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Abstract

A number of studies on learning Bayesian networks have emphasized the importance of
exploiting regularities in conditional probability distributions, i.e., local structure. In this
paper, we encode local structures as linear combinations of Boolean functions. By using Lasso,
we can simultaneously estimate the structure and parameters of the networks from limited
data. We demonstrate that the method leads to improved performance in terms of structural
correctness as well as prediction score even when the local structure in the underlying model
is only implicit.
keywords: Bayesian networks; Context-specific independence; Sparsity; Logistic regression;
Lasso

1 Introduction

A Bayesian network (BN) models conditional probability distributions among a set of random
variables by a directed acyclic graph (DAG). In this paper, we only consider the case where
the variables are discrete. A straightforward way of encoding the conditional probability
distribution is by means of conditional probability tables (CPTs). A CPT lists the conditional
distribution of a node given each combination of its parents’ values. A major problem with
CPTs is that the number of such combinations, which we call parent configurations, grows
exponentially with the number of parents, which leads to a sharp increase in computational
complexity and decrease in statistical precision.

On the other hand, there are cases where the conditional distributions exhibit regularities
that enable their compact representation and efficient learning. To achieve more efficient rep-
resentations of local structure in Bayesian networks, a number of different formulations have
been proposed. In 1991, Geiger et al. introduced Bayesian multinets for encoding asymmetric
independence in Bayesian networks (Geiger and Heckerman, 1991). Since the introduction of
the concept of context-specific independence (CSI) by Boutilier et al. (1996), a set of greedy
search algorithms have been developed based on this representation, see (Chickering et al.,
1997; Friedman and Goldszmidt, 1998; desJardins et al., 2005). Recent work by Pensar et
al. introduces partial conditional independence (PCI) to allow the edges of context trees to
take multiple values (Pensar et al., 2016). All of the above methods assume a specific repre-
sentation of local structures without considering how well it can deal with situations where
the local structures are expressed in another form. Our aim is to construct a more generic
representation that allows compact representations of many different types of local structures,
including, for example, context trees. Finally we mention that an approach to classification
of time-delayed Gaussian networks by means of transfer learning is presented in (Chaturvedi
et al., 2015): transfer learning could also be used to leverage regularities in learning CPTs in
Bayesian networks.

In this paper, we propose an approach to modeling local structures by using linear combi-
nations of Boolean functions and propose a learning algorithm based on the Lasso (the least
absolute shrinkage and selection operator) (Tibshirani, 1996) and an ordering-based heuristic.
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Figure 1: An example of a Bayesian network with local structure: (a) A Bayesian network over
four nodes. (b) A context tree for the conditional distributions of node A. (c) The full CPT for
the context tree in (b). Note that only four distinct probability values, p1, . . . , p4 occur in the
CPT.

2 Learning local structure by Lasso

2.1 Model formulation

To capture the regularities of CPTs, we introduce a method that expresses the interactions
among parents by Boolean functions. To achieve this, we define a logistic regression model
as follows: for a vector of m binary variables ~x = {x1, x2, . . . , xm} and a binary response
variable y, the model is

g(E(y)) = β0 +

t∑
i=1

βiLi(~x),

where E(y) denotes the expectation of y conditional on the regressors ~x, g(E(y)) = log(E(y)/(1−
E(y))) is the logistic link function, L1, . . . , Lt are Boolean functions over ~x, and β0, . . . , βt are
the regression coefficients. By using Lasso, we can identify the set of effective interactions as
those with non-zero coefficients.

In order to construct the Boolean functions used in the above logistic model, we map the
original variables into a set of binary variables using a technique introduced by Roos and Yu
(2009), who illustrated the robustness of this method for Markov chain models. The method
enumerates all subsets of the original variables, often limited by an additional cardinality
constraint, and introduces one Boolean function for each subset. In this paper, we apply and
functions, although other basis functions can be used as well: the difference in the number of
terms required in different Boolean representations can be bounded, see (Roos and Yu, 2009;
Zou and Roos, 2016). Multivalued (categorical) variables can also be treated in this fashion by
defining the Boolean functions on all partial configurations (configurations involving a subset
of the variables).

