
Department of Computer Science

Series of Publications A

Report A-2007-4

Statistical and Information-Theoretic

Methods for Data Analysis

Teemu Roos

To be presented, with the permission of the Faculty of Science of
the University of Helsinki, for public criticism in the auditorium
of Arppeanum (Helsinki University Museum, Snellmaninkatu 3)
on June 9th, at 12 o’clock noon.

University of Helsinki

Finland



Contact information

Postal address:
Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
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Abstract

In this Thesis, we develop theory and methods for computational data anal-
ysis. The problems in data analysis are approached from three perspectives:
statistical learning theory, the Bayesian framework, and the information-
theoretic minimum description length (MDL) principle. Contributions in
statistical learning theory address the possibility of generalization to un-
seen cases, and regression analysis with partially observed data with an
application to mobile device positioning. In the second part of the Thesis,
we discuss so called Bayesian network classifiers, and show that they are
closely related to logistic regression models. In the final part, we apply
the MDL principle to tracing the history of old manuscripts, and to noise
reduction in digital signals.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.3 Probability and Statistics: correlation and regression analysis,

nonparametric statistics
H.1.1 Systems and Information Theory
I.2.6 Learning: concept learning, induction, parameter learning
I.2.7 Natural Language Processing: text analysis
I.4 Image Processing and Computer Vision
I.5 Pattern Recognition
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Preface

“ We are all shaped by the tools we use, in particular: the formalisms we

use shape our thinking habits, for better or for worse [...] ”

Edsger W. Dijkstra (1930–2002)

This Thesis is about data analysis: learning and making inferences
from data. What do the data have to say? To simplify, this is the ques-
tion we would ultimately like to answer. Here the data may be whatever
observations we make, be it in the form of labeled feature vectors, text, or
images — all of these formats are encountered in this work. Here, as usual,
the computer scientist’s modus operandi is to develop rules and algorithms
that can be implemented in a computer. In addition to computer science,
there are many other disciplines that are relevant to data analysis, such
as statistics, philosophy of science, and various applied sciences, including
engineering and bioinformatics. Even these are divided into various sub-
fields. For instance, the Bayesian versus non-Bayesian division related to
the interpretation of probability exists in many areas.

Diversity characterizes also the present work. The six publications that
make the substance of this Thesis contain only one cross-reference between
each other (the fifth paper is cited in the sixth one). The advantage of
diversity is that with more tools than just a hammer (or a support vector
machine), all problems do not have to be nails. Of course, one could not
even hope to be comprehensive and all-inclusive. In all of the following,
probability plays a central role, often together with its cousin, the code-
length. This defines ad hoc the scope and the context of this Thesis. Hence
also its title.

In order to cover the necessary preliminaries and background for the
actual work, three alternative paradigms for data analysis are encountered
before reaching the back cover of this work. The Thesis is divided accord-
ingly into three parts: each part includes a brief introduction to one of the
paradigms, followed by contributions in it. These part are: 1. Statistical
Learning Theory; 2. the Bayesian Approach; and 3. Minimum Description
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Part I: Statistical Learning Theory

Part III: Minimum Description Length Principle

Part II: the Bayesian Approach

Chapter 1
Preliminaries

Chapter 3
Generalization to

Unseen Cases

Chapter 2
Regression Estimation
with the EM Algorithm

Chapter 5
Discriminative Bayesian

Network Classifiers

Paper 2

Paper 3

Paper 1

Chapter 6
Preliminaries

Chapter 8
MDL Denoising
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Compression-Based
Stemmatic Analysis

Paper 5

Paper 6

Paper 4

Chapter 4
Preliminaries

Figure 1: The relationships between the chapters and original publications (Papers
1–6) of the Thesis.

Length Principle. The structure of the Thesis is depicted in Figure 1.

As this is not a textbook intended to be self-contained, many basic
concepts are assumed known. Standard references are, for instance, in
probability and statistics [28], in machine learning [26, 83], in Bayesian
methods [7], and in information theory [19, 37].
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based method for stemmatic analysis. In G. Brewka, S. Coradeschi,
A. Perini and P. Traverso, editors, Proceedings of the 17th European
Conference on Artificial Intelligence, pages 805-806. IOS Press, 2006.
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The main contributions of the six papers are:

Paper 1: A regression model is proposed for signal strength readings in
mobile devices, and used for estimating the location of the device
(positioning). The main technical contribution is an EM algorithm
for estimating propagation parameters from partially observable data.

Paper 2: By analyzing classification error on unseen cases, i.e., cases out-
side the observed training sample, we show for the first time that it
is possible to derive distribution-free generalization error bounds for
unseen cases. This implies that certain claims attributed to the No
Free Lunch theorems are overly pessimistic.

Paper 3: We explicitly formalize the connection between Bayesian net-
work classifiers and logistic regression, and prove equivalence of these
two under a graph-theoretic assumption on the Bayesian network
structure. Empirical results illustrate some aspects relevant to prac-
tical classifier design.

Paper 4: The problem of stemmatology is to reconstruct family trees of
texts that are available in several variant readings. We present a
compression-based criterion and an algorithm, building upon tech-
niques from bioinformatics and stochastic optimization.

Paper 5: We analyze the performance of an MDL denoising method by
Rissanen, and point out a restriction on its range of applicability in
both theory and practice. The behavior is explained in terms of a
new interpretation of the method.

Paper 6: The new interpretation given in Paper 5 to the earlier MDL
method is assumed. This leads to three refinements and extensions,
each of which is shown to significantly improve performance in exper-
iments on artificial and real-world signals.

The contributions of the present author are substantial in all papers.
The main contributions of Papers 1 & 4–6 are by the present author. In
Paper 2, some of the main contributions are due to Dr. Peter Grünwald
(including Theorem 2). In Paper 3, some of the main contributions are
due to Hannes Wettig (in particular, most of the experimental part) and
Dr. Peter Grünwald.



Contents

Preface v

Original Publications and Contributions ix

I Statistical Learning Theory 1

1 Preliminaries 3
1.1 Generalization error bounds . . . . . . . . . . . . . . . . . . 5
1.2 Complexity regularization . . . . . . . . . . . . . . . . . . . 7

1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Regression Estimation with the EM Algorithm 11
2.1 Partial observability and the EM algorithm . . . . . . . . . 12

2.2 Signal propagation modeling and positioning . . . . . . . . 14

3 Generalization to Unseen Cases 17
3.1 Missing mass . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Off-training-set error bounds . . . . . . . . . . . . . . . . . 20

II The Bayesian Approach 23

4 Preliminaries 25
4.1 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Bayesian Occam’s razor . . . . . . . . . . . . . . . . . . . . 28

4.3 Principle of maximum expected utility . . . . . . . . . . . . 30
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Discriminative Bayesian Network Classifiers 33

5.1 Prediction under misspecification . . . . . . . . . . . . . . . 33
5.2 Bayesian network classifiers . . . . . . . . . . . . . . . . . . 34

xi



xii Contents

5.3 Large-sample asymptotics . . . . . . . . . . . . . . . . . . . 36
5.4 Discriminative parameter learning . . . . . . . . . . . . . . 37

III Minimum Description Length Principle 41

6 Preliminaries 43
6.1 ‘Ideal’ vs. practical MDL . . . . . . . . . . . . . . . . . . . 44
6.2 Stochastic complexity . . . . . . . . . . . . . . . . . . . . . 47
6.3 Prediction and model selection by MDL . . . . . . . . . . . 50

6.3.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Model selection . . . . . . . . . . . . . . . . . . . . . 52

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Compression-Based Stemmatic Analysis 55
7.1 An MDL criterion . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Optimization algorithms . . . . . . . . . . . . . . . . . . . . 57
7.3 Results and future work . . . . . . . . . . . . . . . . . . . . 58

8 MDL Denoising 61
8.1 Wavelet regression . . . . . . . . . . . . . . . . . . . . . . . 61
8.2 Codes and models for wavelet coefficients . . . . . . . . . . 63

8.2.1 Renormalized NML . . . . . . . . . . . . . . . . . . 63
8.2.2 An equivalent NML model . . . . . . . . . . . . . . . 64

8.3 Three refinements . . . . . . . . . . . . . . . . . . . . . . . 65

References 71

Reprints of Original Publications



Part I

Statistical Learning Theory

1





Chapter 1

Preliminaries

In machine learning, the most commonly assumed framework is that of
statistical learning theory (see, for instance, [121, 122, 10] and references
therein). It involves an input space X and an output space Y. The input
space contains instances x that may be sequences like strings of text, vectors
of measurements, or matrices like grayscale bitmap images, etc. Labels y
from the output space are attached to the instances. The labels are often
nominal or real-valued. The statistical nature of the theory is due to the
assumption that independent and identically distributed (i.i.d.) (x, y)-pairs
are sampled from a fixed but unknown probability distribution P .

A Remark on Mathematical Notation:1 Some comments on mathe-

matical notation are in place now, and more will be presented on occasion.

Notation is overloaded by using lower-case letters, x, y, θ, etc., to denote

both random variables and their values. Domains are denoted by calli-

graphic letters when available, e.g., X ,Y, Θ. Letters P, Q, etc. are used

to denote probability measures. The corresponding probability mass func-

tions or probability density functions are denoted by the letters p, q, etc.

Hence, the often used expression Pr[X = x], where X is a (discrete) random

variable, and x its value, is written here simply as p(x). The expectation

of an expression like φ(x), involving the random variable x, is denoted by

Ex∼P [φ(x)], where the subscript indicates the variable over which the ex-

pectation is taken and the relevant distribution. Whenever the distribution

is clear from the context, it is omitted.

A hypothesis is a mapping of the form h : X → D, where the decision
space D contains the allowed predictions. A loss function ℓ(y, ỹ) measures

1Remarks and digressions from the main subject are indicated by smaller typeface
and indentation, like this paragraph.
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4 1 Preliminaries

the loss incurred by giving prediction ỹ ∈ D when the correct label is y ∈ Y.
The risk of a given hypothesis h is defined as the expected loss:

E(h) := E(x,y)∼P [ℓ(y, h(x))] . (1.1)

Research in statistical learning theory focuses on topics such as (i) con-
structing learning algorithms that output a hypothesis with small risk when
given a training set sampled from the distribution P , and (ii) developing
guarantees on the performance of such algorithms.

Vapnik lists the following three main problem settings studied in sta-
tistical learning theory [122]:

Classification (or Pattern Recognition): The decision space is equal to
the output space, often the set {±1}. Loss is given by the 0/1-loss:

ℓ0/1(y, ỹ) :=

{
0 if y = ỹ,
1 otherwise.

The risk of a hypothesis is then the probability of misclassification, also
known as generalization error. This is minimized by the label y∗ with the
highest probability: y∗ = arg maxy p(y | x).

Regression Estimation: The decisions and outputs are both real num-
bers, D = Y = R. Loss is given by the squared error:

ℓ2(y, ỹ) := (y − ỹ)2 .

The risk is minimized by Ey [y | x], the conditional expectation of y.

Density Estimation: Here the outputs are ignored or combined with the
inputs to form the pair z = (x, y). The decisions are densities over X × Y,
and loss is given by the log-loss:

ℓln(z, p̃) := − ln p̃(z) .

If the generating distribution is discrete with probability mass function
p, the risk is minimized by setting p̃ = p, i.e., by using the generating
distribution, in which case the risk equals the entropy of p. A similar
statement holds for the continuous case as well.

