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ABSTRACT
This paper studies the security and memorability of free-form mul-
titouch gestures for mobile authentication. Towards this end, we
collected a dataset with a generate-test-retest paradigm where par-
ticipants (N=63) generated free-form gestures, repeated them, and
were later retested for memory. Half of the participants decided
to generate one-finger gestures, and the other half generated multi-
finger gestures. Although there has been recent work on template-
based gestures, there are yet no metrics to analyze security of either
template or free-form gestures. For example, entropy-based met-
rics used for text-based passwords are not suitable for capturing the
security and memorability of free-form gestures. Hence, we mod-
ify a recently proposed metric for analyzing information capacity of
continuous full-body movements for this purpose. Our metric com-
puted estimated mutual information in repeated sets of gestures.
Surprisingly, one-finger gestures had higher average mutual infor-
mation. Gestures with many hard angles and turns had the highest
mutual information. The best-remembered gestures included sig-
natures and simple angular shapes. We also implemented a multi-
touch recognizer to evaluate the practicality of free-form gestures
in a real authentication system and how they perform against shoul-
der surfing attacks. We discuss strategies for generating secure and
memorable free-form gestures. We conclude that free-form ges-
tures present a robust method for mobile authentication.

Categories and Subject Descriptors
H.5.m. [Information Interfaces and Presentation (e.g. HCI)]:
Miscellaneous
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1. INTRODUCTION
Smartphones and tablets today are important for secure daily

transactions. They are part of multi-factor authentication for en-
terprises [23], allow us to access our email, make one-click pay-
ments on Amazon, allow mobile payments [36] and even access to
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Figure 1: This paper studies continuous free-form multitouch
gestures as means of authentication on touchscreen devices.
Authentication on touchscreens is normally done with a grid-
based method. Free-form gesture passwords have a larger pass-
word space and are possibly less vulnerable to shoulder surfing.
We note that there are no visual cues for the gestures, the ges-
ture traces are shown only after creating the gesture. This is for
the purposes of testing – a fully trained system does not show
the traces.

our houses [16]. Therefore, it is important to ensure the security of
mobile devices.

Recently, mobile devices with touchscreens have made gesture-
based authentication common. For example, the Android platform
includes a 3x3 grid that is used as a standard authentication method,
which allows users to unlock their devices by connecting dots in the
grid. Compared with text-based passwords, gestures could be per-
formed faster while requiring less accuracy. Although grid-based
gestures better utilize the capabilities of touchscreens as input de-
vices, they are limited as an authentication method. For example, a
visual pattern drawn on a grid is prone to attacks such as shoulder
surfing [43] and smudge attacks [1].

This paper studies free-form multitouch gestures without visual
reference, that is, gestures that allow all fingers to draw a trajectory
on a blank screen with no grid or other template. An example of the
creation process is depicted in Figure 1, where the gesture traces
are shown only after the gesture was created. This method bears
potential, because it relaxes some of the assumptions that make the



grid-based methods vulnerable. In particular, arbitrary shapes can
be created. Moreover, as more fingers can be used, in principle
more information can be expressed. Technically such gestures can
be scale and position invariant, allowing the user to perform ges-
tures on the surface without visually attending the display. Con-
sider, for example, drawing a circle as your password. This may be
beneficial for mobile users who need to attend their environment.
Nevertheless, although no visual reference is provided, mnemonic
cues referring to shapes and patterns can still be utilized for gen-
erating the gestures. Finally, when multiple fingers are allowed to
move on the surface and no visual reference is provided, observa-
tional attacks may be more difficult.

Previous work on gestures as an authentication method has fo-
cused on a few directions: one was whether the same gesture can
be correctly recognized in general [15, 31] or in a specific envi-
ronment such as handwriting motion detected by Kinect-cameras
[38], predefined whole-body gestures detected from wireless sig-
nals [28], and mobile device movement detected by built-in sensors
[30]. Studies of the security of gestures look at either the protection
of gestures from specific scenarios [43, 33, 38, 11], or an indirect
measurement of security [17, 25]. Further, these works have fo-
cused on understanding performance of template gestures repeated
by participants, not user-generated free-form gestures as the present
work.

Our goal is to understand the security of this method by measur-
ing mutual information and studying memorability in a dataset that
allowed users to freely choose the kind of multitouch passwords
they deemed best. We conducted a controlled experiment with 63
participants in a generate-test-retest design. At first, participants
created and repeated a gesture (generate), then tried to recall it af-
ter a short break (test) and recalled it again after a period of time at
least 10 days (retest). With this paradigm we were able to examine
the effect of time on how participants memorize their gestures. To
the best of our knowledge, we are the first to present a study on how
people actually recall free-form multitouch gestures after a delay.

To analyze the security of the gestures, we use a novel informa-
tion metric of mutual information in repeated multifinger trajecto-
ries. We base our metric on a recent one that was used for a very
different purpose, specifically the estimation of throughput (bits/s)
in continuous full-body motion [27], and it has not been used pre-
viously for authentication. Because multitouch gestures are contin-
uous by nature the standard information metrics cannot be directly
applied. What is unique to gesturing over discrete aimed move-
ments (physical and virtual buttons) is that every repetition of a
trajectory is inherently somewhat different [20]. However, when
this variability grows too large, the password is useless, because it
is both not repeatable by the user and not discriminable from other
passwords. The information metric should capture this variability.
In our metric, a secure gesture should contain a certain amount of
“surprise", that is, some turns or changes, while still being able
to be reproduced by the user itself. We also include a mutual in-
formation calculation to separate the complexity of controlled and
intended features of the gesture and that of uncontrolled and unre-
producible features.

Our results show that several participants were able to create
secure and memorable gestures without guidance and prior prac-
tice. However, many participants used multiple fingers in a trivial
way, by just repeating the same gesture. Our implementation of a
practical multitouch recognizer shows that the free-form gestures
can used as a secure authentication mechanism, and are resistant to
shoulder-surfing attacks.

Our contributions are as follows:

1. Report on patterns in user-generated free-form multitouch
gestures generated from 63 participants with a typical tablet;

2. Adaptation of a recent information theoretic metric for mea-
suring the security and memorability of gestures;

3. A design and implementation of a practical multitouch ges-
ture recognizer to evaluate free-form gestures applicability
for authentication;

4. A preliminary study on a shoulder-surfing attack that indi-
cates the potential of free-form gestures against such attacks.

2. RELATED WORK
In this section, we discuss related work on biometric-rich au-

thentication schemes, graphical passwords, and password memora-
bility.

2D gesture authentication schemes. Similar to free-form ges-
tures, biometric-rich authentication schemes are based on the idea
that when a user performs a gesture on a touchscreen they will do
this in such a way that features can be extracted that will uniquely
identify them later on [15, 31, 45, 3]. Similar ideas have been
applied to recognizing motions with Kinect [38]. Specifically, Sae-
Bae et al. [31] has shown that there is a uniqueness to the way
users perform identical set of template 2D gestures based on bio-
metric features (e.g. hand size and finger length). Frank et al. [15]
demonstrated that the way a user interacts with a smartphone forms
a unique identifier for that user, they showed that the way a user
performs simple tasks (e.g. scrolling to read or swiping to the next
page) is performed in a unique way such that the coordinates of a
stroke, time, finger pressure, and the screen area covered by a finger
are measurements that could be used to classify said user. Zheng
et al. [45], operating on similar principles, have studied behavioral
authentication using the way a user touches the phone – the fea-
tures extracted included acceleration, pressure, size, and time. Bo
et al. [3] performed recognition by mining coordinates, duration,
pressure, vibration, and rotation. Cai et al. [8] examined six dif-
ferent features (e.g. sliding) and compared data such as the speed,
sliding offset, and variance between finger pressures. De Luca et
al. [11] developed a system for authentication by drawing a tem-
plate 2D gesture on the back of a device using two phones con-
nected back to back. The security of the gesture is analyzed through
various methods by an attacker to replicate the original biometric
or graphical password – there is no analysis performed as to the
security content of the gesture, just its difficulty to be reproduced.
Shazad et al. [35] worked on a template-based touchscreen recog-
nition system on smartphones where they used distinguishing fea-
tures of a gesture other than the shape to recognize users. To that
end, they selected (besides the coordinates) features like finger ve-
locity, device acceleration, and stroke time. The motivation here
was to create a system where a gesture could not be stolen by sight
alone. Their password space, however, is limited to ten gestures
and is thus not user-generated or free-form.

