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Abstract

We analyze classification error on unseen cases, i.e. deateare differ-
ent from those in the training set. Unlike standard genza#ibn error,
this off-training-set errormay differ significantly from the empirical er-
ror with high probability even with large sample sizes. Wetea data-
dependent bound on the difference between off-traininguse standard
generalization error. Our result is based on a new bound @milssing
mass, which for small samples is stronger than existing dslrased
on Good-Turing estimators. As we demonstrate on UCI dais-ser
bound gives nontrivial generalization guarantees in maagtzral cases.
In light of these results, we show that certain claims madkérNo Free
Lunch literature are overly pessimistic.

1 Introduction

A large part of learning theory deals with methods that botlredgeneralization error of
hypotheses in terms of their empirical errors. The standifthition of generalization
error allows overlap between the training sample and tes¢sa When such overlap is
not allowed, i.e., when considerirggf-training-set error[1]-[5] defined in terms of only
previously unseen cases, usual generalization bounds tdappdy. The off-training-set
error and the empirical error sometimes differ significantith high probability even for
large sample sizes. In this paper, we show that in many pelctases, one can nevertheless
bound this difference. In particular, we show that with higiobability, in the realistic
situation where the number tdpeatedcases, or duplicates, relative to the total sample size
is small, the difference between the off-training-set eemod the standard generalization
error is also small. In this caseystandard generalization error bound, no matter how it is
arrived at, transforms into a similar bound on the off-tiagiset error.

Our Contribution  We show that with probability at least- ¢, if there are- repetitions in
the training sample, then the difference between the affiing-set error and the standard

generalization error is at most of ord@r(\/% (log§ + rlog n)) (Thm. 2). Our main




result (Corollary 1 of Thm. 1) gives a stronger non-asyniptobund that can be evaluated
numerically. The proof of Thms. 1 and 2 is based on Lemma 2¢lwis of independent
interest, giving a new lower bound on the so-caleidsing masghe total probability of as
yetunseen cases. For small samples and few repetitioasdahind is significantly stronger
than existing bounds based on Good-Turing estimators §]—[

Properties of Our Bounds Our bounds hold (1uniformly, are (2)distribution-freeand
(3) data-dependenyet (4)relevant for data-sets encountered in practitet us consider
these properties in turn. Our bounds hold uniformly in thegyt hold forall hypotheses
(functions from features to labels) at the same time. Thokkemany bounds on standard
generalization error, our bounds do not depend in any wahenithness of the hypothesis
class under consideration measured in terms of, for instait€ VC dimension, or the
margin of the selected hypothesis on the training samplengrother property of the
mechanism with which the hypothesis is chosen. Our bouradiatribution-free in that
they hold no matter what the (unknown) data-generatingibigton is. Our bounds depend
on thedata they are useful only if the number of repetitions in theriiag set is very small
compared to the training set size. However, in machine iegrpractice this is often the
case as demonstrated in Sec. 3 with several UCI data-sets.

RelevanceWhy are our results interesting? There are at least thremnsathe first two of
which we discuss extensively in Sec. 4: (1) The use of offiing-set error is an essential
ingredient of the No Free Lunch (NFL) theorems [1]-[5]. Oesults counter-balance some
of the overly pessimistic conclusions of this work. This listke more relevant since the
NFL theorems have been quite influential in shaping the thopbkf both theoretical and
practical machine learning researchers (see, e.g., S2of the well-known textbook [5]).
(2) The off-training-set error is an intuitive measure ohgealization performance. Yetin
practice it differs from standard generalization errorgjewith continuous feature spaces).
Thus, we feel, it is worth studying. (3) Technically, we dditsh a surprising connection
between off-training-set error (a concept from classif@dtand missing mass (a concept
mostly applied in language modeling), and give a new lowergoon the missing mass.

The paper is organized as follows: In Sec. 2 we fix notatioaluding the various error
functionals considered, and state some preliminary reslitSec. 3 we state our bounds,
and we demonstrate their use on data-sets from the UCI matddnning repository. We
discuss the implications of our results in Sec. 4. Postppnedfs are in Appendix A.