In all three cases it is seen that the optimal decisions depend on the
unknown generating distribution P in an essential way. The key point is
that the learning algorithm is supposed to work for a large class of generat-
ing distributions, or in fact, in the distribution-free setting, for all possible
distributions. All information concerning P is extracted from the training
set. In many cases this is ultimately based on the law(s) of large numbers
applied to relative frequency estimators, as discussed next.



1.1 Generalization error bounds 5

1.1 Generalization error bounds

Let the empirical error of a hypothesis h : X → D be defined as

En
emp(h) :=

1

n

n∑

i=1

ℓ(yi, h(xi)) ,

where (xi, yi), 1 ≤ i ≤ n are the labeled instances in the training set.
Whenever the random variable ℓ(y, h(x)) has finite mean under distribution
P , the empirical error converges in probability2 to the true risk:

En
emp(h)

P−→
n→∞

E(h) .

In practice, rate of convergence is of great interest. This rate can be char-
acterized by bounds that relate the error of the estimate to sample size. In
statistical terms, such bounds are confidence intervals for the true risk.

In the case of classification, where the loss is binary valued, the random
variable nEn

emp(h) has a binomial distribution with the bias parameter given
by the generalization error E(h). Exact upper (or lower) bounds on E(h)
can be obtained by considering the binomial tail probabilities.

Proposition 1.1 (Binomial tails) For a fixed probability of error E(h),
the probability of observing more than k errors in n trials is given by

Pr
[
En

emp(h) > k/n
]

=
n∑

j=k+1

(
n

j

)
E(h)j(1− E(h))n−j . (1.2)

Having observed En
emp(h), we can find the smallest E(h) for which the

right-hand side is greater than or equal to the required confidence level
1 − δ, as illustrated in Fig. 1.1. This gives the smallest possible upper
bound: for any value smaller than this, the probability of producing a valid
upper bound — larger than or equal to the true value of E(h) — would be
less than 1− δ. This technique is known as binomial tail inversion3 [62].

There are several lower bounds for the right-hand side of (1.2) that are
somewhat easier to use than binomial tail inversion but that either apply
only in special cases or that are not exact.

2A sequence of random variables (A1, A2, . . .) converges to the scalar a in probability
iff for all ǫ, δ > 0 there exists a number n0 = n0(ǫ, δ) such that for all n > n0 with
probability at least 1 − δ we have |An − a| < ǫ.

3Programs calculating this and many other bounds are available at http://hunch.

net/∼jl/projects/prediction bounds/prediction bounds.html.



6 1 Preliminaries

En
emp(h)

0.70.6 1.00.90.80.50.40.30.20.10.0
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Figure 1.1: Illustration of binomial tail inversion. For each value of E(h), the
shaded area above the bold curve contains at least 95 % of the total probability
mass. For E30

emp(h) = 10 the upper bound on E(h) is 0.499.

Proposition 1.2 (Realizable case) In the error-free, or realizable, case
we have

Pr[En
emp(h) > 0] = 1− (1− E(h))n ≥ 1− exp (−nE(h)) .

Theorem 1.1 (Chernoff bound [15]) For k/n < E(h), the probability
of observing more than k errors in n trials is lower-bounded by

Pr
[
En

emp(h) > k/n
]
≥ 1− exp

(
−nKL

(
k

n

∥∥∥ E(h)

))
,

where

KL(r ‖ s) := r ln
r

s
+ (1− r) ln

1− r

1− s

is the Kullback-Leibler divergence between two binomial distributions in-
dexed by parameters r and s respectively.

Corollary 1.1 (Hoeffding bound [50]) For k/n < E(h), the probability
of observing more than k errors in n trials is lower-bounded by

Pr
[
En

emp(h) > k/n
]
≥ 1− exp

(
−2n

(
E(h)− k

n

)2
)

.
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The corollary follows directly from Thm 1.1 by using the following lower
bound on Kullback-Leibler divergence:

KL

(
k

n

∥∥∥ E(h)

)
≥ 2

(
E(h)− k

n

)2

.

The advantage of Hoeffding’s bound compared to the binomial tail
bound and the relative entropy Chernoff bound is that it can be easily
inverted: we can let δ = exp(−2n(E(h) − k/n)2) and solve for k/n to find
that with probability at least 1− δ we have

E(h) < En
emp(h) +

√
ln (1/δ)

2n
. (1.3)

This is really the way we would like the bounds to be expressed since now
we have the unknown quantity, E(h), on one side, and known quantities
on the other. Unfortunately, such inverted forms are not available for the
binomial tail bound and the relative entropy Chernoff bound. They have
to be inverted numerically as described above (Fig. 1.1).

On the other hand, the Hoeffding bound is significantly weaker than
either one of the other bounds, especially near the boundaries k ≈ 0 or
k ≈ n. For instance, consider the realizable case, En

emp(h) = 0. It is easily
verified that in this case the relative entropy Chernoff bound agrees with
the realizable case bound, Prop. 1.2. Inverting the realizable case bound
by setting δ = exp(−nE(h)) and solving for E(h) yields

E(h) <
ln(1/δ)

n
. (1.4)

This is a significant improvement: the rate O(n−1/2) implied by (1.3) is
improved to O(n−1). Unfortunately, the worst-case rate O(n−1/2) that
occurs near the error rate En

emp(h) = 1/2 cannot be improved upon.

1.2 Complexity regularization

The above bounds apply to a single hypothesis h, but in practice it is often
necessary to bound the generalization error for a whole class of hypotheses
H simultaneously. For instance, this is useful for constructing learning
algorithms: having bounded the risk of all hypotheses, the bound holds for
the particular hypothesis chosen by a learning algorithm. If we were to
use the bounds presented above as such for several hypotheses, it would of
course still be true that any given bound, singled out in advance, would
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hold with high probability. However, if the number of hypotheses is large,
it is actually highly unlikely that all the bounds hold at the same time.
This is called in statistics the multiple testing problem. To avoid it, we
have to loosen the bounds by an amount that somehow depends on the
complexity of the hypothesis or the hypothesis class. This is known as
complexity regularization.

The simplest solution, applicable to countable hypothesis classes, is the
union bound4. Let H = {h1, h2, . . .} be a a countable hypothesis class,
and {p1, p2, . . .} be a set of numbers that satisfy the formal requirements
of a sub-probability distribution, i.e., are non-negative and sum to at most
one5. Now we can use, for instance, the Hoeffding bound for each of the
hypotheses and apply the union bound to obtain the following theorem.

Theorem 1.2 (Occam’s razor bound [9, 73]) With probability at least
1− δ we have

E(h) < En
emp(hi) +

√
ln(1/pi) + ln(1/δ)

2n
for all hi ∈ H . (1.5)

The higher the ‘prior’ probability pi of a hypothesis, the tighter the bound.
If the class is finite, we can use the uniform distribution which yields
ln(1/pi) = ln |H|, where |H| is the number of hypotheses in the class.

To extend this approach to uncountable hypothesis classes, one can use
the fact that even if there are infinitely many hypotheses, the number of
different binary predictions on a sample of size n is always at most 2n. De-
pending on the hypothesis class, this number may be significantly smaller.
The canonical example of this is based on the Vapnik–Chervonenkis (VC)
dimension [123]. For classes with finite VC dimension, VCdim, the number
of different predictions is upper bounded by (n + 1)VCdim, i.e., the number
is polynomial instead of exponential in the sample size n.

A more recent approach is based on Rademacher complexity [58, 4].

4The union bound (or Boole’s inequality) simply states that given a countable set of
events with probabilities (p1, p2, . . .), the probability that none of the events obtain is at
least 1 −

P

pi. In statistics, this is known as Bonferroni correction.
5The sub-probability requirement is equivalent to the terms ln(1/pi) being code-words

lengths of a uniquely decodable code, as will be explained in Chapter 6.
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The empirical Rademacher complexity of class H is defined as6

R̂n(H) := Eσn∼Uni({±1}n)

[
sup
h∈H

(
1

n

n∑

i=1

σih(xi)

) ∣∣∣∣∣ x1, . . . , xn

]
, (1.6)

where the expectation is taken over independent uniform {±1}-valued Ra-
demacher variables σ1, . . . , σn representing randomly chosen labels, and the
training instances x1, . . . , xn are considered fixed. The (expected) Rade-
macher complexity is defined as

Rn(H) := Exn

[
R̂n(H)

]
,

where the expectation is now taken over x1, . . . , xn. The Rademacher com-
plexity has the following properties that make it an intuitively acceptable
measure of complexity: (i) For a singleton class, the Rademacher com-
plexity equals zero; (ii) If the class is rich enough to represent almost any
configuration of the labels, the supremum in (1.6) becomes almost unity
for most sequences of the Rademacher variables σ1, . . . , σn, and hence the
Rademacher complexity of such a class is high; (iii) Duplicate hypotheses
in the class do not affect the complexity.

Theorem 1.3 (Rademacher bound [4, 10]) With probability at least
1− δ we have:

E(h) < En
emp(hi) + 2Rn(H) +

√
ln(1/δ)

2n
for all h ∈ H .

It may seem problematic that the bound depends on an unknown quan-
tity Rn(H). However, Rademacher complexity can be approximated by the
quantity inside the expectation (1.6) because this quantity is closely con-
centrated around its expectation (with respect to both the Rademacher
variables and the training instances), see e.g. [4, Thm. 11].

If there are several hypothesis classes, the union bound can be applied
in conjunction with the VC or Rademacher bounds to obtain bounds that
hold for all hypotheses in all hypothesis classes at the same time. Since
these bounds depend on the complexity of the hypothesis class, they are
tighter for some hypotheses than for others, even though the basic bounds of
Sec. 1.1 are the same for all hypotheses. Minimization of the error bound is
known as the Structural Risk Minimization (SRM) principle [121], Fig. 1.2.

6The definition of the various Rademacher quantities varies. For instance, Bartlett
and Mendelson [4] use a definition with the sum in (1.6) replaced by its absolute value,
and multiplied by two. However, the proof of Theorem 1.3 they give does not require the
absolute values. (There is a error in [4]: the last two formulas in Appendix B of the paper
should be multiplied by two which removes the denominator 2 from their Theorem 5.1b.)
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error bound

confidence term

empirical error

complexity

H1 H∗ Hmax

Figure 1.2: Structural Risk Minimization (SRM) principle (adapted from [121]).
The error bound is a sum of the empirical error and an additional confidence term
that increases with complexity of the hypothesis class Hk. The SRM principle
chooses the class H∗ that minimizes the bound.

1.3 Discussion

Theorems 1.2 and 1.3 suggest that in order to minimize an upper bound on
the generalization error, a hypothesis selection procedure should not only
minimize the empirical error, but also penalize for complexity of the hy-
pothesis. This complexity can be measured either directly in terms of the
code length ln(1/pi) for coding the hypothesis hi, or indirectly through the
complexity of the hypothesis class via Rn(H) or related quantities. Start-
ing from a very large set of hypotheses, for which the complexity penalty
is exceedingly large, the SRM approach is to ‘carve up’ the hypothesis
space into subsets of increasingly complexity. In the fortunate case that
a relatively small subset exists that contains a hypothesis that has small
empirical error, the resulting error bound is significantly tighter than would
be obtained by the treating all hypotheses on an equal footing and using a
single bound for the whole hypothesis space.