3D gesture authentication schemes. 3D gesture recognition
can be performed, most recently, using camera-based systems (e.g.
Kinect) [38] or using wireless signals [28]. With the camera-based
systems, a user would trace a gesture out in space and the image
gets compressed into a two dimensional image and processed for
recognition [38]. Pu et al. [28] have shown that three-dimensional
gestures can be recognized by measuring the Doppler shifts be-
tween transmitted and received Wi-Fi signals.

Graphical and text-based passwords security and memora-
bility. Bonneau et al. [5] have studied alternatives to text-based



passwords for web authentication and how to comparatively eval-
uate them. There has been considerable work on cued graphical
passwords, a survey is offered by Biddle et al. [2] for the past
twelve years. In particular, there has been analysis on how Draw
a Secret (DAS) [19] type of graphical passwords measures up to
text-based passwords in terms of dictionary attacks [26]. Oorschot
et al. [26] go on to describe a set of complexity properties based on
DAS passwords and conclude that symmetry and stroke-count are
key in how complicated a DAS-password can be. They do not pro-
vide a direct measurement of this for DAS-password, the analysis
is restricted to constructing a model to perform a dictionary attack
and show that there are weak password subspaces based on DAS
symmetry. For click-based graphical passwords (e.g. PassPoints
[40]), Thorpe et al. [37] found they could seed attacks based on
human choices and find hotspots for dictionary attacks. For text-
based passwords Florencio et al. [14] studied people’s web pass-
word habits, and found that people’s passwords were generally of
poor quality, they are re-used and forgotten a lot. Yan et al. [42]
were among the first to study empirically how different password
policies affect security and memorability of the text-based pass-
words. Chiasson et al. [9] conducted laboratory studies on how
people recall multiple text-based passwords compared to multiple
click-based graphical passwords (PassPoints [40]). They found that
the recall rates after two weeks were not statistically significant
from each other. Everitt et al. [12] analyzed the memorability of
multiple graphical passwords (PassFaces [2]) through a longitudi-
nal study and found that users who authenticate with multiple dif-
ferent graphical passwords per week were more likely to fail au-
thentication than users who dealt with just one password.

Security Analysis of Graphical Passwords and Gestures. Most
security analysis focus on preventing shoulder surfing attacks from
hijacking a graphical password or gesture [43, 33, 11]. The meth-
ods depend on implementing techniques to make the input more
difficult to attack (e.g. making the graphical password disappear as
it is being drawn [43]). Another team designed an algorithm based
on Rubine [29] that told users whether or not their gestures are too
similar, although the metric for this is inherently based on the rec-
ognizer’s scoring capabilities and not on a measure of the gesture
by itself [22]. Schaub et al. [33] suggest that the size of the pass-
word space for a gesture is based on three spaces: design features
(how the user interacts with the device), smartphone capabilities
(screen size, etc.), and password characteristics (existing metrics of
security, usability, etc). Security in this context refers to a measured
resistance to shoulder surfing.

Continuing with security analysis, brute force attacks on gestures
have been examined in some studies [38, 44, 2]. Zhao et al. [44]
have examined the security of 2D gestures against brute force at-
tacks (assisted or otherwise) when using an authentication system
where a user will draw a gesture on a picture. A measure of the
password space is developed and an algorithm under which a ges-
ture in that space can be attacked. The attack is capable of guess-
ing the password based on areas of the screen that a user would be
drawn towards. This study does not concern itself with the security
of the gesture drawn, instead it is focused on where a user would
target in a picture-based authentication schema – it does not address
free-form gesture authentication. Serwadda et al. [34] showed that
authentication schema based on biometric analysis (including one
by Frank et al. [15]) can be cracked using a robot to brute force
the inputs using an algorithm that is supplied swipe input statistics
from the general population.

Finally, on non-security related work, Oulasvirta et al. [27] stud-
ied the information capacity of continuous full-body movements.
Our metric is motivated by their work. Specifically, they did not

study 2D gestures or their security and memorability or use for
an authentication system. When asked to create gestures for non-
security purposes, previous work [17, 25] indicates that people tend
to repeat gestures that are seen on a daily basis and are context-
dependent (e.g. that the gestures people perform are dependent on
whether they are directing someone to perform a task or receiving
directions on a task).

3. SECURITY OF GESTURES
In this section, we present our novel information-theoretic met-

ric for evaluating the security and memorability of gestures. We
briefly discuss why existing entropy-based metrics used to evaluate
discrete text-based passwords [4] are not suitable for gestures, and
move to present our metric for security and memorability of con-
tinuous gestures. We have modified a recent metric on analyzing
information capacity of full-body movements [27] to estimate the
security of a multitouch gesture.

Multitouch gestures on a touchscreen surface produce trajectory
data where the positions of one or more end-effectors (finger tips)
are tracked over time. The continuous and multi-dimensional na-
ture of multitouch gesture data poses some additional challenges
for defining the information content compared to regular text-based
passwords that only gauge information in discrete movements cor-
responding to key events (pressing the key down) caused by a sin-
gle end-effector (e.g. finger, cursor) at a time. Multitouch gestures
involve multiple end-effectors and continuous movement. To our
knowledge, no information theory based security metric has been
proposed for multitouch gestures as passwords.

The core idea is to demonstrate that there is an association be-
tween the security of a gesture password and the information con-
tent of the gesture. Intuitively, information content is a property
of a message or a signal (such as a recorded gesture): it mea-
sures the amount of surprisingness, or unpredictability, of the sig-
nal with the important additional constraint that any surprisingness
due to random (uncontrolled) component in the signal is excluded.
Information-theoretically, the surprisingness of a message, or more
precisely, of a source generating messages according to a certain
probability distribution, can be measured by the entropy H(x) as-
sociated with the random variable, x, whose values are the mes-
sages. For instance, the surprisingness of a key stroke chosen uni-
formly at random among 32 alternatives is log2(32) = 5 bits; five
times that of an answer to a single yes–no question. A similar
measure of surprisingness, differential entropy, can also be asso-
ciated to continuous random variables, but it lacks the same mean-
ing in terms of yes–no questions. For in-depth definitions of the
used information-theoretic concepts and their properties, please see
e.g. Cover and Thomas [10].

For text-based passwords, in the practically untypical case where
a password is chosen uniformly at random, the relationship be-
tween entropy and security is straightforward. If the alphabet size
is denoted by |X | and the password is of length n, then the en-
tropy is given by H(X) = n log2 |X | in the uniformly random
case. It then holds that the probability that an uninformed guess
is successful is 2−H(X) = |X |−n and the expected number of
guesses required to guess correctly by an uninformed attacker is
(2H(X) + 1)/2 = |X |n/2 + 1/2, about half the number of pos-
sible passwords of length n. However, when the password is not
chosen uniformly at random, the entropy has no direct relationship
with security and the required number of guesses can vary signif-
icantly between different kinds of password generation strategies
even if they have exactly the same entropy [4]. Despite this, the
entropy H(X) is used as a standard measure of password security
even in the non-uniform case [7]. More accurate definitions that



take into account the shape of the password distribution have been
proposed, see Bonneau [4].

