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Abstract

The minimum description length (MDL) princi-
ple states that one should prefer the model that
yields the shortest description of the data when
the complexity of the model itself is also ac-
counted for. MDL provides a versatile approach
to statistical modeling. It is applicable to model
selection and regularization. Modern versions of
MDL lead to robust methods that are well suited
for choosing an appropriate model complexity
based on the data, thus extracting the maximum
amount of information from the data without
over-fitting. The modern versions of MDL go
well beyond the familiar % log n formula.

Philosophy

The MDL principle is a formal version of Oc-
cam’s razor. While the Occam’s razor only sug-
gests that between hypotheses that are compatible
with the evidence, one should choose the simplest
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one, the MDL principle also quantifies the com-
patibility of the hypotheses with the evidence.
This leads to a trade-off between the complexity
of the hypothesis and its compatibility with the
evidence (“‘goodness of fit”).

The philosophy of the MDL principle em-
phasizes that the evaluation of the merits of a
model should not be based on its closeness to
a “true” model, whose existence is often impos-
sible to verify, but instead on the data. Inspired
by Solomonoff’s theory of universal induction,
Rissanen postulated that a yardstick of the per-
formance of a statistical model is the probability
it assigns to the data. Since the probability is
intimately related to code length (see below), the
code length provides an equivalent way to mea-
sure performance. The key idea made possible by
the coding interpretation is that the length of the
description of the model itself can be quantified
in the same units as the code length of the data,
namely, bits. Earlier, Wallace and Boulton had
made a similar proposal under the title minimum
message length (MML) (Wallace and Boulton
1968). A fundamental difference between the two
principles is that MML is a Bayesian approach
while MDL is not.

The central tenet in MDL is that the better
one is able to discover the regular features in
the data, the shorter the code length. Showing
that this is indeed the case often requires that we
assume, for the sake of argument, that the data
are generated by a true distribution and verify
the statistical behavior of MDL-based methods
under this assumption. Hence, the emphasis on
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the freedom from the assumption of a true model
is more pertinent in the philosophy of MDL than
in the technical analysis carried out in its theory.

Theory

The theory of MDL addresses two kinds of ques-
tions: (i) the first kind asks what is the shortest
description achievable using a given model class,
i.e., universal data compression; (if) the second
kind asks what can be said about the behavior
of MDL methods when applied to model selec-
tion and other machine learning and data mining
tasks. The latter kind of questions are closely
related to the theory of statistical estimation and
statistical learning theory. We review the theory
related to these two kinds of questions separately.

Universal Data Compression

As is well known in information theory, the short-
est expected code length achievable by a uniquely
decodable code under a known data source, p*,
is given by the entropy of the source, H(p*).
The lower bound is achieved by using a code
word of length £*(x) = —log p*(x) bits for
each source symbol x. (Here and in the following,
log denotes base-2 logarithm.) Correspondingly,
a code-length function £ is optimal under a source
distribution defined by ¢(x) = 27¢®)_ (For the
sake of notational simplicity, we omit a normal-
izing factor C = ), 27t which is necessary
in case the code is not complete. Likewise, as is
customary in MDL, we ignore the requirement
that code lengths be integers.) These results can
be extended to data sequences whereupon we
write x” = Xxj...x, to denote a sequence of
length n.

While the case where the source distribution
p* is known can be considered solved in the
sense that the average-case optimal code-length
function £* is easily established as described
above, the case where p* is unknown is more
intricate. Universal data compression studies sim-
ilar lower bounds when the source distribution is
not known or when the goal is not to minimize
the expected code length. For example, when
the source distribution is only known to be in
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a given model class (a set of distributions), M,
the goal may be to find a code that minimizes
the worst-case expected code length under any
source distribution p* € M. A uniquely decod-
able code that achieves near-optimal code lengths
with respect to a given model class is said to be
universal.

