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Abstract—We establish a connection between Lasso-typé @ (b)
regularization and learning variable length Markov chains
(VLMCs). This is achieved by a parameterization of discrete
valued finite-memory Markov sources in which setting a param
eter value equal to zero is equivalent to eliminating a nodeni the
corresponding context tree model. The parameterization inolves
a Haar wavelet transformation on a set of indicator functiors,
the output of which is mapped to symbol probabilities via logstic
regression. The optimization problem is convex and can be bad
efficiently using existing tools. We present preliminary reults, .
comparing the method to an earlier algorithm for learning Fig- 1. Examples of context trees. In each tree, left andtrignches
VLMCs in terms of model selection and prediction performance. ~corespond to zero and one, respectively. The shaded noufisate the

. . . . relevant symbols, and the resulting contexts are given éntéhminal nodes.
We also discuss other transformations which lead to a flexilel If X; 1 = 0, then the context is simplg in both trees. On the other hand,

family of sparse representations of Markov sources. if X;_1 =1andX;_, =0, then the context i81 in tree (b), but one more
I. INTRODUCTION bit is needed decide in tre@).

The model class of variable length Markov chains (VLMC)The initial part withi < k£ + 1 can be treated, for instance, by

or context tree models, is extensively studied in 'nform%{ssuming a fixed initial sequendéﬂoo, prefixed to the actual

tion .theory, see €.9. [.1]_[4]' We propose a paramgtenqtmequencel so that the contéki™; is always well-defined. For
of discrete-valued finite-memory Markov sources in whic . .
ully parameterized discrete models, the number of pararset

VLMC models arise naturally as a result of regularlzatlorr:]]Feded to specify the model j&[*(|X| — 1). This makes it

of the £, norm of th? param _eters—as in BQSiS Purs_uit aNfard to estimate the parameters accuratelykfor 1.
Lasso [5], [6] for which efficient path following algorithms In variable length Markov chains (VLMC), the number of

exist [7], [8]. The parameterization involves a Haar Wavel??levant preceding symbols depends on the context. VLMC

transformation on a set of indicator functions, the resul !
o . . models can be characterized lopntext trees examples of
of which is mapped to symbol probabilities via logistic

. . . - 2 Which are shown in Fig. 1. Given a context tree, the number
regression. The resulting;-penalized logistic regression is

. f parameters needed Ig|X| — 1), whereL is the number of
ﬁogf\f?i?eri?d[;?e[rfof re algorithms that can be used to soﬁégﬁ nodes in the tree. Ordinary Markov models are a special
y ok ' case of VLMCs where the context tree is a balanced tree of

Il. CONTEXT TREE MODELS depthk with L = |X|* leaf nodes.

Let X = (X1,...,X,) be a discrete random sequence of It is convenient, for the present purpose, to use a logistic
lengthn, where each symbol (variablgy;, i < n takes value (regression) parameterization so that a distribution oVer
from a fixed alphabeft. We denote the subsequenceXf {0,1} is specified by the formula
starting at time; and ending at timg by X. i i1 1

By the chain rule, we can write the probability of a sequence P(X; =1[ X2, =x7) = T pAax )’ @)
as a product of individual symbols: Ite o

n where 8 € R? is a parameter vector, andx. ;) € R? is a
PX =x)=[[P(Xi=a; | X" =x{7"). vector of coefficients determined by the context (to be define
i=i more precisely below, see Eq. (2)). The parameterization is
A kth order Markov model assumption reduces the relevag@mplete in the sense that any conditional distribution lean

part of the history in the conditioning part, or thentext from  represented by choosing suitable parameter values. It lis we
lel to X;:}C; known that logistic regression models are exponentiallfem)i

which implies that the log-likelihood function is concasee

P(X =x) = [[ P(Xi = | XITp =xi7}). e.g. [11] - .
i For the sake of simplicity, we concentrate on the binary