For continuous passwords, one needs to take into account the tol-
erance for repeatability and recognizability. From an information
theoretic point of view, this aspect is captured by the concept of
mutual information. The mutual information I(x ; y) of two ran-
dom variables, x and y, gives the reduction in the entropy of one
random variable when another one becomes known:

I(x ; y) = H(x)−H(x | y), (1)

where H(x | y) denotes the conditional entropy. This applies to
both discrete as well as continuous variables. The mutual informa-
tion characterizes the information capacity of noisy channels with
the interpretation that x denotes a transmitted signal and y denotes
the signal received at the other end of the channel. In the context of
the present work, the transmitted signal is the intended gesture and
the received signal is the recorded or repeated gesture. The more
noisy the channel (less accurately repeated gesture), the lower the
mutual information, I(x ; y), and the capacity of the channel, and
vice versa. Note that a message can have high entropy (complexity)
without the mutual information (information content) being high
but not the other way around.1

The exact operational meaning of mutual information from a
communication point of view is that given a channel for which the
mutual information between its input and its output equals I(x ; y),
it is possible to reliably transmit information at the rate of I(x ; y)
bits per use of the channel. In other words, we can communicate
a choice among 2I(x ; y) different messages so that the receiver can
reliably recover the intended message. Getting back to the ques-
tion of password security, if the mutual information between the
intended and the recorded gesture is I(x ; y), and a gesture pass-
word is chosen uniformly at random among the 2I(x ; y) mutually
distinguishable choices, we obtain a result analogous to the case of
text-based passwords: the probability of success of an uninformed
guess is given by 2−I(x ; y) and the attacker will need on the aver-
age 2I(x;y)−1 + 1/2 attempts before the guessed gesture is identi-
fied as the correct one. Each bit of mutual information will double
the effort by the attacker. Thus, the mutual information defines
the effective key-length [6, 4] of gesture passwords, so that their
security becomes directly comparable to the security of text-based
passwords.

In practice, it can be questioned whether users will typically
choose gesture passwords uniformly at random [37, 44], although
the problem is hardly as pronounced as in the case of text-based
passwords where a significant portion of passwords are vulnerable
to simple dictionary attacks [4]. Another issue that interferes with
the above counting argument is the design of the recognizer that is
used to accept or reject a gesture. The information-theoretic limit
provides an upper bound on the effective key-length. The better
the recognizer, the closer to this limit the system will be able to
operate.

Based on the above insight, we can now ask what makes a ges-
ture password secure. Recalling Eq. 1, we see that the two factors
affecting the mutual information are i) the entropy (uncertainty or
surprisingness) of the intended gesture, H(x), and ii) the condi-

1In fact, to be precise, the inequality I(x; y) ≤ H(x) which fol-
lows directly from Eq. 1, holds only for discrete signals, such as
text-based passwords, but not for continuous signals, such as ges-
tures, because continuous signals can have negative (conditional)
differential entropy [10]. However, even though there is no theo-
retical guarantee of it, the intuition that a trivial gesture such as a
straight line cannot contain high information content holds true in
our experiments; see below.

tional entropy (remaining uncertainty) of the intended gesture given
the observed gesture,H(x | y). These two factors correspond to the
complexity and the accuracy of the gesture, respectively.

The metric we use for the information content in repeated ges-
tures is defined as the mutual information between two realizations
of the same gesture. The input to the metric consists of two multi-
touch movement sequences produced by asking a user to produce a
gesture and repeat it.

The first realization will be used to represent the intended ges-
ture, x, and the second realization will be denoted by y. The trajec-
tories record the locations of each of the used fingers over duration
of the gesture. In order to estimate the mutual information I(x ; y)
between two multitouch trajetories, which describes the security of
the gesture in the information-theoretic sense described above, a
number of steps are required.

Computation. Computation of the mutual information involves
a sequence of steps. First, we need to remove from the sequences
their predictable aspects, as far as possible. To do so, we fit a
second order autoregressive model for both of the sequences sepa-
rately. For sequence x, the model is:

xt = β0 + β1xt−1 + β2xt−2 + ε
(x)
t , (2)

where β0, β1 and β2 are parameters that we estimate using the stan-
dard least-squares method. The benefit of a second-order model is
its interpretability; it captures the physical principle that once the
movement vector (direction and velocity) is determined, constant
movement contains no information.

After parameter fitting, we obtain residuals r(x)t for each frame
t:

r
(x)
t = xt − x̂t = xt − (β̂0 + β̂1xt−1 + β̂2xt−2) (3)

The residuals r(x)t correspond to deviations from constant move-
ment and are hence the part of the sequence unexplained by the au-
toregressive model. They can be used to gauge the surprisingness
of the trajectory. The same procedure is carried out for sequence
y. We could now compute the differential entropy of the residual
sequences, but as stated above, it alone has little meaning and we
are in fact only interested in the mutual information between the
two sequences.

Before we compute the mutual information, dimension reduc-
tion is performed whereby multitouch gestures are represented us-
ing only as many features per measurement as the data requires.
The motivation for this step is that one cannot simply add infor-
mation in the movement features in multitouch gestures together.
Instead, any dependencies between the fingers should be removed.
Intuitively, a multitouch gesture with all fingers in a fixed constel-
lation contains essentially the same amount of information as the
same gesture performed using a single finger. Dimension reduction
is performed using principal component analysis (PCA), which re-
moves any linear dependencies. Following common practice, the
number of retained dimensions is set by finding the lowest num-
ber of dimensions that yields an acceptably low reprojection error
(e.g. mean square error [27]).

Once the movement features have been processed by a dimen-
sion reduction technique (PCA), we treat them independently which
amounts to simply adding up the information content in each fea-
ture in the end. Hence, the following discussion only considers the
one-dimensional case where both x and y are univariate sequences.

Another issue in gesture data is that the two gestures x and y are
often not of equal length due to different speed at which the ges-
tures are performed. This can be corrected by temporally aligning
the sequences using, for instance, Canonical Time Warping [46].
The result is a pairwise alignment of each of the frames in x and



y achieved by duplicating some of the frames in each sequence.
These duplicate frames are skipped when computing mutual infor-
mation to avoid inflating their effect.

Finally, we form pairs of residual values (r(x)t , r
(y)
t ) correspond-

ing to each of the frames in the aligned residual sequences and
evaluate the mutual information. Since the mutual information is
defined for a joint distribution of two random variables, we model
the residual pairs (r

(x)
t , r

(y)
t ) in each frame 1 ≤ t ≤ n using a

bivariate Gaussian model, under which the mutual information is
given by the simple formula

I(x ; y) = −n
2
log2(1− ρ

2
x,y), (4)

where ρx,y is the Pearson correlation coefficient between x and y.
By substituting the sample correlation coefficient, r, estimated

from the data in place of ρx,y and subtracting a term due to the
known statistical bias of the estimator (see [27]), we obtain the mu-
tual information estimate

Î(x ; y) = −n
2
log2(1− r

2)− log2(e)/2, (5)

where log2(e) ≈ 1.443 is the base-2 logarithm of the Euler con-
stant.