For example, consider two ternary variables X1 and X2 with values {0, 1, 2}. There are
nine (full) configurations, and sixteen partial configurations: one empty configuration, three
configurations for X1, three configurations for X2, and the nine full configurations for the
pair (X1, X2). These define a mapping, displayed in Eq. (1) below, from the original data to
sixteen binary variables, L1, . . . , L16, that are used as input to the above logistic regression
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00 7→ 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
01 7→ 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
02 7→ 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
10 7→ 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
11 7→ 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
12 7→ 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0
20 7→ 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
21 7→ 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
22 7→ 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

(1)

model.
For the Bayesian network with binary variables in Fig. 1a, the full CPT for node A (Fig. 1c)

requires eight parameters. However, a closer inspection shows that some parent configurations
share the same probability distribution. For example, whenever B = 1, p(A|B,C,D) is always
p1. Representing the conditional distribution of A by the context tree (Fig. 1b) only needs
four parameters.

To control the size of the design matrix, we limit the maximum cardinality of the subsets
so that, for example, only two-way or three-way interactions are allowed. Furthermore, in
practice it is necessary to include in the design matrix only those Boolean functions that take
non-zero value on at least one observed instance in the training data.

2.2 Algorithm

To learn the parents of a variable, Xi, we construct the design matrix by mapping the set
of potential parent variables, excluding Xi, into a Boolean representation as described in
Sec. 2.1. The design matrix is used as the input to logistic regression with Xi as the response.
By using Lasso with a suitable shrinkage parameter, the coefficients of any Boolean functions
of higher-order interactions than the true ones and any Boolean functions of variables condi-
tionally independent of Xi will be shrunk to zero if there are enough data. While cardinality
constraints are necessary to avoid creating an overly large set of covariates as mentioned
above, previous work suggests that the Lasso approach is computationally feasible and leads
to good probability estimates from limited data Zou and Roos (2016). We select the Lasso
shrinkage parameter by the Bayesian Information Criterion (BIC) criterion.

The key difficulty in learning the parent sets that define a valid DAG, compared to, for
example, learning a single regression model or a time series model as in (Roos and Yu, 2009),
is the acyclicity condition that implies, e.g., that two nodes cannot be parents of each other.
To ensure acyclicity, we impose an ordering of the nodes and constrain the set of parents to
be such that a node, Xi, can only have as parent another node, Xj , that precedes it in the
ordering Xj ≺ Xi; this is a common approach in learning Bayesian networks, see (Teyssier
and Koller, 2005). The algorithm begins by initializing the ordering and then fitting the
model under the ordering constraint and evaluating the log-likelihood. It is then checked
whether moving any individual variable in another position in the ordering and repeating the
Lasso fitting procedure with the new ordering leads to an increase in the log-likelihood. This is
repeated until convergence. As for any greedy search procedure of this kind, global optimality
of the solution cannot be guaranteed. A possible approach for mitigating this problem is to
do multiple runs.

More specifically, the algorithm includes the following steps:
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1. Initial ordering: For each variable in {X1, X2, . . . , Xm}, find the number of related
variables out of all other variables by Lasso. Order the variables in increasing order
based on the number of related variables.

2. Main loop: Repeat the following steps until convergence or until a maximum number of
iterations, T1, is reached.

2.1 Learn the parent set of each variable by Lasso under the ordering constraint, and
evaluate the log-likelihood. If removing any edge decreases the log-likelihood by
less than a given multiplicative factor, δ, remove the edge.

2.2 Repeat the following step while keeping the undirected network structure unchanged
for a predefined number of iterations, T2:

◦ Select an arbitrary parent–child pair Xi → Xj . If moving Xj in a position
just before Xi and changing the directions of any edges that conflict with the
modified ordering increases the log-likelihood, accept the change. (These edges
include the edge from Xi to Xj and all edges that point to Xj from variables
between Xi and Xj .)

