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Abstract—The type of /1 norm regularization used in Lasso that sparsity in the sense of few non-zero coefficients in the
and related methods typically yields sparse parameter estiates transformedparameter vector coincides with out conception
where most of the estimates are equal to zero. We study a gt gimplicity. We present two examples on applying the idea
class of estimators obtained by applying a linear transformation . . L
on the parameter vector before evaluating the/; norm. The to Iegrnlng sparse models frpm discrete m_ultlvarlate dita.
resulting “transformed Lasso” yields estimates that are “snooth”  the first example, we establish a connection between Lasso
in a way that depends on the applied transformation. The with a Haar transformation applied on the parameters and
optimization problem is convex and can be solved efficientlysing  |earning variable length Markov chains (VLMCs), or context
existing tools. We present two examples: the Haar transform tree models. In the second example, we show that using

which corresponds to variable length Markov chain (contexitree) .
models, and the Walsh-Hadamard transform which correspond the so called Walsh-Hadamard transformation correspamds t

to linear combinations of XOR (parity) functions of binary input  l€arning linear combinations of XOR (parity) functions of
features. binary input features.

|. INTRODUCTION Il. MODEL FORMULATION

In situations where the number of potentially relevant fea- (Ci)onsider a data-sefi(x”,y)},1 < i < n, wherex’ =

tures is large relative to the sample size (“lajgesmalln”), (1, .z} is a k-dimensional covariate vector, and is
leveraging a suitable bias is crucial for both model setecti & discrete response. We denote the domain of the response
and prediction accuracy. Usually this is explained in teohs variable by). We use the logistic regression model where a
Occam’s razor or other principles favorisgnplemodels over distribution over) = {0,1} given the covariates is specified
complexones. Naturally, in order to be concrete, we need to R the formula

specific about what we mean by simplicity. For models that can Ply=1|x: B) = 1 )
be expressed as a vector (or matrix) of real values, the numbe ‘ ’ 14 e A%’

of non-zero coefficients is one popular measure of simlicityhere 3 « R* is a parameter vector. Generalization to larger

used widely as a basis of various information criteria "kﬁlphabets i.e., multiple logistic regression, can be tdeih

the Akaike information criterion (AIC), and the Bayesiarsmilarly!. As such, the logistic model is rather restricted since

information criterion (BIC). One of the main drawbacks 06th ¢ 10g-0dds of the outcomes follow an additive model where

measure is that the _resultlng mmlmlzatlon problems tend_g?“y the individual effects of the covariates appear. Hasvev

be hard: we cannot find the optimal model without exhaustl\ﬁey replacing the covariste vector by a vector of indicator

search. o functionsz(x), one for each combination of the covariates, as
Replacing the number of non-zero coefficients by a convggown in Eq. (2), we obtain a model that is complete in the

surrogate function greatly simplifies the optimizationtlesn  sense that any conditional distribution can be represenyed

in many cases. In particular, using the sum of the abso'%ﬁoosing suitable parameter values.

values of the coefficients, i.e., thig norm of the coefficient | this way, for instance, the different coefficient vecttos

vector, has lead to the methods of basis pursuit [1] apge casep = 3 are given by

Lasso [2], for which fast algorithms exist, see e.g. [3], [Bhe

Lasso and its relatives have turned out to be hugely suadessf X z(x)
in combination with a wide range of statistical models, amd i (0,0,0) (1,0,0,0,0,0,0,0)
many different applications, see e.g. the review [5]. (0,0,1) (0,1,0,0,0,0,0,0)
However, in some cases our preferred way to measure (0,1,0) (0,0,1,0,0,0,0,0) @

simplicity is based on other factors in addition, or instedd :
the number of non-zero coefficients or the norm. It is not 1 1 1 0.0.0 0.0 0.0.1
clear how such problems can be made amenable to the Lasso (1,1,1) (6,6,0,0,0,0,0,1)

apprqach. |!‘1 this paper, we-con3|der an approach based OJr)\Ithough it will be necessary to use the group Lasso or rdlateeth-
applying a linear transformation to the parameter vect@hsuods [6]-[8] in order to obtain interpretable models.