The total information content in the gesture, based on two repe-
titions, is estimated as the sum of the mutual information estimates
in each of the movement features after dimension reduction.

Summary. The metric has some appealing properties to serve
as an index of security. First, a distinctive feature of our framework
that sets it apart from the work on text-based password security is
that in dealing with continuous gestures, it is imperative to be able
to separate the complexity due to intended aspects of the gesture
from that due to its unintended, and hence non-reproducible, as-
pects. This is the main motivation to use mutual information as a
basis for the metric. Second, as mutual information under the bi-
variate Gaussian model is determined by the correlation between
the movement sequences (residuals), it is invariant under linear
transformations such as change of scale, translation, or rotation.
Hence, the user need not remember the exact scale, position, or
orientation of the gesture on the screen. The metric is also inde-
pendent of the size and the resolution of the used screen unless, of
course, the resolution is so low that important details of the gesture
are not recorded. Third, the time warping step ensures that varia-
tion in the timing within the gesture has only slight effect on the
metric. Fourth, the metric enables comparison between gestures
of unequal lengths and between single-finger and multi-finger ges-
tures, as well as across different screen sizes and resolutions, on a
unified scale (bits).

4. METHOD
Our study design builds on a generate-test-retest paradigm where

participants were first asked to create a gesture, recall it, and re-
call again during the second session, a minimum of 10 days later.
Participants were told that they should generate secure gestures as
they would do in real situations and that their ability to recall them
would be tested later. They were not given any hints about what
a secure gesture might be. For understanding the generation and
recall process, we used a mixed method approach: after generat-
ing a gesture, all participants filled a questionnaire on workload
(NASA-TLX [18]) after each task and a short survey at the end of
the second session.

We note that a somewhat similar generate-test-retest design has
been used before by Chiasson et al. [9] to compare multiple pass-
word inference to recall between text-based and graphical pass-

words (PassPoints [40]). However, our work differs for the fol-
lowing reasons: we use TLX forms, focus on free-form multitouch
gestures, include more repetitions and recalls, do not require a sep-
arate login phase, and postpone questions to the end of a trial.

Next, we describe our volunteer participants, our apparatus, data
preprocessing, experiment design and procedure.

Participants. We recruited participants with flyers, email lists,
and in-person in cafeterias. We required the participants to be 18
years old or over and familiar with touchscreen devices. We re-
cruited 63 participants in all, from the ages of 18 to 65 (M = 27.2,
SD = 9.9); 24 are male and 39 are female. Their educational back-
ground varies: 22 have high school diplomas, 23 have a Bachelor’s
degree, 16 have a graduate degree and two have other degrees.

All 63 participants completed session 1 of our study, and 57 of
them returned and participated in session 2. As compensation, par-
ticipants received $30 for completing the whole study. They also
participated in a raffle of three $75 gift cards.

We recruited our participants in two batches: first in May 2013
(33) and second in June 2013 (30). Further, in order to analyze the
effect of varying time on recall, the gap between the two sessions
of the study varies. The mean time gap for the first participants is
14.53 (SD = 5.81) days and 29.52 (SD = 7.57) days for the second.

Our study was approved by our Institutional Review Board.
Apparatus. The gesture data was recorded on a Google Nexus

10 tablet with Android 4.2.2 as the operating system, at an average
of 200 frames per second (FPS).

Preprocessing. The raw data files were preprocessed using MAT-
LAB. In the preprocessing, each gesture file is resampled to 60
FPS, to reduce the effect of the uneven sample rate.

The resampling was done by cubic spline interpolation, via MAT-
LAB’s built in function interp1.m. For the x and y coordinates for
each finger, it takes the recorded timestamps and resamples to a
constant rate. The reduction from 200 to 60 FPS takes into account
a large amount of duplicate data created by the touchscreen, and is
necessary to prevent artifacts in the resampling.

FFT analysis showed that the frequency reduction combined with
the cubic spline method results in low pass filtering of the data, re-
moving high frequency jitter introduced by the touchscreen hard-
ware, but preserving the low frequency content of the gesture data.
To deal with the uneven sample rate in the non-interpolated data,
the Lomb-Scargle [32] method was used.

At this stage, artifacts in the raw data were detected and corrected
as well. The primary such artifact is when a participant fails to
place their fingers on the touchscreen in the same order between
consecutive trials. As fingers are numbered sequentially upon being
detected by the touchscreen, this places them out of order, resulting
in artificially low scores in the later analysis. This was corrected by
comparing the starting coordinates of each finger, and correcting
the order to be consistent.

Experiment Design. The experiment followed a 17 x 2 mixed
factor design with a repeated measurement variable of gesture rep-
etition (17 levels) and a between-subject variable of time gap be-
tween sessions (2 levels). In the 17 gesture repetitions, 10 were
performed during the creation process, followed by another 2 repe-
titions after a short distraction, and 5 were performed in the second
session.

Procedure. We conducted a two-session study. The second ses-
sion was held after a minimum 10 days after the first session. The
details of the procedure were as follows.

First session: First, the participants were introduced to the study,
which included reading and signing the consent form, discussion of
their rights as participants and how they will be compensated.



Gesture Creation (Generate): Each participant was given the
same tablet and was asked to create what they thought would be
a secure gesture by drawing on it. The participants were asked
to generate a gesture that they think others could not guess, but
they could also remember later. The participants could retry until
they felt satisfied with their gesture. Then the participant repeated
the same gesture for an additional nine times on the same tablet.
Participants were presented with a blank screen for drawing their
gestures. The application did not limit the number of fingers par-
ticipants use to create the gesture. However, the number of fingers
used could not be changed during the drawing process, that is, the
gesture has to be drawn continuously without lifting any fingers
from the screen. Once it is completed, the gesture is displayed on
the tablet’s screen as a colored curve line, as shown in Figure 1.
The display was checked visually, to verify that the gesture was
recorded properly.

Subjective Workload Assessment: The participants were asked
to fill out NASA-TLX form regarding the creation process.

Distraction: The participants were asked to perform a mental
rotation task and count down from 20 to 0 silently.

Gesture Recall 1: The participants were asked to recall the ges-
ture by repeating it twice on the same tablet using the same appli-
cation.

Demographic questions: The participants were asked usual de-
mographics questions that were aggregated and reported above.

Second session:
Gesture Recall 2: The participants were asked to recall their

gestures by repeating it for five times on the same tablet using the
same application.

Subjective Workload Assessment: The participants were asked
to fill out a NASA-TLX form regarding the recall process.

Short Survey: The participants were asked some questions about
the recall process and other thoughts about the study.

5. RESULTS
For each participant who completed both sessions, a total of 17

gesture repetitions were recorded. In all, 1038 recordings were
generated, as six participants did not attend session 2, and three
additional traces were not completed. The groups of repetitions are
summarized in Table 1. Because the estimated Mutual Information
(Î), is computed in pairs, Î is reported as the mean for the relevant
repetitions.

Session Trial # Group
1 1-10 Generate
1 11-12 Recall1
2 13-17 Recall2

Table 1: Repetition Groups by Session # and Trial #. Î was
computed for all pairs of repetitions each group.

5.1 Factors Affecting Security
Figure 2 shows the mean Î of each repetition across all gestures

versus the repetition number. During gesture creation in Generate,
Î trended upwards from repetitions 1-4, and then leveled off from
repetitions 5-10. This shows that it takes at least three repetitions
for a participant’s gesture to become stable.