case. Generalization to larger alphabets, i.e., multiptgstic In the fused Lass¢14], one also penalizes for the absolute
regression, can be achieved by the group Lasso [12], usidifference of subsequent parameters (ordered in a suitable

techniques from [10]. fashion):
Considerz formed by concatenating indicators for each »
possible vectox' ;. In this way, for ordert = 3, the 23 = 8 maxlog P(x ; B) — M8l — Ao Z 8 — Bi1l, (&)
different coefficients vectors (sorted according to theaske p =2
significant bits”; the reason for this will become clear) are :
given by where p is the number of parameters, and and )\, are

regularization parameters. If the parameters are ordesed a

Xy 2(x;_) above (see Eq. (2)), this would indeed favor to some extent
000 (1,0,0,0,0,0,0,0) parameter vectors where subsequent contexts give identica
100 (0,1,0,0,0,0,0,0) ?) conditional distributions. This handles the case where the
010  (0,0,1,0,0,0,0,0) identity 5(000) = £(100) eliminates the effect ofX;_3 in

: : a given context. However, it is unclear what the meaning of,
111 (0,0,0,0,0,0,0,1) say,3(110) = (001) is: the contextd 10 and001 are at first

_ _ _ N ~ sight the opposite of each other; why should we have a bias
With this mapping, we can represent any conditional distribthat encourages their giving the same distribution® On

tion P(X; | X{~; = x;_;) by defining parameters the other hand, penalizing only the pairs that differXn_;,
- - but agree in the other symbd)swill penalizeonly the effect
i—1 P(XZ =1 | ngk = xﬁfk) X
B(x;—;)=In i—k-

P(X;=0|X") =x17}) More generally, we should of course penalize for the
. . . absolute difference between any two parameters which we
and concatenating these parameters into a single véctor like to be (almost) equal. Adding very many penalty terms
the same order as the contexts are listed in the above tag\rr however. Slow dowﬁ the optimization procedure. Our
. , s : )
le., B~ = (5(000), 4(100), 5(010), ..., §(111)). The dot approach, which we outline next, is based on penalization of
product 3z S|mply picks the _correct parg_meter from Vecmﬁnear combinations of the logistic parameters and avdids t
A, and Eq. (1) yields the desired probability. explicit use of additional pair-wise and higher-order gaesa.
What we propose to do is to perform a suitable linear trans-
formation on the parameters and use Las50 penalization
In the Lasso (least absolute shrinkage and smoothing open the transformedparameters. This yields the optimization
ator) [6], the log-likelihood is penalized by thfe norm of the problem:
parameter’s maxclog P(x ; B) — N|T8]. (5)

IIl. TRANSFORMEDLASSO

mé‘XlOgP(x ; B) = MBIl () wherex > 0is a regularization parameter, afitis a linear
transformation. We call this method theansformed Lasso
In the standard linear-quadratic case, the log-likelihi®a The idea is that if the (original) parameter vectbhas some
quadratic function of the parameters. Thepenalty has the smoothness properties captured by the transformafiothen
property that usually many of the parameter estimates are3 is sparse, i.e., it has only a few non-zero coefficients. When
equal to zero. Assuming that the log-likelihood function igstimating the parameters from data using (5), the estanate
downwards convex, as it is in the logistic regression casgrthese parameters tend to be set to zero. Sinéga linear
the optimization problem can be solved efficiently by conve¥ansformation, the concavity of the penalized log-likeld
optimization methods; for the linear—quadratic case, $¢€ [ is retained.
[8]. In fact the transformed Lasso was proposed already by
Under the logistic parameterization (1), letting parameteipshirani et al. [14] (using the Haar transformation) for