Chapter 2

Regression Estimation with the

EM Algorithm

It is remarkable how much in statistics can be achieved by linear methods.
Consider for instance, the problem of regression estimation. While the de-
pendent variable y may depend on the regressor variable(s) x in a complex,
non-linear way, a reasonable approximation may often be achieved by in-
cluding non-linear transformations of the regressor variables in the model.
Thus, for instance, the quadratic model y = β0 + β1x + β2x

2, while non-
linear in x becomes linear once the regressor x2 is introduced. In so called
kernel methods this idea, carried out to the extreme, yields universally
flexible models which can still be computationally manageable, see [113].
In this chapter we present a method for handling partially observed data
in linear regression, and its application to mobile device positioning. The
work has been published in Paper 1.

Let X denote the regressor (or design) matrix :

X :=




x1,1 x1,2 · · · x1,k

x2,1 x2,2 · · · x2,k
...

...
. . .

...
xn,1 xn,2 · · · xn,k


 ,

where the first column is often assumed to consist of all ones in order to
allow constant translations like the term β0 in the quadratic model above.
Letting the column vector y = (y1, y2, . . . , yn)T (the superscript T stands
for transpose) define the observed sequence of dependent variables, the
linear regression model becomes

Xβ + ǫ = y ,

11
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where β is a column vector of coefficients, ǫ is an i.i.d. sequence of error
terms which are assumed Gaussian with zero mean and variance σ2. The
density of y is then

f(y | X,θ) = (2πσ2)−n/2 exp

(
−‖y −Xβ‖2

2σ2

)
, (2.1)

where θ denotes the pair (β, σ), and ‖ · ‖2 denotes the squared Euclidean
norm, i.e., the sum of squares. For fixed regressor matrix X and observation
sequence y, we can consider (2.1) as a function of θ. This function is called
the (complete data) likelihood function.

The well-known least-squares method gives the maximum likelihood
estimates of the parameters in closed form:

β̂ =
(
XT X

)−1
XT y , σ̂ =

√
‖y −Xβ̂‖2

n
. (2.2)

The case where some of the observations yi are only partially observed
is somewhat more complicated. In most cases, the maximum likelihood
parameters do not have a closed form solutions, which calls for approxima-
tions.

2.1 Partial observability and the EM algorithm

We consider two types of partial observability. First, if the precision with
which the observations are made is coarse, the observations are said to be
binned : for each measurement we obtain only a lower bound y

i
and an

upper bound yi. For truncated (or censored) observations, we only obtain
either a lower or an upper bound. Without loss of too much generality,
we assume that the observations are labeled in such a way that the first
m variables correspond to binned observations, and the n −m other ones
correspond to observations truncated from above, i.e., we have for them an
upper bound yi.

Given a sequence of binned and truncated observations, the incomplete-
data likelihood, LI (where ‘I’ stands for incomplete), is then defined as

LI(θ) :=

∫

Yobs

f(y | X,θ) dy , (2.3)

where the range is defined by the observations:

Yobs :=

{
y = (y1, . . . , yn) :

y
i
≤ yi ≤ yi for 1 ≤ i ≤ m;

yi ≤ yi for m + 1 ≤ i ≤ n

}
.
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Unfortunately, there is no analytic solution similar to (2.2) for maximization
of the incomplete-data likelihood. In order to find parameter values that
have as high incomplete-data likelihood as possible, it is possible to use
local search heuristics like hill-climbing with (2.3) as the cost function. This
tends to be inefficient unless there the cost function has certain properties,
such as simple first and second derivatives, that allow the use of more
sophisticated search algorithms than ‘blind’ search.

The expectation-maximization (EM) algorithm [23, 77] is a general
heuristic for finding approximations of maximum likelihood parameters in
missing-data situations. In the EM algorithm the parameters are first ini-
tialized to some values, θ(0), after which new values, θ(1), are found by
maximizing the expected complete-data log-likelihood, the expectation be-
ing taken over y ∼ f(· | Yobs,X,θ(0)). Conditioning on Yobs simply restricts
the possible value to the set Yobs:

f(y | Yobs,X,θ(0)) :=
f(y | X,θ(0))

∫
Yobs

f(y | X,θ(0)) dy
.

The new values θ(1) are then taken as the initial point, and the process is
repeated, usually until convergence. Letting Q(θ,θ(t)) denote the expected
log-likelihood, each iteration is then characterized by

θ(t+1) = arg max
θ

Q(θ,θ(t)) := arg max
θ

E
y∼f(·|Yobs,X,θ(t)) lnL(θ) . (2.4)

It can be shown that we have for all t the inequality

LI(θ
(t)) ≤ LI(θ

(t+1)) ,

i.e., the likelihood never decreases during an iteration. Moreover, in typ-
ical cases, the algorithm converges to a local maximum of the likelihood
function [23, 77].

It turns out that in the linear–Gaussian regression model with partially
observed values, the estimators (2.2) derived for the complete-data case can
still be applied, although indirectly. Namely, to obtain the estimate β(t+1),
we can simply evaluate the expectation of y, and apply (2.2) with the ex-
pected value in place of y. In order to obtain σ(t+1), it is also necessary
to evaluate the expectation of ‖y −Xβ(t)‖2. For details, see Paper 1. In
fact, this observation holds generally for all exponential family models [1],
including the linear–Gaussian regression model as a special case: the maxi-
mization of Q(θ,θ(t)) is effectively achieved by using the same formula as in
the complete-data case with the expected values of the sufficient statistics
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plugged in place of their (unobserved) actual values [23]. It is important
to note that this is not in general the same as ‘imputation’, i.e., estimating
missing entries and using the estimates as they were real observations.

2.2 Signal propagation modeling and positioning

In the present work, the motivation to study linear regression with partially
observable data comes from signal propagation modeling. When the signal
strength on various channels is measured in a cellular telephone, the mea-
surements are reported with finite precision. Moreover, the signal strength
reading on only six to eight channels with the strongest signal is measured,
which implies that the signal strength on the remaining channels is trun-
cated from above. Ignoring this indirect evidence introduces selection bias
in the data: for areas with low mean signal strength, only signal strength
readings that are atypically high in those areas are recorded, and conse-
quently, the mean signal strength is severely over-estimated in such areas.
This phenomenon is in fact present in many observational settings where
the strength of a signal is measured in a way or another.

A signal propagating freely in all directions in three dimensions atten-
uates in the second power of the distance, following inversely the area of a
three dimensional sphere. Taking into account the path reflecting from the
surface of the earth usually results in steeper attenuation due to interfer-
ence, approximated in many cases by the so called fourth-power attenuation
model, see [95]. Converting the received power pr from units of milliwatt
(mW) to units of decibel milliwatt (dBm) by

pr[dBm] = 10× log10 pr[mW] ,

turns both the second-power and fourth-power attenuation models into the
form pr[dBm] = β0 +β1 log d, where d is the distance from the transmitter,
β0 is a constant, and β1 equals −20 for the second-power and −40 for the
fourth-power model. In practice, the best coefficient of attenuation depends
on the environment, and can be found empirically from observational data.

In Paper 1, we present a propagation model with three coefficients: a
constant term, the coefficient of the log-distance term, and an additional
direction-dependent factor. Including the logarithm of the distance in the
model as a regressor still retains linearity of the model. Estimation of the
parameters is done from partially observed data by the EM algorithm. To
illustrate the method, Fig. 2.1 shows a simulation with 66 observations. In
the bottom display 29 of the observations are truncated from above. By
comparing the estimated signal attenuation curves in the two displays, it



2.2 Signal propagation modeling and positioning 15

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

200 400 600 800 1000 1200 1400

pa
th

 lo
ss

 (
dB

m
)

distance (m)

0 degrees
180 degrees

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

200 400 600 800 1000 1200 1400

pa
th

 lo
ss

 (
dB

m
)

distance (m)

binned
truncated
0 degrees

180 degrees

Figure 2.1: An example of signal attenuation curves estimated from fully observed
(top) and partially observed (bottom) signal measurements by the EM algorithm.
Diamonds (⋄) indicate fully observed or binned measurements with one dBm preci-
sion (dBm = decibel milliwatt), and pluses (+) indicate upper bounds of truncated
observations. The regressors in the model are the logarithm of the distance (dis-
tance on x-axis), and an additional direction-dependent factor. The two curves
show the estimated mean in the direction of transmission (0◦) and to the opposite
direction (180◦). For details, see Paper 1.
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can be seen that the effect of partial observability is only marginal. Also,
it can be seen from the bottom display that using only the non-truncated
observations would lead to over-estimation since the measurements with
weak signal tend to be truncated.

Once the parameters have been estimated, the propagation model can
also be used for positioning, i.e., estimating the location of a mobile device
based on received signal strength readings. The idea is to find a location
in which the probability of the observed measurements is maximized, or
to find the expectation of the location given the observations, see Paper 1.
Figure 2.2 demonstrates the resulting errors in a simulation experiment. In
the experiment the proposed method was compared to (a simplified version
of) the common ‘Cell-ID’ method, where the location of the transmitter
with the strongest received signal is used as a location estimate.

Proposed method Cell-ID
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Figure 2.2: Comparison of the method proposed in Paper 1 to the Cell-ID method.
A hypothetical network layout is shown in the background: a 5km× 5km area is
covered by a dense network of directed transmitters, indicated by small arrows
and numbers 1–64. The errors of each method are shown with lines connecting
the true trajectory to the estimated location. The errors are clearly larger in the
panel on the right.



Chapter 3

Generalization to Unseen Cases

“ Hence, learning is not only a question of remembering but also of gener-

alization to unseen cases ” [97, italics original].

One often encounters the association of the term ‘generalization’ to ‘un-
seen cases’ in machine learning literature. Despite the emphasis on unseen
cases, such comments are invariably followed by analysis of standard gen-
eralization error. In the standard setting the test cases are i.i.d. according
to the same distribution from which the training set D is sampled, which
means that some of the test cases may have been already seen in the train-
ing set. In this chapter we refer to the standard generalization error as the
i.i.d. error :

Eiid(h) := Pr[h(x) 6= y] .

If the hypothesis is chosen after seeing the training set, a more appropriate
measure of generalization to unseen cases is obtained by restricting the test
cases to those not already seen in the training set. This is especially true
when there is little noise (stochasticity) in the outputs: then there is not
much interest in the performance on the already seen instances which can
simply be memorized. Restricting to the as yet unseen instances yields the
off-training-set error [131]:

Eots(h,D) := Pr[h(x) 6= y | x /∈ XD] ,

where XD ⊂ X is the set of x-values occurring in the training set. If
the probability of the event x /∈ XD is zero, the off-training-set error is
undefined.

It can be argued that in many cases the instance space X is continuous,
and that therefore, with probability one, all cases are distinct and the two
error measures coincide anyway. However, it is not the continuity of the

17



18 3 Generalization to Unseen Cases

instance space but the continuity of the distribution P that guarantees this,
and as far as the distribution-free setting (see p. 4) is concerned, this cannot
be taken for granted.

The off-training-set error may in some situations behave quite differ-
ently from the i.i.d. error, as demonstrated by the No Free Lunch (NFL)
theorem(s) of Wolpert [131, 132, 133], see also [112, 26]. Informally stated,
the NFL theorem asserts that under a uniform prior distribution on the
generating distribution P , the expected off-training-set error of any learn-
ing algorithm is exactly one half. In this sense, no algorithm is better than
random guessing. It is also claimed that:

1. “ If we are interested in the error for [unseen cases], the NFL theorems
tell us that (in the absence of prior assumptions) [empirical error] is
meaningless. ” [132]

2. “ Unfortunately, [the tools of statistical learning theory] are ill-suited
for investigating off-training-set behavior. ” [133]

In Paper 2 we show that while the NFL theorem itself is mathematically
valid, both of the above two claims are incorrect. This is done by presenting
a method for constructing data-dependent, distribution-free off-training-set
error bounds.