A second major feature is that by Recall1, repetition 11 and 12,
the Î has dropped suddenly, despite a delay of only a few minutes.
Surprisingly, more than 10 days later, Î did not drop much further
in Recall2. The drop between Generate and Recall1 was more se-
vere for single finger gestures, and the drop between Recalls 1 and
2 was more severe for multifinger gestures. In both cases, Î stabi-
lized, at around 27 bits for single finger and 15 bits for multifinger
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Figure 2: Mean Î and mean gesture duration vs repetition.
Top: Within Generate, mean gesture duration trended down-
wards as gestures increased in speed. Bottom: Over the same
repetitions, Î trended upwards before leveling out. It then
dropped quickly between Generate and the two Recalls.

gestures, having dropped from an initial value of around 35 and 20
bits respectively.

Figure 2 also shows the amount of time taken to record each rep-
etition of each gesture. This duration also changed with repetition.
As the number of repetitions increased, the mean duration of each
repetition trended downwards from around 3 seconds to around 2.
Unlike Î , it remained stable from there through the two recalls. In-
terestingly, during Recall2 the multifinger gestures sped up from
2.5 seconds to under 2 seconds, whereas the single finger gestures
stabilized.

A plot of the mean Î of each gesture versus mean duration ap-
pears in Figure 3. This shows that many gestures with a short du-
ration also had a low Î . The highest Î gestures had a duration of
between 2 and 5 seconds. Î increased with duration, but had a poor
fit, explaining only 5% of the variation, as the highest duration ges-
tures were either very high or very low Î . Long duration could
thus indicate either a complex, careful gesture, or a relative lack of
practice.
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Figure 3: Mean Î vs. mean gesture duration. The r2 value
indicates a poor linear fit, showing little correlation. However,
the highest Î gestures were all longer than 2 seconds, suggesting
that some degree of precision is required.

Figure 4 shows that majority of the user-generated gestures had
relatively low Î with only a small tail of high Î . For Generate, the
distribution had a mean of 27.72 bits, and a standard deviation of



26.30 bits. However, taking only the second, stable half of Gener-
ate, the mean rose to 33.42 bits, with a standard deviation of 31.13
bits. In both cases, the standard deviation was about the same size
as the mean, indicating a large variability. The histogram shifted as
well, becoming slightly more uniform. Although many user chosen
gestures score poorly, some scored highly as well, suggesting that
it is possible to create guidelines to emulate the characteristics of
high scoring gestures.
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Figure 4: Histogram of mean Î of Generate, per gesture, show-
ing low scoring, biased distribution.

We compared mean Î with participant age and gender. There
was a mild negative relationship between Î and age, with a r2 of
0.08. Seven of the top eight gestures were created by participants
under the age of 25, with the remaining one under the age of 30.
Mean Î for male participants (N=23) was 29.82 bits and mean Î for
female participants (N=40) was 25.00 bits.

Finally, we looked for defining visual characteristics of the high-
est and lowest scoring gestures. We ranked each gesture by its Î
in each of the five categories, and evaluated the top five in each
category. There was a high correlation between the categories, and
as such, the top five gestures for each category overlapped signifi-
cantly, having only nine unique gestures. The best gestures fell into
two groups, angular paths with many hard turns, and signatures.
This matched our expectations, as the algorithm looks for both con-
sistency between trials and for large deviations from a straight line.
The defining visual feature of the lowest scoring gestures was hav-
ing only a few, gentle curves. Many were multifinger, with the
additional fingers merely copying the motion of the first. A gallery
appears in Figure 5.

5.2 Security of Multitouch Gestures
As seen in Figure 2, the mean Î of multifinger gestures is lower

than that of single finger ones. We compared Î of these gestures to
estimate how much additional information is added by additional
fingers. Figure 6 shows the higher mean Î of single finger ges-
tures, and the rarity of gestures using more than two fingers. Re-
call2 showed a greater difference in Î than Generate, as a number
of participants failed to use the same number of fingers when they
returned in session 2. Of the 63 participants, 32 decided to create
multifinger gestures, and 31 chose to create single finger gestures,
with only three participants using more than two fingers. Partici-
pants were prompted that they could use as many fingers as they
liked, but were not instructed on how many to use.

We performed regression analysis on the effect of the number of
fingers on Î . The result shows that the effect is significant for the Î
of Generate, b = 17.948, t(57) = 2.763, p = .0077, while not for
the Î of Recall2, b = 11.898, t(57) = 1.841, p = .07. However,
the regression model only explained 11.8% of variance in the Î for
the significant effect. In short, the number of fingers is not the most
major factor affecting Î .
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0 500 1000 1500

0

500

1000

1500

2000

2500
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Î = 4.57

Finger 1

Finger 2

Figure 5: Gestures ranked by Î for Generate and Recall2. Top:
Best three gestures, showing the many tight turns characteristic
of high scoring gestures. Bottom: Worst three gestures, Low
scoring gestures had few, gentle turns.
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Figure 6: Î and number of fingers used to perform gesture,
and change between sessions 1 and 2. This shows the both the
higher performance of single finger gestures, as well as the rar-
ity of using more than two fingers.

5.3 Factors Affecting Memorability
Figure 7 shows the best remembered gestures. To evaluate mem-

orability, we computed the cross-group Î of Generate and Recall2,
with pairs consisting of one from each group, instead of both from
within a group. However, the large differences in Î from gesture
complexity obscured the differences from repetition accuracy, as
the cross-group Î has a linear fit with an r2 of 0.65 with the Î of
Generate. We compensated by dividing the mean cross-group Î for
each gesture by its Î from Generate.

Gestures that scored highly on the resulting ratio have the best
consistency between Generate and Recall2, as compared to the con-
sistency within Generate. The top gestures for memorability are
shorter and simpler than the top gestures for security.

Once we had a way of comparing how well gestures are remem-
bered, we investigated what might cause the large difference in Î
between sessions. We compared the memorability ratio to the time
interval between Generate and Recall2, as seen in Figure 8. The
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Figure 7: Top: Best 3 Gestures by memorability. These have
a shorter length and decreased complexity compared to high Î
gestures. Bottom: These 3 gestures had the greatest difference
in path between fingers. Two of the three are a simple mirror-
ing of the path (Left, Middle), while only (Right) adds a large
amount of Î .

linear fit however, had a r2 of less than 0.03, showing minimal de-
pendence on the delay between sessions.
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Figure 8: Memorability vs interval between sessions. This plot
compares the relative quality of gesture recall versus time be-
tween Generate and Recall2. There was no significant correla-
tion with a (r2 < 0.03).

5.4 Individual Differences
Given the surprising deficiency of the multifinger gestures, we

looked at specific examples. Only three participants used multi-
touch gestures with significantly different motions between fingers,
and in two of the three cases they were simple mirrorings of the mo-
tion. These three gestures appear in Figure 7. All other cases were
just translations of the same trace, as if the gesture were made with
a rigid hand. Gestures with minimal additional information per fin-
ger were in part scored low because all gestures were run through a
PCA algorithm to remove redundant information, prior to analysis
of Î .

Participants also commonly performed several categories of er-
ror. Despite instructions, 19 of the 32 multifinger using participants
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Figure 9: Mean score and corresponding 95% confidence in-
terval for each item on the TLX form, for the two sessions of
our study. The mean scores of each item in session two were
lower than those of session one.

placed their fingers down in an inconsistent order between sequen-
tial trials. This was fixed in preprocessing to ensure that compu-
tation of Î used the same fingers. In addition, some participants
rotated the tablet either during or between sessions. This stands
out visually when comparing traces, but the metric is negligibly af-
fected by rotations. This was verified by comparing the result with
its gesture counterpart from session one or two which did not have
a rotation. Some of the lowest scoring gestures featured a rotation
between repetitions, and all gestures with rotation between sessions
scored poorly on cross-session Î . However, the gestures with cross-
session rotation also scored poorly within a session. Only one ges-
ture with rotation between sessions scored significantly higher on
its within session Î than on its cross-session.