Rissanen’s groundbreaking 1978 paper (Rissa-
nen 1978) gives a general construction for uni-
versal codes based on two-part codes. A two-part
code first includes a code for encoding a distribu-
tion, ¢, over source sequences. The second part
encodes the data using a code based on g. The
length of the second part is thus —log ¢(x") bits.
The length of the first part, £(q), depends on the
complexity of the distribution g, which leads to a
trade-off between complexity measured by £(g)
and goodness of fit measured by log ¢ (x):

min(¢(g) — logg(x™)). (1

For parametric models that are defined by a
continuous parameter vector 8, a two-part coding
approach requires that the parameters be quan-
tized so that their code length is finite. Rissa-
nen showed that given a k-dimensional para-
metric model class, M = {pg; 0 € O C
R}, the optimal quantization of the parameter
space ©® is achieved by using accuracy of or-
der 1/4/n for each coordinate, where n is the
sample size. The resulting total code length be-
haves as —log p(x") + %logn + O(1), where
p(x™) = max{pg(x") : 6 € O} is the maxi-
mum probability under model class M. Note that
the leading terms of the formula are equivalent
to the Bayesian information criterion (BIC) by
Schwarz (Schwarz 1978). Later, Rissanen also
showed that this is a lower bound on the code
length of any universal code that holds for all
but a measure-zero subset of sources in the given
model class (Rissanen 1986).

The above results have subsequently been
refined by studying the asymptotic and finite-
sample values of the O(1) residual term for
specific model classes. The resulting formulas
lead to a more accurate characterization of
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model complexity, often involving the Fisher
information (Rissanen 1996).

Subsequently, Rissanen and others have pro-
posed other kinds of universal codes that are
superior to two-part codes. These include Bayes-
type mixture codes that involve a prior distri-
bution for the unknown parameters (Rissanen
1986), predictive forms of MDL (Rissanen 1984;
Wei 1992), and, most importantly, normalized
maximum likelihood (NML) codes (Yuri 1987,
Rissanen 1996). The latter have the important
point-wise minimax property that they achieve
the minimum worst-case point-wise redundancy:

min max —log g(x") + log p(x"),
q xn"

where the maximum is over all possible data
sequences of length n and the minimum is over
all distributions.

Behavior of MDL-Based Learning Methods
The philosophy of MDL suggests that data com-
pression is a measure of the success in discov-
ering regularities in the data, and hence, better
compression implies better modeling. Showing
that this is indeed the case is the second kind of
theory related to MDL.

Barron and Cover proposed the index of re-
solvability as a measure of the hardness of esti-
mating a probabilistic source in a two-part coding
setting (see above) (Barron and Cover 1991). It is
defined as

Bap) =min (U9 4 D" 1)),

where p* is the source distribution and
D(p*|lq) denotes the Kullback-Leibler
divergence between p* and ¢. Intuitively, a
source is easily estimable if there exists a simple
distribution that is close to the source. The
result by Barron and Cover bounds the Hellinger
distance between the true source distribution and
the distribution § minimizing the two-part code

length, Eq. (1), as

dy(p*.4) < O(R,(p*)) in p*-probability.

For model selection problems, consistency is
often defined in relation to a fixed set of alter-
native model classes and a criterion that selects
one of them given the data. If the criterion leads
to the simplest model class that contains the true
source distribution, the criterion is said to be
consistent. (Note that the additional requirement
that the selected model class is the simplest one
is needed in order to circumvent a trivial solution
in nested model classes where simpler models
are subsets of more complex model classes.)
There are a large number of results showing that
various MDL-based model selection criteria are
consistent; for examples, see the next section.

Applications

MDL has been applied in a wide range of ap-
plications. It is well suited for model selection
problems where one needs not only to estimate
continuous parameters but also their number and,
more generally, the model structure, based on sta-
tistical data. Other approaches applicable in many
such scenarios include Bayesian methods (in-
cluding minimum message length), cross valida-
tion, and structural risk minimization (see Cross-
References below).

Some example applications include the fol-
lowing:

1. Autoregressive models, Markov chains, and
their generalizations such as free machines
were among the first model classes studied in
the MDL literature, see Rissanen (1978, 1984)
and Weinberger et al. (1995).

2. Linear regression. Selecting a subset of rele-
vant covariates is a classical example of a situ-
ation involving models of variable complexity,
see Speed and Yu (1993), Wei (1992), and
Rissanen (2000).

3. Discretization of continuous covariates en-
ables the use of learning methods that use
discrete data. The granularity of the discretiza-
tion can be determined by applying MDL,
see Fayyad and Irani (1993).