3.1 Missing mass

Suppose that we are modeling the distribution of words in a long sequence
which is revealed sequentially from the beginning towards the end. At any
time, it is possible to estimate the distribution of the words in the sequence
by, for instance, the empirical distribution of words appeared so far, which
maximizes the likelihood of the observed initial part of the sequence. The
problem with the maximum likelihood method is that the empirical distri-
bution assigns zero probability to all unseen words. In language modeling
the remaining probability is called missing mass, see [76], not [61].

Definition 3.1 (sample coverage, missing mass) Given a training set
D, the sample coverage p(XD) is the probability that a new X-value appears
in D: p(XD) := Pr[X ∈ XD]. The remaining probability, 1−p(XD), is called
the missing mass.

Good-Turing estimators [36], originated by Irving J. Good, and Alan
Turing, are widely used in language modeling to estimate the missing mass
and related quantities. It can be shown that Good-Turing estimators give



3.1 Missing mass 19

good (albeit suboptimal) estimates of the missing mass and certain other
quantities in an unknown alphabet setting [91]. The known small bias of
the estimators, together with bounded rates of convergence, can be used to
obtain lower bounds for the missing mass, or equivalently, upper bounds
on the sample coverage [75, 74].

Theorem 3.1 (Good-Turing bound [75]) For any 0 ≤ δ ≤ 1, with
probability at least 1− δ:

p(XD) = O
(

r

n
+ log

(
3n

δ

)√
log(3/δ)

n

)
,

where n is the sample size, and 0 ≤ r ≤ n is the number of instances in a
random sample D with non-unique x-value1.

The bound depends on the number of repetitions r which is a random
variable determined by the sample D. In Paper 2, we state a new bound
that admits the following closed-form version:

Theorem 3.2 For any 0 ≤ δ ≤ 1, with probability at least 1− δ:

p(XD) = O
(√

r log n

n
+

log(4/δ)

n

)
,

where n is the sample size, and r is the number of instances with non-unique
x-value.

Neither of the bounds of Thms. 3.1 and 3.2 dominates the other. In
order to see how they relate to each other, consider fixed δ, and increasing
n. The G-T bound behaves as O(r/n + log n/

√
n). Our bound behaves as

O(
√

c + r log n/
√

n), where c is a constant. We can separate three cases,
depending on whether r is fixed or not:

1. For fixed r = 0, our bound yields O(1/
√

n).

2. For fixed r > 0, our bound yields O(
√

log n/n).

3. For r = Θ(n), our bound becomes greater than one.

These observations hold also for the non-asymptotic version given in Pa-
per 2. In the first two cases, our bound is asymptotically better than the
G-T bound. In the third case, i.e., r growing linearly in n, our bound

1For instance, if the x-values in the training set are (1, 3, 4, 1, 2), then n = 5 and r = 2.
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becomes trivial (greater than one), but the G-T bound converges to r/n.
In theory, if the data is sampled i.i.d. from some distribution P , then by
the law of large numbers, with probability one, either the first or the last
of the above three cases obtains. However, the asymptotic behavior does
not always determine the practical utility of the bounds. In the pattern
recognition context, where the sample size is modest compared to language
modeling, our lower bound is more useful than the G-T bound even in cases
where r > 0, as described in the next section.

3.2 Off-training-set error bounds

The missing mass, or the sample coverage, can be used to bound the dif-
ference between off-training-set error and i.i.d. error.

Lemma 3.1 For all hypotheses h, and all training sets D such that p(XD) <
1, we have

a) |Eots(h,D) − Eiid(h)| ≤ p(XD) , and

b) Eots(h,D) − Eiid(h) ≤ p(XD)

1− p(XD)
Eiid(h) .

Lower bounds on the missing mass, together with Lemma 3.1a, give
data-dependent bounds on the difference between the off-training-set and
i.i.d. errors. For instance, Thm. 3.2 yields the following bound.

Theorem 3.3 (off-training-set error bound) For all 0 ≤ δ ≤ 1, with
probability at least 1− δ, for all hypotheses h, we have

|Eots(h,D)− Eiid(h)| = O
(√

r log n

n
+

log(4/δ)

n

)
,

where r is the number of instances in the training set D having a non-unique
x-value.

The bound implies that the off-training-set error and the i.i.d. error
are entangled, thus transforming all distribution-free bounds on the i.i.d.
error (Hoeffding, Chernoff, etc., see Sec. 1.1) to similar bounds on the off-
training-set error. Since the bound holds for all hypotheses at the same
time, and does not depend on the richness of the hypothesis class in terms
of, for instance, its VC dimension. Figure 3.1 illustrates the bound as the
sample size grows. It can be seen that for a small number of repetitions the
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Figure 3.1: Bounds on the difference between i.i.d. and off-training-set errors.
for samples with zero (r = 0) to ten (r = 10) repeated X-values on the 95 %
confidence level (δ = 0.05). The dotted curve is an asymptotic version for r = 0
given by Thm. 3.3. The curve labeled ‘G-T’ (for r = 0) is based on Good-Turing
estimators (Thm. 3 in [75]). Asymptotically, it exceeds the new r = 0 bound by a
factor O(log n). Bound for the UCI data-sets in Table 3.1 are marked with small
triangles (▽). Note the log-scale for sample size.

bound is nontrivial already at moderate sample sizes. Moreover, the effect
of repetitions is tolerable, and it diminishes as the number of repetitions
grows. It can also be noted that the G-T bound (Thm. 3.1) is not useful
for samples of size less than 10000. Table 3.1 lists values of the bound for
a number of data-sets from the UCI machine learning repository [88]. In
many cases the bound is about 0.10–0.20 or less.

We can now re-evaluate the two claims on p. 18. The bound we give links
off-training-set error to the standard (i.i.d.) generalization error. Since it is
well-known that the i.i.d. error is linked to the empirical error, this implies
that empirical error is not meaningless to the error on unseen cases. As
for second claim, the used tools are standard in statistical learning theory,
what is new is their combination, which shows that these tools are not
ill-suited for investigating off-training-set behavior.
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data sample size repetitions bound

Abalone 4177 - 0.0383
Adult 32562 25 0.0959
Annealing 798 8 0.3149
Artificial Characters 1000 34 (0.5112)
Breast Cancer (Diagnostic) 569 - 0.1057
Breast Cancer (Original) 699 236 (1.0)
Credit Approval 690 - 0.0958
Cylinder Bands 542 - 0.1084
Housing 506 - 0.1123
Internet Advertisement 2385 441 (0.9865)
Isolated Letter Speech Recogn. 1332 - 0.0685
Letter Recognition 20000 1332 (0.6503)
Multiple Features 2000 4 0.1563
Musk 6598 17 0.1671
Page Blocks 5473 80 0.3509
Water Treatment Plant 527 - 0.1099
Waveform 5000 - 0.0350

Table 3.1: Bounds on the difference between the i.i.d. error and the off-training-
set error on confidence level 95% (δ = 0.05). A dash (-) indicates no repetitions.
Bounds greater than 0.5 are in parentheses.
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Chapter 4

Preliminaries

The statistical learning framework of Chapter 1 is formalized in terms of
classical frequentist statistics, such as fixed but unknown parameters and
their estimators. The Bayesian approach to data analysis builds upon the
Bayesian paradigm with its own concepts that differ, in some aspects ut-
terly, from the frequentist ones. The central idea in Bayesianism is to use
a subjective joint probability distribution to represent uncertainty in all
unknown quantities, see e.g. [111, 7]. Since uncertainty is a property re-
lated to knowledge, and knowledge is always someone’s knowledge about
something, Bayesian probabilities are often subjective, although in some
situations there are rather strict restrictions on what can be called ratio-
nal beliefs. For instance, probabilities that arise in sampling scenarios,
e.g., randomized experiments, are often the same independently of which
interpretation, the subjectivistic or the frequentist, is assumed.

In Bayesian theory, there is no distinction between parameters and
random variables, like there is in frequentist theory. Hence, in addition
to sampling-related probabilities, Bayesians assign probabilities to many
events that are not considered random in the frequentist framework. To
emphasize this different categorization — random–fixed vs. random–known
— the term ‘random quantity’ is sometimes used in the Bayesian context,
covering both unknown random variables and quantities that a frequentist
statistician would call fixed but unknown parameters. Once information is
obtained that is relevant to any of such random quantities, their distribu-
tion is conditioned on this information. All inference tasks use the basic
operations of probability calculus.

The Bayesian worldview, in comparison to the frequentist one, is ar-
guably closer to our everyday conception of probability, confidence and
related notions. For instance, the interpretation of frequentist confidence
intervals is that prior to observing the data, the probability that the in-
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terval will include the true value is high. Nothing can be said about the
validity of the bound conditional on the observed data since all randomness
is in the data. The problem is that the probability that any given interval
contains the true value is necessarily either zero or one, but we do not know
which. The interpretation of Bayesian confidence intervals (or rather, to
follow the terminology, high probability intervals) is very natural: given the
observed data, the true value of the estimated quantity is with high proba-
bility within the obtained range. More generally, frequentist methods deal
with ‘initial precision’, whereas the Bayesian framework is focused on ‘final
precision’ [6].

4.1 Bayesian inference

Although, in principle, everything in Bayesian inference is standard prob-
ability calculus, it is worthwhile to make some more specific remarks con-
cerning the concepts and techniques that are often encountered in practice.
A more detailed exposition is given in, for instance, [7].

In Bayesian statistical inference, the probability distribution over ob-
servables is often constructed in two parts. First, a parametric model is
assumed that gives a distribution over the observables conditional to one
or more parameters. The unknown parameters are modeled by a prior
distribution. The joint distribution of a sequence of observable variables,
xn = (x1, . . . , xn), and the parameters, θ, then factorizes as

p(xn, θ) = p(xn | θ) p(θ) . (4.1)

If the components of xn are i.i.d. given θ, then for all xn ∈ X n we have

p(xn | θ) =

n∏

i=1

p(xi | θ) .

The distribution of the observables is obtained from the joint distribu-
tion of xn and θ by marginalization:

p(xn) =

∫

Θ
p(xn | θ) p(θ) dθ , (4.2)

where Θ is the parameter domain. Integrals of this form are often called
Bayes mixtures.

From a purely subjectivistic Bayesian perspective, all uncertainty is
epistemic, due to our ignorance, and does not exist in any objective sense
(for an extreme view, see [53]). In this light, the status of parameters,
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Figure 4.1: Two examples of graphical models. The graph on the left is a typi-
cal hierarchical (or multilevel) model with hyper-priors for parameters µ and σ.
The graph on the right is a Bayesian network; the parameters of the conditional
probability tables for each node, θX , θZ|X , etc. are often omitted from the figure.

and terms like p(θ), is problematic. However, factorizations like (4.2) can
also be obtained without explicit reference to parameters from the distri-
bution of observables via the weaker assumption of exchangeability of the
observables [30, 7].

Graphical Models: The prior–likelihood model is sometimes hierarchical.

For instance, the parameter prior may be expressed as a mixture of the

form (4.2), with θ in place of x, and a hyper-parameter α in place of θ.