Given that error containing gestures scored poorly, even when
excluding those repetition pairs containing the errors, we take these
errors as an indicator of poor recall. Extra fingers or complex
shapes are no guarantees of a high score, without consistent execu-
tion. Attention when creating the gesture is thus important, practic-
ing accurate repetition rather than just going through the motions.

5.5 Subjective Task Load
This section contains the analysis of the study’s TLX forms. For

each session of our study we asked participants to fill out one TLX
form, which is used to assess subjective workload of given task.
Figure 9 shows the mean score and corresponding 95% confidence
interval for each item in the TLX form, for both sessions.

Figure 9 suggests that the mean scores of session two are lower
than those of session one. To prove the point we conducted a
non-parametric repeated-measure Wilcoxon signed-rank test on the
scores of each item from the two sessions, given the fact that the
data does not follow a normal distribution. The result is shown in
Table 2.

From Table 2 we can see that except for Frustration, all items
show significant differences in scores between sessions. It is safe
to say that given the data we have, it is very likely that partici-
pants felt the recall task was easier than the creation task in terms



Item Mental Physical Temporal
p value <0.001 0.025 <0.001
effect size -.038 -0.21 -0.34
Item Performance Effort Frustration
p value 0.029 0.0013 0.072
effect size -0.20 -0.30 -0.17

Table 2: Subjective task load components compared between
the two sessions. Statistical significance calculated using
Wilcoxon signed-rank test. The difference was significant at
the 0.05 level for all components except Frustration.

of workload. This could be because of increased practice or famil-
iarity, and intuitively agrees with the increase in gesture speed seen
in Figure 2.

6. PRACTICAL AUTHENTICATION
SYSTEM IMPLEMENTATION

In this section, we describe our extension to a practical single
touch gesture recognizer for multitouch gestures, and the results of
how the participants’ gestures would perform in a real authentica-
tion system based on our multitouch recognizer. We also present
our trial on shoulder surfing attacks that indicates how free-form
gestures are robust against shoulder surfing.

A recognizer works by taking a user’s gesture, passing it through
a recognition algorithm, and computing whether or not the gesture
is a successful match for a stored template. The device will store
a series of templates of which the gestures are compared to for
authentication. The best score is used and compared to a threshold
value. We have the following assumptions for the recognizer: 1) lo-
cation invariance: No matter where the correct gesture is drawn on
the screen, it should be authenticated correctly. 2) scale invariance:
No matter what size the correct gesture is drawn to on the screen, it
should be authenticated correctly. 3) rotation invariance: No matter
what angle the correct gesture is drawn at on the screen, it should
be authenticated correctly. Location and scale invariance are impor-
tant when dealing with cross-platform authentication. The screen
dimension inherently limits what size the gesture can be drawn to
and the area over which a gesture can be performed would cause
wild variations in where it would be drawn depending on the user.
Rotation invariance is useful for reducing computational complex-
ity when dealing with individualized free-form gestures as we have
in our data set. We note that authentication system designers can
opt to restrict or relax these assumptions. Scale invariance, for ex-
ample, is not inherently necessary. The size of a gesture can be a
feature of that gesture depending on how the recognizer is imple-
mented.

We elected to implement and extend the Protractor [21] recog-
nition algorithm, a popular nearest neighbor approach. Given the
gesture templates obtained and the two recall sets, we would like
to measure how well the gestures perform. Protractor is an im-
provement upon the $1 Recognizer [41], having both a lower error
rate [21] and an effectively constant computational time per train-
ing sample as compared to $1’s growing cost per training sample.
Protractor presents itself further as an attractive algorithm for the
data under consideration since it has low computational complexity
compared to other techniques, for example, Dynamic Time Warp-
ing (DTW) [41] and Hidden Markov Models (HMM) [13, 24]. In
general, Protractor’s error rate falls with an increasing number of
training samples and at 9-10, the error rate is less than 0.5% [21].

Below we describe first the single touch Protractor and we follow
with our extension of it to multitouch gestures.

Upon the input of a gesture, the algorithm splits the work into
four parts:

1. A gesture is resampled into N equally spaced coordinates.

2. The gesture is translated to the origin of the plane.

3. After translation, the angle between the first point of the ges-
ture and the origin is measured. Then, the entire gesture is
rotated until that angle becomes zero degrees.

4. To minimize the distance between the gesture and a template,
they need to be aligned such that the angle between them is
the smallest. This angle is easily calculated as being the dot
product between the gesture and the template. The gesture is
subsequently rotated by the dot product angle.

5. The cosine distance is then measured between the template
and the gesture. The inverse of this distance defines the
recognition score. The smaller the cosine distance, the better
the match (and correspondingly, a larger score).

6. The score is compared to a threshold value. If it is greater
than the threshold, the gesture and the template are said to
match. If it is less than the threshold, they are said not to
match.

Again, Protractor is a single touch recognition algorithm. Other
projects considering multitouch gestures have used more general
techniques for gesture recognition instead of a nearest neighbor ap-
proach. For example, Sae-bae et al. [31] applied DTW to deal
with their multitouch gesture set. For the authenticator to remain
practical, it needs low computational complexity, high speed, and
low error rate per template to be implemented on a mobile device
– Protractor can meet this demand. As we are dealing with multi-
touch gestures, it is necessary to modify Protractor. The accounting
procedure is as follows:

1. Each finger is split into its own set of points and passed
through the algorithm and compared to templates of similar
fingers and the score is computed for each individually.

2. They are then averaged together.

3. There are provisions built into place to ensure the authenti-
cation failure for the wrong number of fingers. In the case of
n fingers versus m, the number of fingers is compared. If n
is equal to m, then the recognizer continues to the next step.
If n is not equal to m, then the recognizer immediately stops
the computation and registers the score as 0: a failure.

4. This score is then compared to the threshold value. If the
score is greater than or equal to the threshold then it is con-
sidered a positive authentication, otherwise, it is negative.

It is important to note that the threshold should be set high enough
such that authentication failure is all but guaranteed for gestures
that are being matched to templates other than their own.

As a reminder, when the participants began the study, they were
asked to repeat their gestures ten times. Each of these ten trials
is used by Protractor as templates for that gesture. There are two
authentication data sets under consideration here: the first is where
participants were asked to replicate their gesture after a distraction
and the second where they were asked to replicate their gesture
after at least 10 days.



     























     























Figure 10: This figure shows the ROC curve for the recognizer
across the two data sets with variable template numbers – ’n’
corresponds to the number of templates. The top plot is the
first data set and the second plot is the second data set. The
ROC curve is a measure of the performance of a binary classi-
fier, the closer the top left corner of the plot moves towards the
vertical axis, the better the performance. The first data set is
closer to that corner than the second, showing that the second
data set performed worse and must have a higher equivalent
error rate. As the number of templates increases, the closer
the curve shifts up and the better the recognizer performs. In
general, the recognizer classified the first data set with a lower
EER than the second set despite those being the same gesture
types, indicating a weakness on the parts of participants to ac-
curately replicate their gestures. The EER values can be read
in Table 3.