2 Preliminaries and Notation

Let X be an arbitrary space of inputs, and Jétbe a discrete space of labels. A learner
observes a randonaining sample D, of sizen, consisting of the values of a sequence
of input-label pairg(X1,Y1), ..., (X, Y,)), where(X;,Y;) € X x ). Based on the
sample, the learner outputs a hypothdsis X — ) that gives, for each possible input
value, a prediction of the corresponding label. The leaimmauccessful if the produced
hypothesis has high probability of making a correct preédictvhen applied to a test case.
(Xn+1, Yne1). Both the training sample and the test case are independiatvn from a
commongenerating distributionP*. We use the following error functionals:

Definition 1 (errors) Given a training samplé of sizen, thei.i.d., off-training-setand
empirical errorof a hypothesi# are given by

Eia(h) = Pr[Y # h(X)] i.i.d. error,
Eots(h, D) =Pr[Y #h(X)| X ¢ Xp] off-training-set error
Eemp(h, D) := L5 Tinix,)2viy empirical error,

where X is the set ofX -values occurring in sampl®, and the indicator functioff.,
takes value one if its argument is true and zero otherwise.



The first one of these is just the standard generalizatiar eflearning theory. Following
[2], we call iti.i.d. error. For general input spaces andeaiting distribution€,s(h, D)
may be undefined for soni@. In either case, this is not a problem. First}if, has measure
one, the off-training-set error is undefined and we need antern ourselves with it; the
relevant error measure &;4(h) and standard results applyf, on the other handYp has
measure zero, the off-training-set error and the i.i.coregire equivalent and our results (in
Sec. 3 below) hold trivially. Thusf off-training-set error is relevant, our results hold.

Definition 2. Given a training samplé, the sample coveragg(Xp) is the probability
that a newX -value appears irD: p(Xp) := Pr[X € Xp|, whereXp is as in Def. 1. The
remaining probability,l — p(Xp), is called themissing mass

Lemma 1. For any training setD such that,s(h, D) is defined, we have
a) |Eots(h, D) — &ia(h)| < p(Xp) ,

p(Xp)
b) Eots(h, D) — Eia(h) < %&id(h) .

Proof. Both bounds follow essentially from the following inequi§:

_Pr[Y #h(X), X ¢ Xp] _ PrY #h(X)] . &ia(h)
Eots(h, D) - = Pr[X ¢ Xp] =< Pr[X ¢ Xp)] /\1_#(2([))/\1
(5 - (5 )

< &ia(h) +p(Xp) ,

whereA denotes the minimum. This gives one direction of Lemma haifgerbound on
Eats(h, D)); the other direction is obtained by using analogous inktiggfor the quantity
1 — Eos(h, D), with Y # h(X) replaced byY = h(X), which gives the upper bound
1 — Eots(h, D) <1~ E;a(h) + p(Xp). Lemma 1.b follows from the first line by ignoring
the upper bound 1, and subtractifig; (h) from both sides. O

Given the value of (or an upper bound afy)s(%), the upper bound of Lemma 1.b may
be significantly stronger than that of Lemma 1.a. Howeverthis work we only use
Lemma 1.a for simplicity since it depends pt¥'p) alone. The lemma would be of little
use without a good enough upper bound on the sample covgtagye), or equivalently, a
lower bound on the missing mass. In the next section we obtaih a bound.

3 An Off-training-set Error Bound

Good-Turing estimators [6], named after Irving J. Good, Atah Turing, are widely used

in language modeling to estimate the missing mass. The kisavatl bias of such estima-
tors, together with a rate of convergence, can be used tandbtaer and upper bound for
the missing mass [7, 8]. Unfortunately, for the sample sizesre interested in, the lower
bounds are not quite tight enough (see Fig. 1 below). In #aitien we state a new lower
bound, not based on Good-Turing estimators, that is pibtiaseful in our context. We

compare this bound to the existing ones after Thm. 2.

Let X, C X be the set consisting of themost probable individual values df. In case
there are several such subsets any one of them will do. Intds&s less than elements,
X, := X. Denote for shorp,, := Pr[X € &,,]. No assumptions are made regarding the
value ofp,, it may or may not be zero. The reason for us being interestey iis that

INote however, that a continuous feature space does notsaitgsmply this, see Sec. 4.
2This neat proof is due to Gilles Blanchard (personal comeation).



it gives us an upper boungd Xp) < p,, on the sample coverage that holds for all We
prove that whem,, is large it is likely that a sample of sizewill have several repeatel -
values so that the number of distinEtvalues is less than. This implies that if a sample
with a small number of repeateXi-values is observed, it is safe to assume thas small
and therefore, the sample coverage’s) must also be small.