With this mapping, we can represent any conditional digtrib parameter vectors where subsequent contexts give idéentica

tion P(y | x) by defining parameters conditional distributions. This handles the case where the
Ply=1]|x) identity 4(100) = £(101) eliminates the effect oft; in a
B(x) =In given context. However, it is unclear what the meaning of, sa

Ply=0]x) £3(011) = 5(100) is: the covariate vectord, 1,0) and(0, 0, 1)

and concatenating these parameters into a single vgcter are at first sight the opposite of each other; why should we
R?" in the same order as the contexts are listed in the abdvave a bias that encourages their giving the same diswibuti
table, i.e.,3" = (3(000), 3(001), 5(010), ..., 3(111)). The for y? On the other hand, penalizing only the pairs that differ
dot productB’z(x) simply picks the correct parameter fromin z;,, but agree in the other symbd|swill penalize only the
vector3, and Eq. (1) yields the desired probability. effect of the last covariate.

It is well known that logistic regression models are expo- More generally, we should of course penalize for the
nential families, which implies that the log-likelihoodfction ghsolute difference between any two parameters which we
is concave, see e.g. [9]. like to be (almost) equal. Adding very many penalty terms

For fully parameterized discrete models, the number gfill, however, slow down the optimization procedure. Our
parameters needed to specify the modeéhi§® (|| —1) where approach, which we outline next, is based on penalization of
it is assumed that all the covariates take values in the $gkar combinations of the logistic parameters and avdids t
X; in the binary cas@”. This makes it hard to estimate theexplicit use of additional pair-wise and higher-order gdées.
parameters accurately faér> 1. What we propose to do is to perform a suitable linear trans-
formation on the parameters and use Las50 penalization

I11. TRANSFORMEDLASSO o L
, i on thetransformedparameters. This yields the optimization
In the Lasso (least absolute shrinkage and smoothing Opﬁrr()blem'

ator) [2], the log-likelihood is penalized by the norm of the

parameter vectdr maxlog P(y | X 5 8) = AT, 5)
logP(y | X; B) — A 3 . o . .
mﬁ" g Py | X5 8) 1811, &) where A > 0 is a regularization parameter, afdis a linear
wherey = (y1,...,y») is the response sequence, akid= transformation. We call this method thensformed Lasso
xM, ... 7X({z)) is the design matrix. In the standard linear- The idea is that if the (original) parameter vegtbhas some

quadratic case, the log-likelihood is a quadratic functagn SMoothness properties captured by the transformafioimen

the parameters. Thé penalty has the property that usuaIIyTﬁ is sparse, i.e., it has only a few non-zero coefficients. When

many of the parameter estimates are equal to zero. Assumfijmating the parameters from data using (5), the estsnate
that the log-likelihood function is downwards convex, assit ©f these parameters tend to be set to zero. Sineea linear

in the logistic regression case, the optimization problem ctransformation, the concavity of the penalized log-likebd

be solved efficiently by convex optimization methods; fog thiS retained.
linear—quadratic case, see [2]-[4]. In fact the transformed Lasso was proposed already by

Under the logistic parameterization (1), letting parametd Pshirani et al. [10] (using the Haar transformation) for
B(x) be (close to) zero, results in a (nearly) uniform cont-he_ Imear—quadrgﬂc case, but the authors_found it iltexli
ditional distribution fory given x. Thus, ¢; penalization Mainly because in their example, the predictor structure wa
tends tosmooththe parameter estimates towards the uniforfot ‘dyadic’, like it is in our case: while the predictors veer
distribution. However, this is not necessarily the onlyckiof  Ordered so that they formed blocks, i.e., consecutive runs
sparsity (or “simplicity”) we expect. For instance, we woul of identical coefficients, the block boundaries did not accu
often also like thalifferencesbetween parameters to be smalln®ar powers of two. This implies that the parameter vector is
For instance, if3(100) = 3(101), then the third covariate;s, not necessarily sparse in the Haar do_maln. Due to the way
has no effect given that the other two covariates take valud§ Order the parameters, we automatically get such dyadic
21 =1,20 = 0. structures. We illustrate the idea below.