6.1 Recognizer Performance
We wanted to know how accurately the recognizer is performing

across the different gestures in our data sets. To quantify this in
terms of a numerical estimate and visualize it, we elected to obtain
a Receiver Operating Characteristic (ROC) curve and derive from
it an Equivalent Error Rate (EER). The ROC curve gives the vi-
sual representation of how our classifier is performing and the EER
value gives us the numerical estimate for how it is performing: the
lower the EER is, the more accurately the recognizer is performing.

To find the EER value we need to find the rate at which the True
Positive Rate (TPR) is equivalent to the False Positive Rate (FPR).
These are defined as:

TPR =
True Positives

True Positives+ False Negatives
(6)

FPR =
False Positives

False Positives+ True Negatives
(7)

These values are dependent on the threshold parameter that the
score computed by the recognizer is compared to. To generate an
ROC curve, one must vary the authentication threshold parameter
and measure a (TPR,FPR) value for each point and plot them. From
there, we can determine the EER visually.

At low threshold values, the classification system would be ac-
cepting virtually any gesture as a validation against any template
gesture. At high values, all input gestures would be rejected against
any other template (even if it is being matched to the correct one).
As the EER value climbs higher, the reliability of the gesture or
the recognizer can be called into question since false positives are
propagating through the system. In the case of our system, the tem-
plates are not matched to one another. We have two true cases for a
given gesture in the first data set and five true cases for a given ges-
ture in the second data set. All other gesture attempts in all other
data sets (exclusively across these two sets, no intersections) are
considered false cases.

As such, what this means is that the ROC curves and the EER
values are across the entire data set and not per gesture. This is
done to avoid generating ROC curves and EER values for every one
of the different gestures, which would be an overabundance of data
that is not altogether useful. The EER and ROC values given here
can be thought of as a measure of performance of the recognizer
across the entire set rather than the recognizer and a single gesture.

# of Templates Set 1 EER Set 2 EER
2 7.07% 15.97%
4 6.42% 14.45%
6 4.13% 13.94%
8 4.10% 13.09%

10 3.34% 13.16%

Table 3: EER Values, Ranked by Template Number. Listed
above are the EER values corresponding to Figure 10. As the
number of templates increases, the lower the EER value drops
and thus the lower the error in the system and the better the
recognizer performs. The lower Set 2 values correlate to the
shape of the curves represented in Figure 10: as EER decreases,
the better the curve appears. The EER values for the recog-
nizer reduce more slowly with 6 training templates, indicating
this to be the ideal starting point when asking a user to train
the system.

As for how well the gestures and the recognizer performed in
terms of accuracy across the data sets, that information can be
gleaned from the ROC plots given in Figure 10 and the EER values
shown in Table 3. As a reminder, the further away an ROC curve
moves from being a 90-degree box (an EER of 0%), the worse it
is performing. Figure 10 shows the ROC curves with a varying
number of template sizes. As the number of templates increases,
the ROC curves are pushed further towards the corner and the EER
values are lowered, telling us that a larger number of training tem-
plates leads to improved accuracy. For the first set, the best result
(with 10 templates) is 3.34% and the best result for the second set is
13.16%. Note that the higher EER on the second data set does not
speak to the weakness of the recognizer but rather those of the par-
ticipants – some participants who returned to attempt their gestures
in the second set forgot the number of fingers they used, registering
immediate authentication failure. As such, the increased error in
the second set as compared from the first set can be attributed to
recall problems rather than weaknesses in the recognizer’s ability
to classify gestures.

6.2 Threshold Selection
The final stage of the recognition process, the threshold compar-

ision, determines whether or not a gesture is classified as a positive
or a negative. So, naturally, the question becomes: How does one
select the optimal threshold? Ideally, a perfect threshold would be



set at a point where it is possible to accept only the correct gestures
and reject all others.

The starting point for considering the optimal threshold would
be the ROC curve and the EER. Recall that the EER is the rate at
which the true positive rate equals the false positive rate. The EER
value occurs at a specific tuning threshold. Meaning, at this specific
threshold, the system rejects the same number of true positives as it
accepts false positives. An illustrative example is this: if the EER
is 2%, then that means 2 out of 100 true attempts are rejected and 2
out of 100 false attempts are accepted. Selecting a threshold above
or below the EER threshold can tighten or relax the admission re-
quirements.

At this point, the threshold selection becomes application de-
pendent. For authenticating into a bank, for example, a 2% false
acceptance rate is unspeakable. As such, the threshold would be
set at a point far above the EER threshold. When this happens, the
false acceptance rate drops drastically but the false rejection rate
would increase just as drastically; now there is a threshold where is
a 0.01% false acceptance rate but a 10% false rejection rate. This
is a tradeoff that a bank could accept.

For most gestures in this set, false positives are not an issue.
Individual EER ratings on a per gesture basis are quite small, as
compared to the larger EER of the gesture set. Selection at this
threshold for gestures in the data set would be acceptable for au-
thentication.

6.3 Shoulder Surfing Attack Trial
We conducted a preliminary study to understand how free-form

gestures would resist shoulder surfing attacks. Towards this end, we
recruited seven participants from computer science and engineering
schools who had considerable experience with touchscreens. We
assume that these volunteers would likely to be more skilled with
attacks than the general populace to limit confounding factors. One
of the seven volunteers acted as the target who performs gestures
and the other six would be attackers who try to replicate target’s
gestures.

We chose three qualitatively different gestures as shown in Fig-
ure 11 as examples. In the experiment, we first had the target of the
attacks exercise and get familiar with all three gestures; then we
collected gesture data from the target in a way matching the orig-
inal dataset: for each chosen gesture, the target first repeated ten
times; after a short distraction task, which included mental rotation
and countdown, the target repeated another two times. Finally, we
video recorded one additional repetition the target made for each
gesture. Instead of having the target performing gestures in person
for every attacker, we played video recordings of that process to
the attackers, which ensured attackers would not be affected by any
inconsistency or difference within the performance of the target.

During the shoulder surfing process, each attacker was presented
with all of the three videos, each of which contained one of the
chosen gestures. The attackers were always seated at the same spot,
adjacent to the a chair at the table where the display was setup. This
was done in order to emulate shoulder surfing. The order of videos
played to each attacker was produced in a Latin square to prevent
any carry over effect on the attackers’ performance. Each video
was played only once for each attacker. Then attackers were told to
repeat the gesture they observed from the video for five times with
the purpose of replicating it as well as possible.

We measured shoulder surfing effectiveness of a gesture using
our multitouch recognizer discussed above. The templates we used
are the 10 gestures from the Generate phase of the target. Table 4
shows the result. All scores displayed in the table are the maximum
score of that category, that is, the best attempt of either the target
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Figure 11: Gallery of Gestures used for shoulder surfing. In or-
der from left to right represents Gesture1, Gesture2, and Ges-
ture3 generated by the Target.

or attackers to replicate the gesture. Scores that are rendered as a
0 are because of the fact that the recognizer immediately rejects
template-gesture matching where the finger count is different.

Participant Gesture1 Gesture2 Gesture3
Target (Recall) 4.36 4.31 6.75
Target (Video) 2.95 4.51 7.27
Attacker 1 0.50 0.00 0.97
Attacker 2 0.43 3.08 0.00
Attacker 3 1.07 0.00 0.00
Attacker 4 0.27 0.00 0.94
Attacker 5 1.10 2.19 3.96
Attacker 6 0.57 0.00 0.53

Table 4: Table of best scores for each attacker for each gesture.
The results show that none of the attacks were successful: the
passing score for the recognizer can be set so that the Target can
authenticate with ease and the attackers are not authenticated.