4. The structure of probabilistic graphical
models encodes conditional independencies



and determines the complexity of the model.
Their structure can be learned by MDL, see,
e.g., Lam and Bacchus (1994) and Silander
et al. (2010)

Future Directions

The development of efficient and computation-
ally tractable codes for practically relevant model
classes is required in order to apply MDL more
commonly in modern statistical applications. The
following are among the most important future
directions:

— While the original % logn formula is still
regularly referred to as “the MDL principle,”
future work should focus on modern formula-
tions involving more advanced codes such as
the NML and its variations.

— There is strong empirical evidence suggest-
ing that coding strategies with strong mini-
max properties lead to robust model selection
methods, see, e.g., Silander et al. (2010). Tools
akin to the index of resolvability are needed
to gain better theoretical understanding of the
properties of modern MDL methods.

— Scaling up to modern big data applications,
where model complexity regularization is cru-
cial, requires approximate versions of MDL
with sublinear computational and storage re-
quirements. Predictive MDL is a promising
approach in handling high-throughput stream-
ing data scenarios.

Cross-References

Complete Minimum Description Length
Cross Validation

Inductive Inference

Learning Graphical Models
Minimum Message Length
Model Evaluation

Occam’s Razor

Overfitting

Regularization

Structural Risk Minimization
Universal Learning Theory

Minimum Description Length Principle

Recommended Reading

Good review articles on MDL include Barron
et al. (1998); Hansen and Yu (2001). The text-
book by Griinwald (2007) is a comprehensive and
detailed reference covering developments until
2007 Griinwald (2007).

Barron A, Cover T (1991) Minimum complexity density
estimation. IEEE Trans Inf Theory 37(4):1034-1054
Barron A, Rissanen J, Yu B (1998) The minimum descrip-
tion length principle in coding and modeling. IEEE
Trans Inf Theory 44:2734-2760

Fayyad U, Irani K (1993) Multi-interval discretization of
continuous-valued attributes for classification learning.
In: Bajczy R (ed) Proceedings of the 13th International
Joint Conference on Artificial Intelligence and Mini-
mum Description Length Principle, Chambery. Morgan
Kauffman

Griinwald P (2007) The Minimum Description Length
Principle. MIT Press, Cambridge

Hansen M, Yu B (2001) Model selection and the princi-
ple of minimum description length. J Am Stat Assoc
96(454):746-774

Lam W, Bacchus F (1994) Learning Bayesian belief
networks: an approach based on the MDL principle.
Comput Intell 10:269-293

Rissanen J (1978) Modeling by shortest data description.
Automatica 14(5):465-658

Rissanen J (1984) Universal coding, information, predic-
tion, and estimation. IEEE Trans Inf Theory 30:629-
636

Rissanen J (1986) Stochastic complexity and modeling.
Ann Stat 14(3):1080-1100

Rissanen J (1996) Fisher information and stochasic com-
plexity. IEEE Trans Inf Theory 42(1):40-47

Rissanen J (2000) MDL denoising. IEEE Trans Inf Theory
46(7):2537-2543

Schwarz G (1978) Estimating the dimension of a model.
Ann Stat 6(2):461-464

Silander T, Roos T, Myllymiki P (2010) Learning locally
minimax optimal Bayesian networks. Int J Approx
Reason 51(5):544-557

Speed T, Yu B (1993) Model selection and prediction:
normal regression. Ann Inst Stat Math 45(1):35-54

Wallace C, Boulton D (1968) An information measure for
classification. Comput J 11(2):185-194

Wei C (1992) On predictive least squares principles. Ann
Stat 20(1):1-42

Weinberger M, Rissanen J, Feder M (1995) A univer-
sal finite memory source. IEEE Trans Inf Theory
41(3):643-652

Yuri Shtarkov (1987) Universal sequential coding of sin-
gle messages. Probl Inf Transm 23(3):3-17


http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget
http://dx.doi.org/SpringerLink::ChapterTarget

	Minimum Description Length Principle
	Abstract
	Philosophy
	Theory
	Universal Data Compression
	Behavior of MDL-Based Learning Methods

	Applications
	Future Directions
	Cross-References
	Recommended Reading