In the fused Lass$10], one also penalizes for the absolute FOr orthogonal transformations, for which the transpose of

difference of subsequent parameters (ordered in a suitae transformation matrif” gives theinversetransformation,
fashion): T'T = I, the transformed Lasso problem (5) can be easily

v solved by existing Lasso techniques. Denoting the transfor
mﬁaxlogP(y X 8) = MBI — Ao Z 18; — Bial, (@) parameters by) = T'3, the problem can be re-written as

= maxlog P(x ; T'n) — Alnls, (6)
where p is the number of parameters, and and )\, are n
regularization parameters. If the parameters are ordesedvehere we usedI’n = T'T3 = [A. Now, consider the
above (see Eg. (2)), this would indeed favor to some extent

3For k = 3, this means that we penalize by the si®(000) — 3(001)| +
2Alternatively, we can maximize the log-likelihood subject an upper- |8(010) — 8(011)] 4 |3(100) — B(101)| + |8(110) — B(111)|; compare
bound on the’/; norm of 3. this to the last term of the fused Lasso, Eq. (4).



(@ (b) multiplying a vector by the Haar matriy; — Hv, whereas
theinverseHaar transform is equivalent to multiplying by the
inverse of the matrix, which is by orthogonality equivalémt
the transposew — H'w. In practice, matrix multiplications
are not used, since a simple and fast (linear-time) algorith
exist for the Haar transform and its inverse.

In order to apply the logistic regression model, we let
the covariate vectox(” be determined by thé& symbols
Fig. 1. Examples of context trees. In each tree, left andtriganches preceding theith symbol in the sequencg. This needs to

correspond to zero and one, respectively. The shaded nodiisate the be done inreverseorder. so that fork = 3. the covariate
relevant symbols, and the resulting contexts are given eénténminal nodes. . . (i) ! ! .
If y;_1 — 0, then the context is simplg in both trees. On the other hand, VECLOT is given byx') = (y;_1,yi—2,yi;—3) — this way the

if yi—1 =1 andy;—2 = 0, then the context i81 in tree (b); in tree (a) one  mMost significant bit of the covariate vector is the immediate

more bit, y;_2, is needed determine the context. predecesson;i_l. The initial part wherei < k can be
dealt with, for instance, by assuming a fixed initial seq@enc
likelihood function written in terms of the-parameters, (...,y—2,y—1,y0) prefixed to the actual sequengeso that

B _ 7 (') the preceding: symbols are always well defined.
Ply=1[x;n) =1/ (1 te ) The linear transforni” in (5) is then the Haar transform
—1/ (1 i efn'Tz(x)) _ @) B — HB. This gives a representation of the parameter vector
in terms of the Haar basis vectors. The first basis vector
From (6) and (7) we see that the transformed problergpresents the mean of all the parameters, which gives the
is equivalent to the usual Lasso problem with the inpu@general “bias” (not statistical bias, however) towaygds= 1.
given by T'z(x), i.e., the inputs are simply mapped througf’he second basis function gives ttliéferencein bias towards
the transform. Having solved the optimization problem, thee = 1 between the cases wherg ; = 0 and those
optimal parameter vectgB, can be obtained by the inversewherey;_, = 1. The third one gives the difference in bias

transform,3, = 7"#,, wheren, is the solution of (6). between the cases wheye » = 0,y;—1 = 0 and those where
yi—2 = 1,y;—1 = 0, and so on. In a given context, the bias is

IV. VARIABLE LENGTH MARKOV CHAINS obtained as a sum of (possibly negated) coefficient values.

The model class of variable length Markov chains (VLMC), For instance, any Markovian model of order 2 can be repre-
or context tree models, is extensively studied in infororati sented using basis vectors 1,2,3, and 4 only. Any distobuti
theory, see e.g. [11]-[14]. VLMC models can be charactdrizeéompatible with the three-node context trgg) in Fig. 1,
by context treesexamples of which are shown in Fig. 1. Giverwhere the different contexts afe, 01,11}, can be represented
a context tree, the number of parameters needéd|id’| —1), using three basis vectors, namely vectors 1, 2, and 4. In the
where L is the number of leaf nodes in the tree. Ordinarpinary case, the number of basis vectors needed to represent
Markov models are a special case of VLMCs where the contety VLMC is equal toL, the number of leaf nodes in the
tree is a balanced tree of depthwith L = |X|* leaf nodes. corresponding context tree, which is optimal.