A(x;";) be (close to) zero, results in a (nearly) uniformhe linear—quadratic case, but the authors found it iftesli
conditional distribution forX; givenX!"; = x!";. Thus,/1 mainly because in their example, the predictor structure wa
penalization tends temooththe parameter estimates towardsot ‘dyadic’, like it is in our case: while the predictors veer
the uniform distribution. However, this is not the only kindprdered so that they formed blocks, i.e., consecutive runs
of sparsity (or “simplicity”) we usually expect from Markov of identical coefficients, the block boundaries did not accu
models: we would also like theifferencesetween parametersnear powers of two. This implies that the parameter vector is
to be small. For instance, if(001) = 3(101), then X;_3 not necessarily sparse in the Haar domain. Due to the way
has no effect given thaX{_} = 01. In Fig. 1, enforcing the we order the parameters in Markov models, we get such a
equality of these two parameters changes (egénto tree(b).  dyadic structure whenever the model allows a context-tree

1Alternatively, we can maximize the log-likelihood subject an upper- 2For k = 3, this means that we penalize by the s|#G000) — 3(100)| +
bound on the’; norm of 8. A review of Lasso and related methods is given/3(010) — 8(110)| + [3(001) — 3(101)| + |3(011) — B(111)|; compare
in [13]. to the last term of the fused Lasso, Eq. (4).



ri/v/8 x (1, 1, 1, 1, 1, 1, 1, 1)]

1/v8 x (1, 1, 1, 1, =1, =1, —1, —1)
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L 1/v2 x (0, o0, o0, o0 0 0 1, —1)

representation with less than the full number of nodes. Thi§;_; = 0, etc. In other words, it is possible for the effect of a

is illustrated in an example below. symbol to cancel ouvn the averagéwhen averaged over all

contexts) even when symbols further away in the context have

a non-zero effect. We defer further discussion about whien th
For details of the Haar and other wavelet transformationis, useful and when not to the full version of this paper.

see e.g. [15]. The Haar transform matrix of order 8 (to be usedWe now describe how the transformed Lasso problem (5)

for models with 8 parameters), which gives thessis vectoras can be solved by existing Lasso techniques. Denoting the

its rows, is given by Eqg. (6). The multipliers on the left makéransformed parameters by = H3, the problem can be re-

sure that each vectau; is of unit length. The basis vectorswritten as

are also orthogonal in the sense théti; = 0 for all i # j. maxlog P(x ; H'n) — |01, (7)

The forward) Haar transform is mathematically equivalent to n

multiplying a vector by the Haar matrix; — Hv, whereas where we usedH’'n = B. Now, consider the likelihood

the inverseHaar transform is equivalent to multiplying by thefunction written in terms of they-parameters,

inverse of the matrix, which is by orthogonality equivalémt

IV. HAAR TRANSFORMATION

. s _ H/ ’ '%—l
the transposew - H'w. P(X;=1|X"L=xi=ly =1/ (1 4t z<xrk))
In practice, matrix multiplications are not used, since a Y (14_6777’7“("31)). 8)
simple and fast algorithm exist for the Haar transform and

its inverse. The computational complexity of the fast Ha#rom (7) and (8) we see that the transformed problem is
transform is linear in the length of the transformed segegnequivalent to the usual Lasso problem with the inputs given
i.e., the number of coefficients in the model. by Hz(x!"}), i.e., the inputs are simply mapped through the

The linear transforn®” in (5 is then the Haar transfor@ —  Haar transform. Having solved the optimization probleng th
HB, where’{ is the Haar matrix. This gives a representatiogptimal parameter vectgB, can be obtained by the inverse
of the parameter vector in terms of the Haar basis vectotgansform,3, = H'7,, wheres, is the solution of (7).
The first basis vector represents the mean of all the parasjete In our application, it turns out that it is better to omit
which gives the generaiastowardsX; = 1. The second basis the scaling multipliers in (6). This is because the higher-
function gives thedifferencein bias towardsX; = 1 between order basis functions, like the four bottom rows in (6), are
the cases wheré(;_; = 0 and those whereX;_; = 1. The multiplied by a factor which is exponential (in the order of
third one gives the difference in bias between the casesevheie effect) with respect to the factor of the lowest-levesiba
X!~} = 00 and those wher&X~} = 10, and so on. In a given functions. Thus, a small change in a parameter associated
context, the bias is obtained as a sum of (possibly negatedih the higher-order effects alters the resulting probtds
coefficient values. much more than a change in a lower-order parameter. Unless