The term p(α) is then the hyper-prior that may be defined as a function of

hyper-hyper-parameters, etc. Complex hierarchical models are conveniently

expressed in terms of graphical models, as in Fig. 4.1. In principle, there is

nothing Bayesian about graphical models, and many graphical models are

used in non-Bayesian ways; for instance, Kalman filters, Markov random

fields, and hidden Markov models can all be viewed as graphical models.

However, the interpretation of especially hierarchical models is much more

straightforward in the Bayesian context.

The conditional distribution of the parameters given data D is obtained by
conditionalization via Bayes’s rule:

p(θ | D) =
p(D, θ)

p(D)
=

p(D | θ) p(θ)

p(D)
,

which is sometimes expressed using the proportionality symbol ‘∝’ as

p(θ | D) ∝ p(D | θ) × p(θ)

posterior ∝ likelihood × prior .
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If a family of models,M = {M1,M2, . . .}, is contemplated, the meaning
of the parameters may depend on the model, and we write θk ∈ Θk for the
parameters of model Mk ∈ M. In situations where the task is to select
one of the models, a natural model selection criterion is to maximize the
posterior probability of the model given data D:

p(Mk | D,M) ∝ p(D |Mk) p(Mk | M)

=

(∫

Θk

p(D | θk,Mk) p(θk |Mk) dθk

)
p(Mk | M) , (4.3)

where p(Mk | M) is a model prior. The important term p(D |Mk) is called
marginal likelihood (or evidence).

The predictive distribution of x given D under model Mk is given by

p(x | D,Mk) =

∫

Θk

p(x | θk,D,Mk) p(θk | D,Mk) dθk .

If x and D are independent given θk, then p(x | θk,D,Mk) = p(x | θk,Mk),
and the predictive distribution becomes

p(x | D,Mk) =

∫

Θk

p(x | θk,Mk) p(θk | D,Mk) dθ , (4.4)

where the data appears only in the posterior distribution of θk. This gives
the predictive distribution (4.4) as a mixture of the form (4.2).

Computational resources allowing, it is generally better to ‘marginalize
out’ both the parameters and the models. This gives a predictive distribu-
tion conditioned on D:

p(x | D,M) =
∑

Mk∈M

p(x | D,Mk) p(Mk | D,M) , (4.5)

where M is the considered family of models. The sense in which model
averaging is better than model selection is discussed in [51]: the central
point is that predictions based on a single model tend to be over-confident
due to ignorance of model uncertainty.

4.2 Bayesian Occam’s razor

Figure 4.2 illustrates an Occam’s razor effect implicit in the marginal like-
lihood term [117, 68]. For a complex model, there are parameter config-
urations yielding high conditional probability p(D | θk,Mk) for almost all
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p(D |M1)

p(D |M2)

p(D |M3)

Y

Figure 4.2: Bayesian Occam’s razor (adapted from [68, 96]). The marginal likeli-
hood of three models, M1, M2, M3, plotted for all possible data-sets ordered along
a one-dimensional representation. A simple model, M1, gives high probability to
only few data-sets. A complex model, M3, covers almost all data, but due to nor-
malization, gives relatively small probability to each data-set. For data Y , model
M2 is “just right”.

data-sets. However, the requirement that the total mass over all D is always
equal to one, still implies that the marginal likelihood p(D |Mk) has to be
low on average, which pushes the curve down for all data-sets. In compar-
ison, a simpler model, e.g., a linear model instead of a non-linear one, may
give very high marginal likelihood to only some very special data-sets; for
instance, linear models fit data-sets with roughly ‘linear’ structure.

The above can be made formal by considering the asymptotics of the
marginal likelihood. For parametric models, there are various different
approximations, differing in terms of the regularity conditions they impose
on the models and/or the generating distribution, see e.g. [115, 18, 90, 63].
A typical result is the following.

Theorem 4.1 (Evidence approximation) Under regularity conditions,
the logarithm of the marginal likelihood under a k-parameter model Mk is
approximated by

ln p(D |Mk) = ln p(D | θ̂k(D),Mk)−
k

2
ln

n

2π

+ ln p(θ̂k(D) |Mk)−
1

2
ln det I(θ̂k(D)) + o(1) ,

(4.6)

where θ̂k(D) denotes the maximum likelihood parameters for data D, and
I(·) is the Fisher information matrix, and the remainder term o(1) goes to
zero as n→∞.



30 4 Preliminaries

The regularity conditions are usually related to smoothness of the likeli-
hood and the prior. For details, see the aforementioned papers. Retaining
only the (asymptotically) most significant terms in (4.6) gives the well-
known BIC model selection criterion [115]:

BIC(D, k) := ln p(D | θ̂k(D),Mk)− k

2
ln n , (4.7)

which is sometimes expressed in a form where the terms are multiplied by
two and negated, i.e., −2 ln p(D | θ̂k(D),Mk)+k ln n. In nested model fam-
ilies, the first term of Eq. (4.7) grows and the second term becomes smaller
(more negative) as k is increased, which demonstrates the Occam’s razor
effect in an asymptotic manner. For non-asymptotic experimental results,
see e.g. [96, 85]. It should be noted that for practical purposes, the accu-
racy of the BIC approximation is very rough, and more accurate analytic
approximations are to be preferred. The use of stochastic approximations,
such as Monte Carlo sampling [12, 16, 35], has also become very popular
in model selection as well as other tasks.

4.3 Principle of maximum expected utility

To convert beliefs and utilities into decisions, an inference mechanism needs
to be complemented with a decision principle. In the Bayesian context,
the natural principle is that of maximum expected utility. Utility can
be equated with negative loss, so the principle could be phrased, using
terminology of the previous section, the principle of minimum expected
loss (or minimum risk). The essential difference between expected loss of a
hypothesis as defined in (1.1) and the expected loss in the Bayesian sense is
that in the latter, the expectation is taken under the predictive distribution
of the random inputs, conditioned on the training set D:

E(h | D) := E(x,y) [ℓ(y, h(x)) | D] =

∫

X×Y
ℓ(y, h(x)) p(x, y | D) dx dy .

Using this notation, the frequentist setting would be obtained by replacing
the observed training set D by the unknown generating distribution P .

The hypothesis (or more generally, decision) that minimizes the ex-
pected risk

hBayes(D) := arg min
h∈H

E(h | D) (4.8)

is called the Bayes optimal solution or the Bayes act. The Bayes optimal
solution to the three problems in Sec. 1, p. 4, is immediate since the predic-
tive distribution p(x, y | D) is known, inasmuch as subjective probabilities
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can be said to be ‘known’. The solutions stated in connection to the said
problems are simply applied with the predictive distribution in place of
the generating distribution P : in classification, the best label is given by
arg maxy p(y | x,D), etc. The Bayesian approach to machine learning and
related areas is then largely the task of constructing new likelihood–prior
models and computational methods for minimizing expected loss under
them. Popular examples include the näıve Bayes classifier [71, 81, 25] and
other Bayesian network classifiers [31].

4.4 Discussion

There are several different justifications for Bayesianism. First, one can
derive the rules of probability calculus from a set of axioms on handling
degrees of belief that can be claimed to appeal to common sense [94, 20, 45,
53]. All rational inference in the sense of conforming to such axioms can
be shown to be equivalent to Bayesian inference using some prior distribu-
tion. On the other hand, rational behavior can be characterized by a set of
axioms that can be argued to be compelling [30, 111]. In particular, any
set of beliefs incoherent with probability theory can be used to construct
a combination of bets that yields loss for all possible outcomes, a so called
Dutch book [94, 30] (see also [52, 120]).

One of the most criticized issues in the Bayesian approach is related to
priors. Even if there is a consensus on the use of probability calculus to
update beliefs, wildly different conclusions can be arrived at from different
states of prior beliefs. While such differences tend to diminish with increas-
ing amount of observed data, they are a problem in real situations where
the amount of data is always finite. Further, it is only true that posterior
beliefs eventually coincide if everyone uses the same set of models and all
prior distributions are mutually continuous, i.e., assign non-zero probabili-
ties to the same subsets of the parameter space (‘Cromwell’s rule’, see [67];
these conditions are very similar to those guaranteeing consistency [8]).
As an interesting sidenote, a Bayesian will always be sure that her own
predictions are ‘well-calibrated’, i.e., that empirical frequencies eventually
converge to predicted probabilities, no matter how poorly they may have
performed so far [22].

It is actually somewhat misleading to speak of the aforementioned crit-
icism as the ‘problem of priors’, as it were, since what is meant is often at
least as much a ‘problem of models’: if a different set of models is assumed,
differences in beliefs never vanish even with the amount of data going to
infinity. Hence, compared to the choice of priors, much stronger subjec-



32 4 Preliminaries

tivity is exercised in the choice of models. However, this point tends to
be forgotten in arguments against the Bayesian approach since it concerns
just as much any approach, including the frequentist one.



Chapter 5

Discriminative Bayesian Network

Classifiers

The situation in which data is generated by a model outside the set of
models under consideration — or, in more subjectivistic terms, behave as
if they were generated so — is called misspecification. While a subjectivistic
Bayesian is sure that this is never the case [22], more pragmatic consider-
ations suggest that it is useful to be prepared for the worst. This is called
theM-open view [7]. For instance, discriminative (or supervised) learning
that targets directly the prediction task at hand gives sometimes signif-
icantly better results than standard ‘generative’ (or unsupervised) meth-
ods [110, 89, 54]. In this chapter we discuss discriminative learning of
Bayesian network classifiers, see e.g. [38, 59, 39]. This work has been pub-
lished in Paper 3.

5.1 Prediction under misspecification

Decisions following the principle of maximum expected utility (Sec. 4.3),
are by definition optimal in the expected sense under the assumed model.
It is also important to consider how robust this approach is with respect to
misspecification: what happens when data is sampled from one distribution
and the decisions are derived using another distribution. While such a
sampling-oriented setting is inherently non-Bayesian, we can alternatively
think of the ‘true’ distribution as someone else’s subjective distribution
under which our decisions are evaluated. Such considerations are relevant
to group decision making (see e.g. [8] and [7, Ch. 6]).

The situation is strongly affected by whether the generating distribution
is inside or outside the assumed model. In the case where the generating

33
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distribution is inside the model, Bayesian methods are consistent under
rather weak regularity conditions (for instance, smoothness of the model
and prior, see e.g. [8, 114, 18]), and will eventually yield optimal predic-
tions that match the generating distribution. Consequently, the derived
decisions also converge to the optimal ones. In contrast, when the gener-
ating distribution is outside the model, i.e., in the case of misspecification,
the posterior distribution cannot be consistent in general, and the quality of
the decisions is not guaranteed. In this case, it is interesting to compare the
performance of predictors to the best predictor achievable with the given
model, i.e., the best predictor among the set of Bayes acts derived from the
distributions in the model.

5.2 Bayesian network classifiers

Bayesian networks are probabilistic graphical models (see [92, 65]) that are
composed of two parts: a directed acyclic graph (DAG) that determines
the independence–dependence relations among the relevant variables, and
a set of associated conditional probability distributions. The distributions
are usually defined through a family of parametric models and a set of pa-
rameters. In applications, the primary interest is sometimes in discovering
the independence–dependence relations, i.e., the DAG, and quantitative
probability assessments are of secondary interest; consider, for instance,
discovery of gene regulatory networks [32]. Here we consider the task of
prediction, focusing primarily on parameter learning.