We now show that the transformed Lasso with the Haar On the other hand, since the number of context trees of
transformation corresponds to learning VLMC models. Fanaximum depthk is less than the number of subsetsidfasis
details of the Haar and other wavelet transformations, seectors, there are some subsets that correspond to no tontex
e.g. [15]. The Haar transform matrix of order 8 (to be used fdree. For instance, by setting certain coefficients to zem a
models with 8 parameters), which gives thasis vectorsas retaining others, it is possible to eliminate tiheividual effect
its rows, is given by Eq. (8). The multipliers on the left makef y;_; while retaining the effect of;_» given thaty; ; = 0,
sure that each vectau; is of unit length. The basis vectorsetc. In other words, it is possible for the effect of a symiwol t
are also orthogonal in the sense théti; = 0 for all ¢ # j. cancel outon the averagdwhen averaged over all contexts)
The forward) Haar transform is mathematically equivalent t@ven when symbols further away in the context have a non-

ri1/v8 x (1, 1, 1, 1, 1, 1, 1, 1)
1/v8 x (1, 1, 1, 1, =1, =1, —1, —1)
/2 x (1, 1, -1, -1, 0, 0, 0, 0
1/2 x (0, o0, 0, 0 1, 1, -1, —1)
H= 1/v2 x (1, -1, 0, 0, 0, 0, 0, 0 (8)
1/v2 x (0, 0, 1, =1, 0, 0, 0, 0)
1/v2 x (0, 0, o0, 0 1, -1, 0, 0)
L 1/v2 x (0, 0, o0, o0 0 0, 1, —1)



zero effect. We defer further discussion to the full versadn V. LINEAR COMBINATIONS OF XOR FUNCTIONS

the paper about when this is useful and when not. _ As a second example, we consider the Walsh-Hadamard
In our application, it turns out that it is better to omitwH) transformation, see [18]. It gives a decompositionhef t
the scaling multipliers in (8). This is because the higheparameter vector in terms of exclusive-OR (parity) funesio

order basis functions, like the four bottom rows in (8), argf increasing order. The WH matrix of ordef is given by
multiplied by a factor which is exponential (in the order ofhe recursion

the effect) with respect to the factor of the lowest-levetiba 1 ) _
B . . . HQk—l HQk—l
functions. This causes many spurious high-order effects to Hy. = ﬁ Hyrn  —Hyes
enter the model. The problem can be fixed by ignoring the, _ .
multipliers in the transformation matrix (and adjustingethWith H1 = [1]. For instance, the order 2 and 4 WH matrices

inverse transformation accordingly). We omit further deta &€ 9iven by
We now describe a simple experiment. Data was generated 11 1 1
by sampling random binary sequences of given length from _ (1 1 ) Hy — fr -1 1 -1 ©)
fixed VLMC model described below. The maximum order of >~ (2 \1 -1/ "* 2|1 1 -1 —1["
the effects in the transformed Lasso method was restricted t 1 -1 -1 1

k = 7. We compare the estimated models to the generatipge to the construction, the basis vectors correspond to
model, and also estimate the negative log-likelihood by-evg|| the 2 possible XOR (parity) functions of Boolean
uating the per-symbol logarithmic prediction errors in atte (hinary) variables. For instance, consider the order 4 pnatr
sequence sampled from the same distribution. in (9). If we associate with each column an instantiation of
For solving the transformed Lasso problem (5), we used thgo binary variables,z; and z,, in the order(z;,z;) =
gl npat h packageé [16], which also gives a regularization((0,0), (0,1), (1,0), (1,1)), then the rows correspond, from
path, i.e., the set of solutions obtained by letting the l@gu top to bottom, to functionsKOR(1), XOR(zz), XOR(z1),
ization parameten vary between some maximum value an&kOR(z, =2 ), whereXOR(1) denotes the constant function.
zero. Having computed the regularization path, we seletied  The WH transformation corresponds to multiplying a vector
level of regularization), by the Bayesian information criterionby the WH matrix, 3 — H/3, and the inverse transform