Lemma 2. The probability of obtaining a sample of size> 1 with at most) < r < n
repeatedX -values is upper-bounded B¢ [“at mostr repetitions] < A(n,r, p,,), where

A(n,r,pn) = (Z)p,’i(l — Bn)" " f(n, 7, ) 1)
k=0

o 1 ifk<r
and f(n,r k) is given by f(n,r k) := min((f) (n,’;ﬂrr)m*(k”)a 1) TE——

A(n, T, py) is @ non-increasing function gf,.

For a proof, see Appendix A. Given a fixed confidence lavel 6 we can now define a
data-dependent upper bound on the sample coverage

B(6,D) := argmpin {p : A(n,r,p) <48} , (2)

wherer is the number of repeatel-values inD, andA(n, r, p) is given by Eq. (1).

Theorem 1. For any0 < § < 1, the upper bound(§, D) on the sample coverage given
by Eq. (2) holds with at least probability— ¢:

Prip(Xp) <B(§,D)]>1-9§ .

Proof. Consider fixed values of the confidence level §, sample size:, and probability
Dn- Let R be the largest integer for which(n, R, p,,) < 0. By Lemma 2 the probability of
obtaining at mosR repetitions is upper-bounded by Thus, it is sufficient that the bound
holds whenever the number of repetitions is greater tRaRor any suchr > R, we have
A(n,r,p,) > 6. By Lemma 2 the functio\ (n, r, p,,) is non-increasing ip,,, and hence
it must be thap,, < argmin,{p : A(n,r,p) <} = B(J, D). Sincep(Xp) < p,, the
bound then holds for alt > R. O

Rather than the sample coveraget ), the real interest is often in off-training-set error.
Using the relation between the two quantities, one getsat@fing corollary that follows
directly from Lemma 1.a and Thm. 1.

Corollary 1 (main result: off-training-set error boundjor any0 < ¢ < 1, the difference
between the i.i.d. error and the off-training-set error sumded by

Pr[Vh |Eos(h, D) — Exa(h)| < B8, D)) > 14 .

Corollary 1 implies that the off-training-set error and thied. error are entangled, thus
transforming all distribution-free bounds on the i.i.dragrto similar bounds on the off-
training-set error. Since the probabilistic part of theule§Lemma 1) does not involve a
specific hypothesis, Corollary 1 holds for all hypothesethatsame time, and does not
depend on the richness of the hypothesis class in termsrafidtance, its VC dimension.

Figure 1 illustrates the behavior of the bound (2) as the $asipe grows. It can be seen
that for a small number of repetitions the bound is nonttigleeady at moderate sample
sizes. Moreover, the effect of repetitions is tolerablej @rdiminishes as the number of
repetitions grows. Table 1 lists values of the bound for a lbenof data-sets from the UCI
machine learning repository [9]. In many cases the boundasiv0.10-0.20 or less.

Theorem 2 gives an upper bound on the rate with which the bdenckases as grows.
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Figure 1: Upper bound(4, D) given by Eg. (2) for samples with zere (= 0) to ten

(r = 10) repeatedX -values on the 95 % confidence levél£ 0.05). The dotted curve

is an asymptotic version for = 0 given by Thm. 2. The curve labeled ‘G-T’ (fer= 0)

is based on Good-Turing estimators (Thm. 3 in [7]). Asymiptily, it exceeds our = 0
bound by a facto©(log ). Bound for the UCI data-sets in Table 1 are marked with small
triangles 7). Note the log-scale for sample size.

Theorem 2(a weaker bound in closed-formlor all » and all p,,, all » < n, the function
B(8, D) has the upper bounBi(6, D) < 3\/% (log 3 + 2rlogn).

For a proof, see Appendix A. Let us compare Thm. 2 to the egdtiounds or3(4, D)
based on Good-Turing estimators [7, 8]. For fixedrhm. 3 in [7] gives an upper bound
of O (r/n + logn/+/n). The exact bound is drawn as the G-T curve in Fig. 1. In coftras
our bound give® (/C +rlogn/y/n), for a known constan€ > 0. For fixedr and
increasingn, this gives an improvement over the G-T bound of or@¢logn) if r = 0,
andO(+y/logn) if » > 0. Forr growing faster tha@(/log n), asymptotically our bound
becomes uncompetitive The real advantage of our bound is that, in contrast to G-T, i
gives nontrivial bounds for sample sizes and number of épes that typically occur in
classification problems. For practical applications inglaage modeling (large samples,
many repetitions), the existing G-T bound of [7] is probabtgferable.