A Bayesian network defines a joint probability distribution over a set
of domain variables, x0, . . . , xk, by a DAG, B, and a set of local probability
distributions as follows:

p(x0, . . . , xk | θB,B) =
k∏

i=0

p(xi | paBi , θB,B) , (5.1)

where paBi denotes the set of immediate predecessors (parents) of variable
xi in the graph B, and θB denotes the parameters defining the conditional
distributions. For simplicity, we assume that all variables are discrete, and
that the conditional distributions are multinomial. In this case the model
can be parameterized by parameters of the form θxi|paBi

for all xi ∈ Xi and

paBi ∈ Xp1(i)× . . .×Xpm(i)(i), where p1(i), . . . , pm(i)(i) are the parents of xi,
by setting

p(xi | paBi , θB,B) := θxi|paBi
. (5.2)
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To extend the model to an i.i.d. training set D, let xi,j denote the jth
realization of xi in D. Under the i.i.d. multinomial model parameterized
as (5.2), we have

p(D | θB,B) =

n∏

j=1

p(x0,j , . . . xk,j | θB,B) =

n∏

j=1

k∏

i=0

θxi,j |paBi,j
.

If the parameters are assumed independent of each other, with a Dirich-
let prior, the posterior distribution of the parameters has an especially
convenient form. Namely, the Dirichlet distribution is a so called conjugate
family for the multinomial model [11, 47], which means that the posterior
is also Dirichlet. In particular, the posterior mean of each parameter θxi|paBi
is given by

Eθ
xi|paB

i

[
θxi|paBi

| D
]

=
αxi|paBi

+ n[xi,paBi ]

αpaBi
+ n[paBi ]

, (5.3)

where n[·] denotes the number of vectors in D that match the argument,
αxi|paBi

are (hyper-)parameters of the Dirichlet prior, and

αpaBi
:=

∑

xi∈Xi

αxi|paBi
.

In the standard multinomial parameterization (5.2), the posterior mean
equals the predictive probability of a single variable given its parents and
the training data [47]:

p(xi | paBi ,D,B) = Eθ
xi|paB

i

[
θxi|paB

i
| D
]

, (5.4)

and hence, by parameter independence and equations (5.1) and (5.4), the
joint predictive distribution becomes a product of terms of the form (5.3):

p(x0, . . . , xk | D,B) =

k∏

i=0

p(xi | paBi ,D,B) =

k∏

i=0

αxi|paBi
+ n[xi,paBi ]

αpaBi
+ n[paBi ]

.

(5.5)
Given a Bayesian network, the corresponding Bayesian network clas-

sifier [31] is obtained by letting one of the domain variables be a target
variable, assumed here without loss of generality to be x0. The remaining
variables, x1, . . . , xk, are called predictor variables. Given a Bayesian net-
work and a training set D, the predictive distribution of the target variable
given the predictor variables becomes:

p(x0 | x1, . . . , xk,D,B) =
p(x0, . . . , xk | D,B)∑

x′
0∈X0

p(x′
0, x1, . . . , xk | D,B)

. (5.6)



36 5 Discriminative Bayesian Network Classifiers

For the multinomial–Dirichlet model, this can be evaluated in closed form
using Eq. (5.5).

5.3 Large-sample asymptotics

From an asymptotic point of view, it is easy to see from (5.3) that the
posterior means, and hence also the predictive probabilities, tend towards
the empirical frequencies

p(xi | paBi ,D,B) −→
n→∞

n[xi,paBi ]

n[paBi ]

,

assuming that the counts grow with the sample size. The empirical fre-
quency is in fact the maximum likelihood estimate of the parameter θxi|paBi

.
Consequently, the joint predictive distribution converges for all x0 ∈ X0, . . . ,
xk ∈ Xk to the distribution defined by the maximum likelihood parameters
(see [27]):

p(x0, . . . , xk | D,B) −→
n→∞

p(x0, . . . , xk | θ̂B(D),B) , (5.7)

where the maximum likelihood estimator is defined as usually:

θ̂B(D) := arg max
θB∈ΘB

p(D | θB,B) . (5.8)

The maximum likelihood estimate may not be unique but the result holds
for all choices in the ambiguous cases. Note, however, that the convergence
to empirical frequencies does not hold in general for the joint predictive
distribution

p(x0, . . . , xk | D,B) 6−→
n→∞

n[x0,...,xk]

n
,

unless the data behaves as if the model were ‘correct’ (not misspecified).
This is trivially achieved for the fully connected DAG, i.e., when all nodes
are directly connected to each other. In contrast, for the empty DAG
with no edges, convergence is guaranteed only in terms of the marginal
distributions p(xi | D,B) for 0 ≤ i ≤ k.

For Bayesian network classifiers, under mild regularity conditions (nec-
essary to guarantee that the denominator in (5.6) grows; see Paper 3), the
conditional predictive distribution is well approximated by plugging the
right-hand side of (5.7) into both the numerator and denominator of (5.6).
We call the resulting predictor the ML-plug-in predictor. Hence, the asymp-
totic behavior of the Bayesian predictive distribution follows that of the
ML-plug-in predictor. Moreover, it is straightforward to modify the ML-
plug-in predictor for supervised learning tasks.
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Figure 5.1: Two scenarios. Left: The generating distribution P is inside the
assumed model. Under regularity conditions, both the ML-plug-in and MCL-plug-
in predictors are consistent. Right: The generating distribution P is outside the
model. Asymptotically, the excess risk d1 of the conditional ML-plug-in predictions
is larger than the excess risk d2 of the MCL-plug-in predictions, measured in terms
of the expected conditional log-loss (conditional KL-divergence).

5.4 Discriminative parameter learning

In the conditional density estimation task, a natural alternative to maxi-
mum likelihood estimation is to find the parameters maximizing the con-
ditional likelihood (compare to (5.8)):

θ̂Bcond(D) := arg max
θB∈ΘB

p(D0 | D1, . . . ,Dk, θ
B,B) , (5.9)

where for each i ∈ {0, . . . , k}, Di = (xi,1, . . . , xi,n) denotes the sequence
of the n realizations of xi in the training set. The corresponding plug-in
predictor is called the MCL-plug-in predictor. For conditional log-loss, the
latter converges under regularity conditions to the best predictor achiev-
able with the model, but the same cannot be said about the ML-plug-in
predictor (for details, see Prop. 1 and Example 4 in Paper 3). Figure 5.1
illustrates the asymptotic behavior of the ML-plug-in and MCL-plug-in
predictors in two situations, in which data is generated by a distribution P
inside and outside a parameterized model, respectively.

Discriminative Learning or Discriminative Models? It has recently

been suggested that the term ‘discriminative learning’ should be abandoned,

and that one should rather speak of ‘discriminative models’ [80, 64] (see

also [44]). The idea is to consider the following double-parameterization:

one set of parameters, θ, defines the conditional distribution of the target
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variable(s) given the predictor variables, and another set of parameters, θ′,

defines the marginal distribution of the predictor variables. The standard

generative model is recovered by enforcing θ = θ′. Letting the two param-

eter sets be independent, and maximizing the joint likelihood with respect

to both θ and θ′, gives the same estimate of θ, and hence the same condi-

tional predictions, as conditional likelihood maximization. Note that even

though generative learning is often thought to be computationally easier

than discriminative learning, the transformation of a model to a discrim-

inative version makes the two types of learning equally hard. Hence the

value of the idea is not pragmatic, but foundational: it gives a principled

justification to conditional likelihood maximization. It is unclear whether

the idea can be extended to other optimization criteria (loss functions), such

as the 0/1 loss.

Unfortunately, in contrast to the Bayesian predictive distribution and
the ML-plug-in predictor, no closed form solution is available for the MCL-
plug-in predictor, see [31]. Nevertheless, it has been suggested that local
search heuristics, such as gradient descent, can be used to find a local
maximum of the conditional likelihood [48].

The main theoretical contribution of Paper 3 is to show that under a
simple condition on the DAG structure of a Bayesian network classifier,
the conditional likelihood is a unimodal function of the parameters. In
addition, in a suitable re-parameterization, the likelihood surface is in fact
log-concave, and the parameter space is convex. This implies, among other
things, that any local optimum is in fact necessarily global, and that the
effective search methods developed for convex optimization and logistic
regression [79] can be applied.

Definition 5.1 (Moral node) A node in a DAG is said to be moral if
all its parents are connected by an edge.

Theorem 5.1 If the DAG structure is such that after fully connecting all
parents of the target variable with each other, all children of the target
variable are moral, then there is a parameterization in which the conditional
likelihood is a log-concave function of the parameters, and the parameter
space is convex.

Figure 5.2 shows four examples of DAGs, two of which satisfy the con-
dition of Theorem 5.1, and two of which do not. Further positive examples
include the näıve Bayes, and tree-augmented näıve Bayes [31] (for instance,
the third graph in Fig. 5.2) models. Any Bayesian network can be made
to satisfy the condition by adding edges, which of course increases model
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Figure 5.2: Four examples of DAGs. The target variable is x0. The first and the
third DAG satisfy the condition of Theorem 5.1 (indicated by the plus (+) sign);
the second and the fourth do not.

complexity. In Paper 3 we give an explicit example (a data set) in which
the second graph of Figure 5.2 induces local optima in the conditional
likelihood surface. This shows that the condition in Theorem 5.1 is not
superfluous. It is currently unknown if the given condition is also necessary
for unimodality (for all data sets).
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Part III

Minimum Description

Length Principle
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Chapter 6

Preliminaries

The Minimum Description Length (MDL) principle [98, 101] is a relatively
recent framework, compared to the Bayesian and frequentist approaches. It
arose from obvious difficulties of the frequentist framework to deal with the
problem of over-fitting in model selection, and on the other hand, from Kol-
mogorov’s theory of algorithmic complexity [57] and the related theory of
universal prediction of Solomonoff [118]. The idea of MDL was also inspired
by the earlier Minimum Message Length (MML) principle [128]. While the
two principles, MDL and MML, are superficially similar, their develop-
ment has been largely independent and they differ in many foundational
and practical issues [5]. Most notably, (i) unlike MDL, MML is a Bayesian
method, and (ii) MML selects a single hypothesis while MDL (typically)
selects a model class. For comprehensive reviews on MDL, see [3, 46, 42, 43].

The three central concepts in the theory of MDL are complexity, infor-
mation, and noise. Roughly, their relationship is that the total complexity
in an object is the sum of the information and the noise in it. The objective
of MDL is then to extract the information from a given set of data. The
MDL principle itself calls for the model that minimizes the total description
length:

M̂MDL := arg min
Mk∈M

L(Mk) + L(D ; Mk) , (6.1)

where L(Mk) and L(D ; Mk) denote description (or code-) length of the
model, and the data given the model, respectively. In many (but not all)
practical situations the first term is ignorable in comparison to latter one,
and can be omitted.

Code-lengths and Probabilities: There is an important relationship

between code-lengths and probabilities, implied by the Kraft-McMillan in-

equality [60, 78, 19]. A sequence of integers l1, l2, . . . can represent the

43
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code-words lengths of a uniquely decodable code (in bits) if and only if it

satisfies the inequality
∞∑

i=1

2−li ≤ 1 . (6.2)

This allows the unification of codes and (sub-)probability distributions with

probabilities given by pi = 2−li . The restriction that li are integers is of

no practical importance since strings of symbols can be encoded in a block-

wise fashion so that the rounding up to the nearest integer needs to be done

only at the end of each block. An analogous result can be obtained for

continuous distributions by discretization. We call codes with non-integer

code-word lengths satisfying (6.2) ideal codes. It is often convenient to

express code-lengths in units of nats instead of bits, corresponding to the use

of natural logarithm, in which case we have pi = exp(−li), or equivalently,

li = ln(1/pi).