(BIC), see e.g. [17]. is obtained as the transpose. Again, in practice no matrix
Example 1:Let the model be multiplications are necessary since fast and simple dlyos
‘ exist. The transformed Lasso problem with the WH transfor-
0.2 if y;Z3 =000 mation can be solved using standard tools by mapping the
0.4 if yfi% =100 vector of indicator functionsz(x), Eq. (2), through the WH
0.55 if yi=l =010 transformation. o
1 It may seem that a representation in terms of XOR func-
0.4 if yi=t = 00110 ions | ; : .
i1 L ions is the worst possible alternative for modeling ndtyra
Plyi=1]y;=y) =055 if y;"5 = 10110, occurring data. However, the key property of the WH basis is
0.55 if yi=i = 01110 that any pattern is decomposed into sub-patterns of incrgas
04 if yfj}) = 11110 order in such a way that if the actual pattern can be repredent
02 ify=l=o01 as a sum ofinylow order Boolean functions — which do not
have to be XOR functions —, then none of the higher-order

: i—1 __
0.35 if y;Zp =11 XOR functions are used. For instance,fif C {1,...,k} is

a subset of indices, then the conjuction of the correspandin
ﬁ%)variates can be represented as the sum

[To|

wherey'~} = (yi—i, ..., yi-1)
Figure 2 shows the regularization path and the BIC curve
a representative run with sample size= 2048, together with 1
the obtained maximum likelihood and penalized parameter es AND({z1,}) = Z (=1) Z XOR({zr}),
timates. It can be seen that the maximum likelihood estisate m=1 |§’,|9f°
in panel(c) (obtained by setting. = 0) are very noisy; many - ) _
of them are either zero or one since they are associated witiere AND({z;}) and XOR({z;}) denote the conjunction
contexts where only one of the outcomes has occurred. THd exclusive-OR of covariates with indices in detespec-
transformed Lasso estimates, paf| are much more stable tively. For example AND(z1, z3) = XOR(z1) + XOR(z2) —
and give a better estimate of the true parameters. XOR(z1,22). As can be seen from the expression, the terms
Compared to existing methods for learning VLMC modeld? the sum are at most of ordgh|. Similar expressions apply
the transformed Lasso typically produces similar modetwel 1© Other Boolean functions, see [19].

tion and compression (prediction) performance. Furthégitee = EX@mPple 2:Seven covariatesyy, ..., z7, are generated
will be provided in a full version of this paper. independently with uniform probability ovéf, 1}. The model
is given by

“R package available from CRAN, http://cran.R-project.org Py =1|x) =1/(1 4 e®1 05 XOR(z2,23)+2 OR(24,25,76) )
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(a) The regularization path obtained lgy npat h. Penalized coefficients are plotted against optimizatiep.€b) The BIC criterion plotted against

optimization step(c) Maximum likelihood and(d) penalized estimates. The true parameter values, whichharsame in both panels, are shown with blue
squares [(J), the estimates with red crosses)( Data was generated from the model in Example 1, with sarsiglen = 2048.

TABLE |
FREQUENCIES OF CORRECTLY IDENTIFYING TERMS IN THE TRUE MODEL
OF EXAMPLE 2 OUT OF100TRIALS, AND THE AVERAGE FREQUENCY OF
FALSE POSITIVES(' OTHERS).

(2]
(31

FUNCTION | FREQUENCY [4]
1. XOR(z1) 100
2. XOR(z2,z3) 100 (5]
3. XOR(z4) 100
4, XOR(z3) 100
5. XOR(z6) 100 (6]
6.  XOR(z4,zs) 100
7. XOR(z4,x6) 100
8.  XOR(zs,zg) 100 (7]
9. XOR(z4,zs,x6) 100

others (avg.) 3.53 (8]

Under the WH basis, the true model includes nine basig]
functions: the function&XOR(z;), XOR(z2,3), and all the [10]
seven functions involving variables,, x5, z¢ (items 3-9 in
Table I). The latter ones result from the decomposition ef th; 1
OR function in terms of XOR functions.

Table 1 lists the frequencies with which these functions afé?!
included in the estimated model in 100 trials when the modgis
were learned by transformed Lasso from samples of size
1600; model complexity was chosen using BIC. All the effect84]
were identified correctly in all trials. The average numbgér o
spurious effects (false positives) per trial was3. [15]
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