For instance, any Markovian model of order 2 can be reprghis is accounted for in theé; penalty term, the outcome
sented using basis vectors 1,2,3, and 4 only. Any distdiutiis that many spurious high-order effects enter the model at
compatible with the three-node context tré@) in Fig. 1, the expense of some actual lower-order terms being omitted,
where the different contexts a{@, 01, 11}, can be representedwhich affects the performance severely. The problem idyeasi
using three basis vectors, namely vectors 1, 2, and 4. In tfieed by modifying the fast Haar transform so as to ignore the
binary case, the number of basis vectors needed to repres@stinalizing multipliers. We omit the details.
any VLMC is equal toL, the number of leaf nodes in the
corresponding context tree, which is optimal. V. SIMULATION EXPERIMENT

On the other hand, since the number of context trees ofWe present some preliminary results illustrating the param
maximum depthk is less than the number of subsets iof eter transformation approach. Data was generated by sagnpli
basis vectors, there are some subsets that correspond torar@om binary sequences of given length from a fixed VLMC
context tree. For instance, by setting certain coefficiamzero model described below. The maximum order of the effects
and retaining others, it is possible to eliminate thdividual in the transformed Lasso method was restrictedkte= 7.
effect of X;_; while retaining the effect ofX; 5 given that We compare the estimated models to the generating model,
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Fig. 2. (a) The regularization path obtained lgy npat h. Penalized coefficients are plotted against optimizatiep.gb) The BIC criterion plotted against
optimization step(c) Maximum likelihood and(d) penalized estimates. The true parameter values, whichharsame in both panels, are shown with blue
squares [(J), the estimates with red crosses)( Data was generated from the model in Example 1, with sarsiglen = 2048.

and also estimate the negative log-likelihood by evalgatin Figure 4 summarizes the models learned by the transformed
the per-symbol logarithmic prediction errors in a test satpe Lasso method and VLMC in 100 repetitions of the experiment.
sampled from the same distribution. Data was again generated by the same model, with2048.

For solving the transformed Lasso problem (5), we usdthch node represents one parameter, i.e., a relevant symbol
the gl npat h packagé [9], which also gives a regularization (variable): if a node is included in the learned model, the
path, i.e., the set of solutions obtained by letting the lmgu corresponding symbol is included in the context. The nodes
ization parameten vary between some maximum value andéhcluded in the true model are shaded. Note that the true mode
zero. Having computed the regularization path, we seletied is not strictly hierarchical since all the individual eftscon
level of regularization), by the Bayesian information criterionlevel four cancel, although there are nodes with effect @n th

(BIC), see e.g. [16]. fifth level. Overall, the transformed Lasso method has more
Example 1:Let the model be false positives (it overfits), but fewer false negativesanth
i the VLMC method which only captures the most significant
0.2 if x;75 = 000 effects (it underfits; three out of six true effects are misse
0.4 if x\”3 =100 in all, or almost all, of the 100 repetitions). When looking a
0.55 if xﬁ:é =010 the negative log-likelihood of the learned models, Fig.H# t
0.4 if xﬁ_}) — 00110 VLMC method tends to give slightly better predictive proba-
P(Xi=1] Xi:zlc _ XE:IIC) o055 if xi—! = 10110 bilities than the transformed Lasso,_ for some other gemgat_
Y models the opposite holds. We will present more extensive
0.55 if x;”5 = 01110 experiments in future work.
04 if x/Z5 = 11110
0.2 if xi=) =01 g —
0.35 if xi7) =11 o 5 T
Figure 2 shows the regularization path and the BIC curve in : .
a representative run with sample size= 2048, together with 3 T .
the obtained maximum likelihood and penalized parameter es o | _‘_ :
timates. It can be seen that the maximum likelihood estisnate s . —