Using the correspondence between ideal code-lengths and probabilities,
the MDL criterion (6.1) can be written as

M̂MDL := arg max
Mk∈M

p(Mk)× p(D ; Mk) ,

where p(Mk) and p(D ; Mk) are probabilities corresponding to the code-
lengths L(Mk) and L(D ; Mk), respectively. This seems to suggest that
MDL and Bayesian model selection by maximization of posterior probabil-
ity (4.3) are equivalent. However, the interpretation of the term p(D ; Mk)
is different from that of marginal likelihood in the Bayesian framework, as
emphasized by the different notation (‘;’ vs. ‘|’). This is not a mere ter-
minological distinction but actually leads to practical differences in many
cases, often related to the different optimality criteria (expected loss vs.
worst-case relative loss) and the choice of priors in the Bayesian model.

6.1 ‘Ideal’ vs. practical MDL

In the context of Kolmogorov complexity, the idea of decomposing the to-
tal complexity into information and noise is encapsulated by the so called
Kolmogorov minimal sufficient statistic and the related ‘ideal MDL’ prin-
ciple. In order to discuss these, we introduce some definitions related to
Kolmogorov complexity; for more material, see [135, 19, 66].

A prefix-free Turing machine is a Turing machine whose halting pro-
grams form a prefix-free set. The prefix-free Kolmogorov complexity KU (x)
of (a description of) an object x is defined as the length (in bits) of the
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shortest program that produces x when run on a universal prefix-free Tur-
ing machine U . The definition of K(x) depends on the specific Turing
machine U . However, as the complexity of x increases, this dependency
becomes asymptotically negligible since for any two universal machines, U
and V , we have |KU (x)−KV (x)| ≤ cU,V for all x, where cU,V is a fixed (but
usually unknown) constant. The prefix-free property implies, via the Kraft-
McMillan inequality (6.2), that the sum of terms 2−KU (x) is at most one,
and hence, that there is an associated universal (sub-)probability distribu-
tion, defined by PU (x) := 2−KU (x). The dependency on the universal ma-
chine U is usually omitted from the notation, and we write K(x) = KU (x).

The standard definition of the Kolmogorov minimal sufficient statistic,
see [19, 126, 33, 125], is based on finite sets as description methods. (The
definitions can be extended to allow computable functions or probability
distributions, instead of finite sets with essentially no effect on the resulting
properties [33, 125].) An object x can be described using a finite set S
that includes x, by sorting the elements of S in a prespecified order and
specifying the index of x. The index can be encoded with a uniform code
over {1, . . . , |S|}, so that the ideal code-length equals log |S| bits. The code-
length log |S| is actually also a lower bound that cannot be significantly
beaten except for a very small subset of S, as can be seen by counting
arguments, see e.g. [66]. A finite set S is called a (Kolmogorov) sufficient
statistic for object x if we have1:

K(S) + log |S| ≤ K(x) +O(1) . (6.3)

In fact, the definition depends on the constant hidden in the O(1) notation.
Such constants are usually ignored in the theory of Kolmogorov complex-
ity; the following results hold for any ‘large enough’ value of the hidden
constant.

The requirement (6.3) implies that x is typical, or random, as an element
of S in the Martin-Löf sense [72]. To illustrate the idea of the sufficient
statistic, consider the following simple properties. The singleton set {x} is
a sufficient statistic for all x, since K({x}) = K(x)+O(1) and log |{x}| = 0.
In contrast, the set of all strings of length lx is sufficient only for the unin-
teresting random strings with complexity K(x) ≥ lx + K(lx) + O(1) with

1It is important to define exactly what is meant by K(S). Namely, it must be required
that K(S) is the length of the shortest program that enumerates the elements of S and

then halts. Otherwise, the set Sk := {y : K(y) ≤ k} becomes a sufficient statistic
for every x with K(x) = k, and hence, all the regular features of x are summarized by
stating that it belongs to the set of strings of complexity at most K(x) and nothing
more [33, Corollary III.13]. In the probabilistic version, this is equivalent to observing
that all strings are random with respect to the universal distribution PU [125]. Clearly,
this fails to summarize the regular features in the data.
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no regularity, except perhaps in their length. Since the two-part descrip-
tion based on S can never be shorter than the shortest description (not
necessarily two-part), the inequality (6.3) can only hold as an equality (up
to a constant).

The Kolmogorov minimal sufficient statistic (KMSS) is defined as the
sufficient statistic of least complexity:

KMSS(x) := arg min
S

{K(S) : K(S) + log |S| = K(x) +O(1)} .

The idea is to capture the regular (or “meaningful”) information in x,
leaving all the irregular or random features to be modeled as noise. To
phrase this in terms of the aforementioned three concepts, we have the
decomposition:

K(x) = K(S) + log |S| + O(1)

complexity ≈ information + noise,

Given data x, selecting the hypothesis (either a finite set or a proba-
bility distribution) that corresponds to the KMSS can be called ‘ideal
MDL’2 [126].

It is also possible to consider the whole range of optimal statistics un-
der the complexity restriction K(S) ≤ α with α ranging between zero and
K(x); the behavior of such statistics is described by the Kolmogorov struc-
ture function, see [19, 124].

In practical MDL, the KMSS idea is implemented in a computable and
non-asymptotic fashion. The code-length function L(D ; Mk) is known
as the stochastic complexity of data D under model Mk. Its meaning is
analogous to Kolmogorov complexity, the difference being that the set of
all prefix Turing machines is replaced by the model Mk, and the universal
Turing machine is replaced by a universal model. To define what is meant
by a universal model, let the regret of distribution q for sequence xn be
defined as

REG(xn, q,Mk) := − ln q(xn)−
(
− ln p(xn | θ̂k(x

n),Mk)
)

, (6.4)

i.e., the excess code-length obtained when using q to encode xn compared to
what would have been the optimum achievable by model Mk, had the max-
imum likelihood parameters been known beforehand. A universal model

2Strictly speaking, the definition of ideal MDL by Vitányi and Li is slightly differ-
ent from ours, but coincides with the KMSS decomposition under certain additional
assumptions [126].
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with respect to model Mk is a sequence of distributions, p1, p2, . . . on
X 1,X 2, . . ., such that the asymptotic per-symbol regret vanishes for all
sequences x1, x2, . . . of increasing length (see [42, 43]):

lim
n→∞

1

n
REG(xn, pn,Mk) = 0 . (6.5)

Hence, a universal model is able to imitate any distribution in the model
Mk in the mean code-length sense up to some lower-order (sublinear) terms.

6.2 Stochastic complexity

There are three main types of universal codes used to define the stochastic
complexity. Historically, the first one is based on two-part codes, where one
first encodes optimally quantized parameter values, and then the data given
the quantized parameters. For countable models it is not even necessary to
use quantization to achieve universality. The second definition uses Bayes
mixtures of the form (4.2), but without their Bayesian interpretation3 [100].
Finally, the most recent definition of stochastic complexity is based on
the Normalized Maximum Likelihood (NML) distribution [102], originally
proposed by Shtarkov for data compression [116]. For sequences xn ∈ X n,
the NML distribution is defined as

pn
nml(x

n ; Mk) =
p(xn | θ̂k(x

n),Mk)

Cn
k

, (6.6)

where the mapping θ̂(·) gives the maximum likelihood parameters, and the
normalizing constant Cn

k is given in the discrete case by

Cn
k =

∑

xn∈Xn

p(xn | θ̂k(x
n),Mk) , (6.7)

and in the continuous case by the corresponding integral. From here on
we will only discuss the discrete case, although all the results hold virtu-
ally unchanged when probability mass functions and sums are replaced by
density functions and integrals.

3Paraphrased from [5]:

“ In the MDL principle for statistical inference there is no need for the
awkward Bayesian interpretations of the meaning of the prior probability on
the parameters. Rather, we may interpret distributions, such as [Prob(D)],
just as convex linear combinations of the models in the class, whose utility
will be assessed on other grounds... ” [103]
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Encoding Continuous Outcomes: It is often said that when an outcome

xn is encoded using a density q, the code-length equals − ln q(xn) nats. This

is of course strictly speaking incorrect, since it is not possible to encode

outcomes from an uncountable set with infinite precision using a countable

set of code-words, i.e., some code-words should be infinitely long. In fact, it

is commonly understood that continuous outcomes are discretized with some

precision δ, high enough so that the probability mass of each quantization

region is well approximated by p(xn) ·δn. This holds if the density is almost

constant within a hyper-rectangle with side-length δ centered at xn. The

quantized outcomes can then be encoded with code-length approximately

− ln p(xn)− n ln δ. Since the latter term is independent of the density, it is

usually omitted.

The stochastic complexity based on the NML distribution becomes then

Lnml(x
n ; Mk) = − ln p(xn | θ̂k(x

n),Mk) + ln Cn
k .

The term parametric complexity is sometimes used for ln Cn
k since it gives

the additional code-length incurred because the best parameter value θ̂k(D)
is not known in advance. In some cases the parametric complexity is infi-
nite, i.e., the normalizing integral diverges, which precludes the use of the
NML universal distribution. This can be remedied by restricting the range
of integration, using an altogether different universal code, or a combination
of these, see [102, 109] and Papers 5 & 6 of this Thesis.

The NML universal distribution is optimal in the sense of the following
two theorems.

Theorem 6.1 (Individual sequence minimax [116]) When defined,
the NML model is the unique solution to the minimax problem

inf
q

sup
xn∈Xn

REG(xn, q,Mk) , (6.8)

where q can be any discrete distribution.

Theorem 6.2 (Expected minimax/maximin [104, 106]) When de-
fined, the NML model is the unique solution to the minimax problem

inf
q

sup
g

Exn∼g REG(xn, q,Mk) , (6.9)

and the maximin problem

sup
g

inf
q

Exn∼g REG(xn, q,Mk) , (6.10)

where q and g can be any discrete distributions on sequences of length n.



6.2 Stochastic complexity 49

Proof (of Theorems 6.1 & 6.2): Suppress the model Mk from notation

for clarity. The first theorem follows directly from the observation that the

NML model is the unique equalizer strategy with constant regret

REG(xn, pn
nml(·)) ≡ lnCn

k ,

and that any other distribution must assign smaller probability than pn
nml

to at least one sequence xn, and therefore, incurs greater loss for some xn.

The first part of the second theorem is actually almost identical to this,

since we always have supg Exn∼g REG(xn, q) = supxn∈Xn REG(xn, q). The

second part follows by noticing that by definitions (6.6) and (6.4) we have

REG(xn, q) = − ln q(xn)− (− ln pnml(x
n)) + lnCn

k

= − ln
q(xn)

g(xn)
−
(
− ln

pnml(x
n)

g(xn)

)
+ lnCn

k ,

which implies the identity

sup
g

inf
q

Exn∼gREG(xn, q) = sup
g

inf
q

KL(g || q)−KL(g || pn
nml(·)) + lnCn

k .