The developments in [8] are also relevant, albeit in a modiréect manner. In Thm. 10
of that paper, it is shown that the probability that the nmgsinass is larger than its ex-
pected value by an amouatis bounded by~(¢/27¢*  |n [7], Sec. 4, some techniques
are developed to bound the expected missing mass in terrhe afimber of repetitions in
the sample. One might conjecture that, combined with Thmofl[8], these techniques
can be extended to yield an upper bound3in, D) of orderO(r/n + 1/+/n) that would
be asymptotically stronger than the current bound. We piainvtestigate this and other
potential ways to improve the bounds in future work. Any athein this direction makes
the implications of our bounds even more compelling.

3If data are i.i.d. according to a fixell*, then, as follows from the strong law of large numbers,
r, considered as a function af will either remain zero for ever or will be larger than for some
¢ > 0, for all n larger than somey. In practice, our bound is still relevant because typicahesets
often haver very small compared to (see Table 1). This is possible because apparently no.



Table 1: Bounds on the difference between the i.i.d. erra e off-training-set error
given by Eg. (2) on confidence level 95% £ 0.05). A dash (-) indicates no repetitions.
Bounds greater than 0.5 are in parentheses.

DATA SAMPLE SIZE REPETITIONS BOUND
Abalone 4177 - 0.0383
Adult 32562 25 0.0959
Annealing 798 8 0.3149
Artificial Characters 1000 34 (0.5112)
Breast Cancer (Diagnostic) 569 - 0.1057
Breast Cancer (Original) 699 236 (1.0)
Credit Approval 690 - 0.0958
Cylinder Bands 542 - 0.1084
Housing 506 - 0.1123
Internet Advertisement 2385 441 (0.9865)
Isolated Letter Speech Recogn. 1332 - 0.0685
Letter Recognition 20000 1332 (0.6503)
Multiple Features 2000 4 0.1563
Musk 6598 17 0.1671
Page Blocks 5473 80 0.3509
Water Treatment Plant 527 - 0.1099
Waveform 5000 - 0.0350

4 Discussion — Implications of Our Results

The use of off-training-set error is an essential ingretitdrthe influential No Free Lunch
theorems [1]-[5]. Our results imply that, while the NFL thems themselves are valid,
some of the conclusions drawn from them are overly pessimiahd should be recon-
sidered. For instance, it has been suggested that the tbotsweentional learning theory
(dealing with standard generalization error) are “illtgdi for investigating off-training-

set error” [3]. With the help of the little add-on we provide this paper (Corollary 1),

anybound on standard generalization error can be convertetééwad on off-training-set

error. Our empirical results on UCI data-sets show that #sailting bound is often not
essentially weaker than the original one. Thus, the comwealtools turn out not to be so
‘il-suited’ after all. Secondly, contrary to what is sorirees suggestédwe show that one

canrelate performance on the training sample to performanaesoret unseen cases.

On the other side of the debate, it has sometimes been claivaeithe off-training-set error
is irrelevant to much of modern learning theory where oftemfeature space is continuous.
This may seem to imply that off-training-set error coincideith standard generalization
error (see remark after Def. 1). However, this is true onlihé associatedistributionis
continuous:thenthe probability of observing the samé-value twice is zero. However,
in practice even when the feature space has continuous cenfx data-sets sometimes
contain repetitions (e.g., Adult, see Table 1), if only floe reason that continuous features
may be discretized or truncated. In practice repetitior@ioth many data-sets, implying
that off-training-set error can be different from the stardli.i.d. error. Thus, off-training-
set error igelevant Also, it measures a quantity that is in some ways close todning

of ‘inductive generalization’ — in dictionaries the wordaduction’ and ‘generalization’
frequently refer to ‘unseen instances’. Thus, off-tragiet error is not just relevant but
alsointuitive. This makes it all the more interesting that standard geizateon bounds
transfer to off-training-set error — and that is the centrgllication of this paper.

“For instance, “if we are interested in the error for [unseases], the NFL theorems tell us that
(in the absence of prior assumptions) [empirical error] samingless” [2].
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A Postponed Proofs

We first state two propositions that are useful in the prodferhma 2.