From the Table 4 we see that there is not any overlapping for
scores of target and attackers. This indicates our recognizer cor-
rectly differentiates attempts made by the target and that by attack-
ers. In general, the target is always authenticating quite well across
the the three gestures in comparison to the poorer scores of the
attackers. The only opportunity where an attacker became close
enough to steal the gesture (Attacker 2, Gesture 2) still has a one
point cushion around it – high enough to prevent authentication by
an attacker if the threshold is set appropriately.

7. DISCUSSION AND CONCLUSIONS
We have presented the first study of using free-form multitouch

gestures for mobile authentication. Towards the end of analyzing
the security and memorability of the gestures, we presented a novel
metric based on computing the estimated mutual information of
repeated gestures. We designed and implemented a practical mul-
titouch recognizer as an authentication system, and studied the ro-
bustness of free-form gestures against shoulder surfing attacks.

Overall, the results are favorable to user-generated free-form ges-
tures as a means of authentication on touchscreen devices.

Security, as estimated by Î , is high enough for most passwords
the users generated. We learned that multifinger gestures do not
show high security in this measure. It should be noted though,
most of multifinger gestures in our dataset are gestures of multiple



fingers repeating the same simple shape, for example, drawing a
circle with three fingers. We believe that the participants may over-
estimate the increase in security by merely increasing number of
fingers. When they decided to use multiple fingers, they tended to
choose a simple shape because they might have believed multiple
fingers gave them high security despite simple shape. Such incon-
sistency in participants’ perception and the actual security could be
advised against in the password generation user interface.

We also learned that, unlike with the length of a text-based pass-
word [39], the duration of a gesture does not play an important role
in Î . Intuitively speaking, complex gestures with high Î should
take longer time to perform. However, we learned that even brief
gestures can have high security. Gestures with duration less than
two seconds have an average Î less than 2% lower than the average
Î for all gestures.

By looking at our dataset, we found out that some simple shapes,
even circles, would actually take more time to complete than com-
plex ones like signatures. The possible reasons warrant further
studies. At this point, we suspect that complex gestures are also
more difficult to reproduce precisely. A good secure gesture should
have both: inherent complexity and easiness to perform. It is inter-
esting in this light that signatures are particularly good and resulted
in very high Î . This means, although very complex to perform,
participants still managed to repeat them quite well.

When it comes to memorability, the data shows that users need a
few repetitions to achieve a stable password. Like with text-based
passwords, the generation of passwords is experienced as more de-
manding by users than recall. After generation, Î drops after an in-
terval of more than 10 days by about 16%. However, they are still
recognizable as unique passwords. In addition, for a participant, the
value of Î varies as they repeat the gesture. By continuously repeat-
ing, Î tends to stabilize. Unlike the text-based passwords, which
one has to input exactly, free-form gestures involve many sources
of variance, which would be very difficult to keep constant across
different attempts. Therefore, one alternative way of reporting se-
curity of gestures could be a range similar to confidence interval,
instead of an exact value. Moreover, studying gesture variability is
a good topic for future research, because a good balance must be
found between memorability and security. Of course, it is impor-
tant to note that the memorability could be in our favor as compared
to truly random gestures. We asked the participants to generate ges-
tures that would be repeated after at least ten days. As such, there
is an incentive on the participants to create something they will be
able to recall after some time.

Several participants were able to create highly secure and mem-
orable gestures. Below, we sketch strategies for generating such
gestures. We plan to develop and test the guidelines and their effect
on creating gestures in further studies. These guidelines are illus-
trated with the best and worst gestures in Figure 5, especially with
the worst gestures being simple multifinger circular motions.

1. General advice to promote consistency and retention: Prac-
tice different gestures first in order to get used to the touch-
screen. Try out different gestures instead of picking the first
one, to find one you prefer. Pick a gesture that will be used
frequently to avoid forgetting it. Take more care and pay at-
tention. Do not rush. Practice until faster and still accurate.
Try to repeat each trace as closely as possible.

2. Characteristics of High Î gestures to emulate: Use many
sharp turns. Use a familiar gesture, for example, a signa-
ture. Use extra fingers to do different motions. Follow the
above rules even when adding fingers.

3. Characteristics of Low Î gestures to avoid: Do not use only
few turns. Do not use gentle turns. Do not make turns only
to go in the the same direction. For example: avoid doing a
circle.

4. Specific errors to avoid: Place fingers down in the same order
each time. Use the same number of fingers each time.

Our results from the recognizer show the capability of free-form
multitouch gestures to work as passwords in a practical authenti-
cation system. The gestures were classified by the recognizer with
relatively low error when being compared across all 63 participants,
indicating the ability of the participants to generate passwords that
a recognizer would not have trouble classifying when comparing
against multiple templates. The recognizer generated much higher
scores when evaluating a participant’s gesture against their tem-
plate (ranging from three to nine) as compared to when it com-
pared to other templates (ranging from zero to one). Memorability
of the free-form gestures are also displayed through the EER val-
ues in recognizer results: the lowest EER value for the first set is
3.34% and the lowest for the second set is 13.16%. The disparity
in the data sets can be attributed to two factors: 1) the first data
set had only two authentication trials compared to the second set’s
five trials and 2) the second data set was performed after a much
longer time span than in the first set, thus, there were memorability
effects between the two sessions. The multitouch recognizer we de-
signed and implemented has room for consideration in the future,
for example, the effects of rotation, scale, and position invariance
as added degrees of freedom with free-form multitouch gestures.

There can be some cause for remark here about whether or not
there is a trade-off between memorability and security of a gesture.
Heightened EER values between the first and second recall sessions
can give rise to the notion that some participants might have trouble
remembering certain gestures, in spite of the Î for those gestures.
However, we note that the errors in recognition extend to the num-
ber of fingers – the general shape of the free-form gesture is always
almost correctly reproduced. So we contend that the trade-off is in
the multitouch aspect and not in the free-form aspect. It appears
that remembering the number of fingers is difficult for some par-
ticipants and we contend this is likely due to a lack of adoption of
multitouch as an industry standard. Most people are used to us-
ing a single finger for interaction with touchscreens and that might
have confused participants in the second session after more than
ten days.

With our preliminary shoulder surfing attack trial, we also learned
that free-form gestures are relatively robust against shoulder surf-
ing. None of the attackers were able to repeat the gestures well
enough to be accepted by a practical authentication system. We
acknowledge that further more comprehensive studies with several
different kinds of gestures and more opportunities for the attackers
would be warranted. For example, we could separate attackers into
different groups in which half of them are allowed to rewatch the
video recordings as many times they want to.

Thinking towards the future, we wondered what would happen
if gestural passwords like these become ubiquitous. How would
people begin managing multiple passwords across different plat-
forms? Would there be trouble in remembering the correct pass-
word for different applications? If that is the case – what is the best
way to manage multiple gestural passwords such that someone can
recall them? The obvious text-based analogue is a password man-
ager. Although it is outside the scope of this paper, we can consider
the concept of a gestural password manager to be important future
work.



Going further, we can think about the effect of screen size on
gestural password generation. It can be reasonably assumed that
both a person’s finger size and the screen size will both change
what gestures are used for passwords. All of the participants in
this study worked off of a Nexus tablet with a fairly large capture
area. Future work could focus on seeing what passwords are gen-
erated for varying screen sizes or even to see if the gestures in the
sets presented in this paper are comfortable to perform on smaller
screens.

To conclude, our work shows that free-form gestures present a
robust method of authentication for touchscreen devices.
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APPENDIX
A. EXAMPLES OF USER-GENERATED

GESTURES
The following presents a selection of gesture passwords recorded

during this study.
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Î = 26.48

X Position (Pixels)
0 500 1000 1500
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