3. (Optional) For any variable, Xi, that has more parents than a predefined threshold, K,
repeat the following step until Xi has at most K parents, or no further changes are
available.

◦ Select a parent Xj → Xi. If moving Xi in a position just before Xj and changing
the directions of any edges that conflict with the modified ordering decreases the
log-likelihood by a factor less than δ, accept the change.

The motivation of the last step is to restrict the maximum number of the parent sets. We
recommend the following values for the tuning parameters: T1 = 2–3, T2 = 200–250, δ = 0.99,
which were used in all the experiments reported below. Generally, the number of iterations,
T1 and T2, should be set as high as possible given the computational resources. The choice
of T1 may have a significant impact on the computation time since Step 2.1 includes the
estimation of the parent set of each variable and testing for edge removals. Step 2.2 is not as
expensive since the undirected structure constrains the parent sets, and hence parameter T2

can be set much larger than T1.
The choice of δ affects the density of the resulting graph and can be thought of as a

likelihood-ratio test to avoid false positives. Its effect on the log-loss in prediction tasks tends
to be quite mild as long as a value in the range 0.95 ≤ δ ≤ 0.99 is used. The effect of K is
similar to that of δ in restricting the density of the graph, and it can often be chosen based on
domain knowledge about the possible sizes of the parent sets. To implement the Lasso steps,
we use the R package glmnet (Friedman et al., 2010).

3 Experiments

In this section, we present three experiments involving Bayesian networks with different types
of local structure. For the Lasso-based method, the maximum order of the interactions is
limited to three. We remark that this is in fact fewer than the maximum number of par-
ents per variable in all cases considered below, but we wish to demonstrate that by using
linear combinations of Boolean functions, we can actually achieve good models even when the
number of parents is higher than the order of the allowed interactions.

We compare the Lasso-based method to three classic methods implemented in the R
package bnlearn (Scutari, 2010). They include: a score based method using the BIC score
and hill-climbing search; a constraint based method using conditional independence tests and
the interleaved incremental association algorithm (Yaramakala and Margaritis, 2005); and the
pairwise method ARACNE, which is an improved version of the Chow-Liu algorithm based
on pairwise mutual information (Margolin et al., 2006). We also compare our method to
methods that are designed to learn local structure: CSI by Boutilier et al. (1996) and PCI by
Pensar et al. (2016), as mentioned in the introduction.

We evaluate the learned models in terms of three criteria. First, we evaluate the average
log-loss per sample on a hold-out test set and subtract the log-loss achieved by the underlying
true model. Second, we calculate the Hamming distance between the predicted moral graph
and the true moral graph (divided by the number of edges in the true moral graph). Note
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Table 1: The properties of the Bayesian networks in the three experiments.

BN I BN II Alarm Insurance Water
No. of nodes 20 20 37 27 32
Alphabet size 3 3 2–4 2–5 3–4
Avg. no. of edges 46.2 45.7 46 52 66
Avg. indegree 2.3 2.3 1.2 1.9 2.1
Min–max indegree 1–4 1–4 2–4 2–5 3–4
Total CPT size (all)∗ 1049.4 1021.1 509 984 10083
Total CPT size (distinct)∗∗ 316.6 253.4 288 577 5502

*) total number of possible parent configurations

**) total number of distinct values in CPTs

that the Hamming distance measures only the global structure (edge presence/absence), and
ignores the local structure. In order to measure the parsimoniousness of the models, we also
count the number of parameters in each estimated model (divided by the total number of
distinct parameters in the conditional probability tables of the true model).