Proposition 1. Let &;,, be a domain of size:, and letP;. be an associated probability
distribution. The probability of getting no repetitions whsamplmgl < k < mitems
with replacement from distributiof?;, is upper-bounded by

Prl* | < —m

S G RmF -

Proof Sketch of Proposition 1By way of contradiction it is possible to show that the prob-
ability of obtaining no repetitions is maximized whéty, is uniform. After this, it is
easily seen that the maximal probability equals the rlginehS|de of the inequality. O

Proposition 2. Let X,,, be a domain of size:, and letPy, be an associated probability
distribution. The probability of getting at most > 0 repeated values when sampling
1 <k < m items with replacement from distributid?y, is upper-bounded by

1 ifk<r

Pr[“at mostr repetitions”| k] < { min ((;:) (mi,,]irr)!m_(k_r), 1) it k> 1.

Proof of Proposition 2.The case: < r is trivial. Fork > r, the event “at most repeti-
tions ink draws” is equivalent to the event that there is at least obheediof size: — r of
the X -variables{ X, ..., X} } such that all variables in the subset take distinct values. F
a subset of siz& — r, Proposition 1 implies that the probability that all valas distinct

is at mostmm*(k*”. Since there aré’:) subsets of the&X -variables of sizé& — r,
the union bound implies that multiplying this lﬁf/) gives the required result. O



Proof of Lemma 2The probability of getting at most repeatedX -values can be upper
bounded by considering repetitions in the maximally prdéabtt,, only. The probability
of no repetitions inX,, can be broken inte + 1 mutually exclusive cases depending on
how manyX -values fall into the set’,. Thus we get

Pr[“at mostr repetitions in¥,,"] = ) _ Pr[“at mostr repetitions in,,” | k] Pr[k] ,
k=0

wherePr[- | k| denotes probability under the condition thabf the n cases fall into
X,, andPr[k] denotes the probability of the latter occurring. Proposit2 gives an up-
per bound on the conditional probability. The probabilty{k] is given by the binomial
distribution with parametep,,: Pr(k] = Bin(k ; n,p,) = (})prE(1 — p,)" " . Com-
bining these gives the formula fdx(n, r, p,,). Showing thatA(n, r, p,,) is non-increasing
in p, is tedious but uninteresting and we only sketch the prootah be checked that
the conditional probability given by Proposition 2 is namiieasing ink (the min opera-
tor is essential for this). From this the claim follows siffoe increasingp,, the binomial
distribution puts more weight to terms with largethus not increasing the sum. O

Proof of Thm. 2.The first three factors in the definition (1) &f(n, r, p,) are equal to a
binomial probabilityBin(% ; n, p,,), and the expectation dfis thusnp,,. By the Hoeffd-
ing bound, for alle > 0, the probability ofk < n(p, — ¢) is bounded byxp(—2ne?).
Applying this bound withe = p,,/3 we get that the probability of < %pn is bounded by
exp(—2np?). Combined with (1) this gives the following upper bound&fv, r, p,,):

exp (—%nﬁ%) max f(n,r,k)+ max f(n,r k) <exp (—%nﬁ%) + max f(n,r k)
k<n2p, k>n2p, ) k>n2p,
(3)

where the maxima are taken over integer-valiéedn the last inequality we used the fact
that for alln, r, k, it holds thatf (n, r, k) < 1. Now note that fok > r, we can bound

oy« (5) T 22 < ()11

Jj=0 J=0

n\ n—7j T+1< or T b n—j 4
(r)H n (n—k) =" n—kH n @

If & < r, f(n,r,k) = 1 so that (4) holds in fact for alt with 1 < k£ < n. We bound
the last factoﬂ'[f:1 % further as follows. The average of tihefactors of this product is
less than or equal té%’/z =1- % Since a product of factors is always less than or
equal to the average of the factors to the powet,ofie get the upper bour(d - %)k <

exp (—£2) < exp (—%) , Where the first inequality follows fromt — z < exp(—x)

2
n

for x < 1. Plugging this into (4) gives(n,r k) < n2rﬁ exp (—’5—) . Plugging

p

this back into (3) gives\(n, 7, p,) < exp(—2Znp2) + maxy>, 25 3n*" exp (—%) <
exp(—§npy,) + 3n*" exp(—gnp;,) < 4n®" exp(—§np}).

Recall that3(d, D) := argmin, {p : A(n,r,p) < d}. ReplacingA(n, r, p) by the above
upper bound, makes the setpp$atisfying the inequality smaller. Thus, the minimal mem-

ber of the reduced set is greater than or equal to the mininehiper of the set with
A(n,r,p) <4, giving the following bound oBB(4, D):

B(d, D) < argmin, {p ¢ 4n2" exp (—%an) < (5} = 3\/% (log% + 2r 1ogn) : O