in panel(c) (obtained by setting. = 0) are very noisy; many Tr. Lasso VLMC
of them are either zero or one since they are associated wtt 3. Estimated per-symbol negative log-likelihood logs) for the models

contexts where only one of the outcomes has occurred. TENed by the transformed Lassef(), and the VLMC methodright). The
* 'box shows the median (thick line) and quartiles; whiske@ashin and max

transformed Lasso estimates, pa(@l are much more stable yajues: 100 repetitions. Smaller values are better.
and give a better estimate of the true parameters.

In order to assess the model selection and prediction (com-

. VI. FUTURE WORK — BEYOND HAAR

pression) performance of the transformed Lasso, we use an i )
implementation of the Context algorithm [1] available as th We have used the Haar transformation as a prototypical
VLMC packag8 see [3], as a baseline method. The Bl@xample of a decomposition of Markov sources as a sum
criterion was used also in this case for choosing the conitglexof components, each associated with a single parameter. The

of the modéi. transformation idea is much more general: we can use other
transformations, and the idea extends directly to other gen
3R package available from CRAN, http://cran.R-project.org eralized linear models, not only logistic regression. Amon

4Avai ) : )
vailable from CRAN. o o alternative transformations, we mention the so called &Rad
While BIC is generally better than the Akaike informatioriterion (AIC)

in model selection, the reverse tends to hold for predictidawever, in our macher-)WaIsh—Hanmard (WH) transformation, ?ee [17]- It
case BIC is better in both. gives a decomposition of the parameter vector in terms of



TRANSFORMEDLASSO

Fig. 4. Summary of learned models in Example 1, with= 2048. Number of occurrences of (non-zero) parameters in 100titepes of the transformed
Lasso left) and VLMC (right). Each node in the tree corresponds to a parameter: e.grigtitenost node on the second level (from top) correspondheo
effect of X;_o given thatX;_; = 1. Only nodes up to level five are shown (maximum wkas- 7). The shaded nodes are included in the true model.

XOR (parity) functions of increasing order on the indica-
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sibly distant symbols in the past, cf. [18]. Both in the Haiad a
WH cases, the problem with allowing long distances is that th
number of parameters grows exponentially in the distarice. j1]
is, however, possible to allow only some, say up to third grde
cross-terms in the model. For instance, it is particulairtysde
(and common) to allow onljndividual effects of the symbols [3]
Xi 1, X;9,..., X;_k by usingk parameters/basis functions.
Individual effects without any cross-terms are regularbed
in (continuous-valued) autoregressive models, for whiakdo
can be directly applied [19]. The transformed Lasso makes i?]
simple to learn which effects, either individual or higreeder,

are present in the data. This is useful from the point of views)
of understanding (modeling) the data, as well as prediction 7

VII. CONCLUSIONS

The transformed Lasso approach provides efficient solstiors]
(by convex optimization) for finding flexible context models
As an example, in this paper showed that it can be used f(g?]
learning context trees (variable length Markov chains)e Th
basic VLMC case is extensively studied in the informatiori10l
theory literature, and thereby we believe that the tramséat |1,
Lasso has more potential in more general contexts than those
characterized by context trees. As noted above, this isaeti [12]
to some extent even by the Haar basis, which allows non-
hierarchical structures where internal nodes in the cdfttee [13]
are skipped. The generality of the approach will be morerclea
when using, for instance, the Walsh-Hadamard transfoomati (14,

In future work, we are planning to study algorithmic
improvements in order to further reduce the computation&lg,]
complexity of the method. We will also consider the statsiti
properties, such as consistency and rate of convergenatde [16]
to various transformations. For instance, as explained@bo 171
it seems important to omit the normalizing coefficients i 8]
the Haar transformation to guarantee reliable model setect
Also, restrictions to hierarchical and bounded-order nidee

interesting from both theoretical and practical point céwi [19]
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