3.1 Synthetic Bayesian networks I

In the first experiment, we generate 100 random Bayesian networks with 20 variables and
alphabet size three. The indegree of each node is randomly chosen in the range from one to
four (subject to the acyclicity condition). Given the parent set, we create random context
trees where each leaf is associated with a distinct conditional distribution of the child variable.
The conditional distributions are generated by drawing numbers from the uniform distribution
between 0.1 and 0.9 and normalizing them so that they sum to one. The properties of these
networks are listed in the second column (BN I) of Table 1. For each Bayesian network, we
generate two training sets with sample sizes 1024 and 4096, respectively, and a test set of size
8192.

The results in Figs. 2a to 2c show that under all settings, the three local structure methods
outperform the three classic methods in terms of both log-loss (by a small margin) and
Hamming distance (by a larger margin). In terms of the number of parameters used, the
methods yield mostly comparable sized models. All three methods designed for learning local
structure perform equally well for all data sets in the first experiment.

3.2 Synthetic Bayesian networks II

In the second experiment, we follow the same procedure as in the first experiment, except that
the local structures of the simulated Bayesian networks are not context trees. We pick the
parent configurations that share the same conditional distribution randomly from the rows of
the CPT. The properties of the simulated Bayesian networks in this experiment are listed in
the third column (BN II) of Table 1.

Figs. 2d to 2f illustrates the results in the second experiment. For both sample sizes, the
Lasso-based method performs better than the other methods, including CSI and PCI, which
are based on the assumption that the local structures are represented as context trees.

3.3 Benchmark networks

Lastly, we generate data from three commonly used benchmark Bayesian networks: Alarm,
Insurance and Water.1 Unlike the Bayesian networks in the previous experiments, these
networks are not explicitly designed to exhibit any local structure. The number of distinct
parameters in these three networks is about half of the number of possible parent configura-
tions, while it is about one third in the first experiment and about one quarter in the second
experiment, see Table 1.

1http://www.bnlearn.com/bnrepository/
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Figure 2: Box plots for comparing the performaces of the proposed Lasso-based method (L), the
CSI-based method (C), the PCI-based method (P), the score based method (S), the independence
test-based method (T) and ARACNE (A) in the three experiments. Large values outside the scale
not shown in panels (l) and (o).
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As the results shown in Figs. 2g to 2o, the results of the local structure methods, Lasso,
CSI, and PCI, and the score based method, are generally similar for these three Bayesian
networks. For the smaller (n = 1024) sample size, the Lasso method yields worse Hamming
scores than the best performing methods in Alarm and Insurance but better in Water. For
the larger sample size (n = 4096) its Hamming distance scores are better than those of the
other methods. In terms of log-loss, for the smaller sample size, the Lasso method is slightly
inferior to the other two local structure methods as well as the score-based method. For the
larger sample size the differences in the log-loss of these four methods tend to be very small.

4 Conclusions

We introduced a representation of local structure in Bayesian networks using Boolean func-
tions, and an algorithm based on Lasso and an ordering-based heuristic. The method was
shown to achieve good performance in terms of structural correctness and predictive accuracy
under different generating models, including benchmark networks with only implicit local
structure. Broadly speaking, the results confirm the importance of considering local structure
when learning Bayesian networks.

The proposed framework provides a principled way to select an appropriate model com-
plexity, is simple to implement using existing optimization tools, and can be extended to allow
various kinds of Boolean representations depending on the context. We suggest that these
features make it an interesting alternative to the relatively few existing approaches.

On the other hand, it is often unclear which Boolean representation is optimal in a given
context: while it is known, for instance, that some gene regulatory mechanisms can be rep-
resented as and/or/not gates and their combinations, see Shmulevich et al. (2002), it may
generally be hard to choose the appropriate representation. However, as discussed in Roos
and Yu (2009); Zou and Roos (2016), the number of terms required under different Boolean
representations is typically of the same order of magnitude.

We plan to investigate better heuristics for dealing with structural constraints such as the
acyclicity constraint considered in this work. We are also planning to further improve the
scalability of the proposed method by screening techniques in order to reduce the number of
potential covariates and interactions, which would enable the processing of high dimensional
real-world data sets arising in, e.g., genome-wide association studies.
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