z S %
The resulting model (19) is widely studied, [2], [6], [4],1]L i

and it defines the linear quadratic PMDL (Predictive MDL)

model or the Least Squares modebifis kept fixed. the limit being a positive definite matrix. For all positive

Write in (8) A = 1/(202), which gives the maximized and all large enough

(28)

likelihood (2 t/2 where 1 k+6
(2med)” —Eln 1/f(y"X,) < =Ino? + mro Inn. (29)
t n 2 2n
= (1/1) Z(yi — Ziby)?. (21) Further, under the assumption (28) even for a random regress
i=1 matrix
The conditional density function far> m is by (14) n n
. (4 — )2 2 Yood = Y dl-d)y (30)
Fab' ™ = (14 2220 Lo
t t—1
¢ dYooel—dy) = > &) (31)
5 = Z(yZ —:)? t=m+1 t=m-+1
- = 32\ 2 Y& o< Y Em< Y € (32
Kt — / (1 + 7) dyt t=m+1 t=m-+1 t=m+1
T s T whereé,(n) = y, —T;b,. Moreover, when the regressor matrix
To get the normalizing integral we write first is constant
~ _/ — n
G = Tbe = dey + e (22)
dy = IViT (23) Z Eé; =o” —m) = Z (1—di) (33)
i1 t=m-+1 t=m-+1
wo= TV Zylf“ (24) Z Fe? = o? ((n —m)+ Z 1/(1 - dt)> (34)
=1 t=m+1 t=m+1
where, does not depend ogy. Then n
, — Z Eé(n) = o%(n —m). (35)
e 1—d ] =m
Kt:/ g d=d) (y— L ) dy. e N
—o0 St—1 1—d; We see that the fitting errors are the smallest under the

representation (17), which defines the CNML model, not
only for the worst case sequence or in the mean but for
z=[y—u:/(1 —de)|(1 —di)/\/§1-1 all sequences. However, only the representation (19) and it

By change of variables



prediction errors define a code length for the data, and if vier someq(y™|X,,,) to be chosen. We get then

add the necessary code lengths to the CNML and NML fitting _ X.)
fy" X

errors representing noise we get code lengths, and theiresul
probabilities of course will have to intersect. Finally,salthe

CNML model defines a predictor for the data, which agrees = 2 Mgy X)) 8, s [ (1= di)(t— 1871

with that obtained with the representation (19).

B. Laplace distribution

The second important case is the absolute value loss fu
tion, a = 1. The main difficulty in the applications is that the

t=m-+1
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settle for linear estimates, which we do as well.
The conditional density functions far> m are given by

1 <1+ (1—dt)|yt—yt/(1—dt)|>t’ [

R t—1\
flyely™) X, i

. [2]
wheres; = 25:1 |y: —§:|. The normalizing constant becomes

b 1
Kt:2/ <l—|—
0

=g —d))) d
) Yt Yt t Yt 3]

5,

Si-1/(t—1) _ 1-t
=2——=(1— _

1—d, ( yt/St 1) ) 4]

where we changed the variables
. (5]

u=1+(1—di)lye — 5:/(1 — di)|/5¢-1.
Againm+1 is the smallest value dffor which é(yt, X)) =b 6]
is defined. .
We get further [
R "4, (8]
f(y |Xn) =2 q(y |Xm)5n Sm H ﬁa 9]
t=m+1

[10]
[11]
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