The theorem now follows, since KL(· || ·) ≥ 0 with equality if and only

if the arguments coincide. The minmax value lnCn
k is achieved by setting

g = q = pn
nml(·). 2

Both theorems hold also in the continuous case. Rissanen [104, 106] states
Thm. 6.2 in terms of density functions, with an additional restriction on
g which excludes singular distributions. However, if the theorem is formu-
lated in terms of general probability measures and the associated concept of
divergence (see e.g. [37, Ch. 5]), the above proof works for all distributions.

For parametric models satisfying suitable regularity assumptions, the
stochastic complexity can be approximated analytically.

Theorem 6.3 (NML approximation [102]) Under regularity conditions,
the stochastic complexity under a k-parameter model Mk is approximated
by

L(D ; Mk) =− ln p(D | θ̂k(D),Mk) +
k

2
ln

n

2π

+ ln

∫

Θ

√
det I(θk) dθ + o(1) ,

(6.11)

where I(·) is the Fisher information matrix, and the remainder term o(1)
goes to zero as n→∞.
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There are different sets of regularity conditions that imply the theorem,
see e.g. [102, 43]. The difference between the asymptotic expansions of
stochastic complexity (6.11) and the Bayesian evidence (4.6) results from
the prior-related terms. In fact, under similar regularity conditions as be-
fore, we can define Jeffreys’ prior [55, 7]:

pJeffreys(θ) :=

√
det I(θ)

∫
Θ

√
det I(η) dη

,

which, when plugged into (4.6), results in identical asymptotic expansions.
Like all approximations, this too should be used with care, see [87].

Rademacher complexity vs. parametric complexity: It is well-known

that parametric complexity and the Bayesian evidence with Jeffreys’ prior

are closely related. It is also interesting to compare the parametric com-

plexity lnCn
k to Rademacher complexity (1.6). Both quantities measure

how well the model is able to fit random data. To emphasize this similarity,

we can rewrite (6.7) as

∑

xn∈Xn

p(xn | θ̂k(xn), Mk) = |X |n Exn∼Uni(Xn)

[
sup

θ∈Mk

p(xn | θ, Mk)

]
.

It is easy to see, for instance, that the three intuitive properties of Rade-

macher complexity on p. 9 hold also for parametric complexity as defined

using the NML universal model. In this sense it can be asserted that the

correspondence between MDL and the SRM principle (p. 9) is more than

superficial. However, it is hard to say if something could be achieved by

analyzing these two in a common framework4.

6.3 Prediction and model selection by MDL

The two main settings in which MDL is applied are prediction and model
selection. We will only briefly mention some of the main issues in this
direction. The literature on this topic is extensive, see e.g. [3, 43] and
references therein.

6.3.1 Prediction

Consider first sequential prediction of outcomes x1, x2, . . ., where the tth
outcome is predicted based on the t−1 first outcomes. To simplify matters,

4Such an analysis is attempted in [121, Ch. 4] from a somewhat biased point of view.
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assume that q1, q2, . . . is a universal model that constitutes a stochastic
process, i.e., for all t > 0 and x1, . . . , xt−1 we have

∑

xt∈X

qt(x1, . . . , xt) = qt−1(x1, . . . , xt−1) .

By Kolmogorov’s extension theorem we can now let q denote the (unique)
distribution over infinite sequences from which a sequence of finite-length
distributions, q1, q2, . . . can be obtained. For instance, the Bayes mixture
universal model is a stochastic process, while the NML universal model is
not. What is achieved by the restriction to stochastic processes is that it
is now straightforward to consider the asymptotic behavior of the sequence
of predictions (q(xt | xt−1))∞t=1.

The problem of prediction is closely related to compression: if the pre-
dictions are probability distributions over outcomes, q(xt | xt−1), and loss is
measured by log-loss, then the loss is actually given by the code-length, and
vice versa. It is therefore immediate that universal models satisfying (6.5)
are good predictors in the sense that the cumulative regret (excess log-loss)
with respect to the best element in the reference class grows at most sub-
linearly in n. Furthermore, under a Gaussian model, log-loss is determined
by the squared errors, and thus, compression can also be identified with
regression estimation (p. 4).

In order to relate compression to something more familiar from a (fre-
quentist) statistical point of view, we can assume that the data are gen-
erated by a distribution in model M . We can then consider whether the
MDL predictor is also consistent in the sense that its risk (expected loss)
converges to the minimum achievable under the given model M . Adhering
to log-loss, the risk is given by the expected code-length, i.e., entropy, of
the conditional distribution q(· | xt−1). If data is generated by distribution
p∗, the minimum of this is achieved by p∗(· | xt−1). We can now consider
the excess risk incurred by q, given by the Kullback-Leibler divergence
KL(p∗(· | xt−1) || q(· | xt−1)).

It turns out that all universal models are consistent in terms of so called
Cesàro consistency, but not necessarily in terms of the standard notion of
consistency.

Definition 6.1 (Cesàro consistency) Given a stochastic process q, the
expected KL risk at step t under distribution p∗ is given by

E t
KL(p∗, q) := Ext−1∼p∗ KL(p∗(· | xt−1) || q(· | xt−1)) ,

where the expectation is over the initial sequence xt−1; and the Cesàro KL
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risk is given by

E t
CKL(p∗, q) :=

1

t

t∑

i=1

E t
KL(p∗, q) .

We call p KL consistent if, for all p∗ ∈M , the KL risk vanishes as t→∞,
and similarly, Cesàro consistent if, for all p∗ ∈M , the Cesàro risk vanishes
as t→∞.

Theorem 6.4 (Cesàro consistency [2]) The predictions of a universal
model are Cesàro consistent, but not necessarily KL consistent.

The difference is that KL consistency requires that for all ǫ > 0, the risk
eventually becomes smaller than ǫ and never goes up again, while Cesàro
consistency allows that the risk may exceed ǫ for arbitrarily large t, as long
as this occurs less and less frequently. For further discussion, see [43].

6.3.2 Model selection

The original and still predominant application of MDL is model selection,
see [99, 34, 63, 42, 86]. In order to measure performance, we can consider
a nested set of models M1 ⊂ M2 ⊂ . . ., and assume that the data are
generated by a distribution p∗ which is an element of at least one of the
models. We denote by M∗ the smallest model that includes p∗ — since the
models are nested M∗ is well-defined. A model selection method is called
consistent if, loosely speaking, it eventually finds the model M∗. It can
be shown that, under regularity conditions, model selection by the MDL
principle (6.1) is consistent, see [3, 43].

While the regularity conditions necessary to prove consistency of MDL
model selection are too technical to be stated here, it should be empha-
sized that they are by no means automatically satisfied. In fact, there
are certain ‘pathologic’ cases where the conditions are violated and MDL
overfits, i.e., chooses too complex a model, and continues to do so even
with increasing sample-size. Perhaps the most striking example of this is
the Csiszár-Shields anomaly [21]: when estimating the order of a Markov
chain from pure random data, i.e., data generated by a Bernoulli model
with parameter exactly 1/2, the estimated order grows unboundedly with
increasing sample size. The problem does not occur if the Bernoulli pa-
rameter of the generating distribution differs from 1/2, or if the singleton
model Bernoulli(1/2) is included in the set of allowed models. In Chapter 8
we encounter a similar phenomenon.
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6.4 Discussion

The foundations of MDL have some features that sets it apart from most
other frameworks for data analysis. One of these is the departure from
the assumption that there is a ‘true’ data-generating distribution. This
is related to the attitude of the probability-theorist de Finetti who stated
that “probability does not exist” [30]. What de Finetti meant was, however,
that probability does not exist as an objective phenomenon, but that it does
exist in the subjectivistic Bayesian sense, and that subjective probability
can and should be used as a basis for making decisions. In MDL, the data
are not assumed to be generated by a distribution, nor it is assumed that
subjective degrees of belief have any bearing on valid statistical inferences.

In the preceding sections, we explained the rationale of the MDL prin-
ciple in terms of Kolmogorov’s minimal sufficient statistic decomposition,
and its non-asymptotic embodiment as ‘practical MDL’ of Rissanen. In ad-
dition to such a justification from first principles, so to speak, if we make
some assumptions on the data, then it can be shown that MDL meth-
ods work, although there are some subtle issues related to the exact way in
which performance is measured, and even some (arguably unrealistic) cases
where MDL methods can fail.

Since the MDL principle is designed to extract information from data,
it is sometimes unclear how — or even whether — it should be applied
in decision-theoretic problems where a specific loss function is considered.
For instance, if the loss function is not log-loss, good compression does not
ensure good predictive performance. This is similar to the generative vs.
discriminative aspect of Bayesian theory. To overcome this difficulty, vari-
ants of MDL methods that are tailored for specific loss functions have been
suggested [134, 41, 107]. These touch upon the so called ‘expert frame-
work’ [127, 13]. The expert framework is a variant of the statistical learn-
ing framework, similar in spirit to MDL in the sense that no assumptions
are made about the data-generating mechanism, and that performance is
measured in terms of worst-case relative loss. For instance, the extended
stochastic complexity of Yamanishi [134] coincides with Vovk’s Aggregat-
ing Algorithm [127] from the expert framework in terms of the predictions
they yield. Thus, MDL and the expert setting complement each other in a
way that lends support to both of them.
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Chapter 7

Compression-Based Stemmatic

Analysis

Before the development of the art of printing, pioneered by Gutenberg in
the 15th century, written works were copied by hand. This resulted in
numerous unintentional errors that accumulated in copies of copies, copies
of copies of copies, etc. Consequently, a text of any importance ended up
existing in a group of different variants, some of them all but identical to
the original, some perhaps hardly recognizable. Connecting each variant
to its exemplar (the variant from which it was copied), gives a tree-like
structure called the stemma, with the original version as the root. The
aim of stemmatology is to recover this structure given a set of surviving
variants.

There is an obvious analogy in evolutionary biology to the transmission
of textual information in the stemma. Namely, the transmission of genetic
information and the development of species, often visualized as a phylo-
genetic tree or, more poetically, the ‘Tree of Life’1, has the same charac-
teristics of unintentional errors and iterative multiplication as ‘manuscript
evolution’. The methods developed for phylogenetic analysis have been
fruitfully adapted and applied to stemmatology, see e.g. [108, 119].

In Paper 4, we present a method for stemmatic analysis. The core of
the method is a compression-based criterion for comparing stemmata.

7.1 An MDL criterion

One of the most applied methods in phylogenetics is maximum parsimony.
A maximally parsimonious tree minimizes the total number of differences

1See http://www.tolweb.org.
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between connected nodes — i.e., species, individuals, or manuscripts that
are directly related — possibly weighted by their importance. In stem-
matology the analysis is based on variable readings that result from un-
intentional errors in copying or intentional omissions, insertions, or other
modifications. Our MDL criterion shares many properties of the maximum
parsimony method. In line with the MDL principle, we measure the total
description length of all the variants corresponding to a given stemma, and
choose the stemma that minimizes the code-length.

Intuitively, the idea in the MDL criterion is the following. All variants
are described by picking one of them as a starting point, proceeding along
the edges of the stemma tree to the tips of the branches, or the leafs,
and describing each variant along they way given its already described
predecessor. Having described the predecessor of a variant, the new variant
can be described concisely if it resembles the predecessor. Hence, a stemma
where similar variants are placed in neighboring nodes gives a shorter code-
length than a stemma where similar variants are randomly scattered across
different branches.

In order to define the code-length of a string given another string we
need to choose a specific code. The universal Kolmogorov complexity (see
Sec. 6.1) is noncomputable, and defined only up to a constant which may
be significant for short strings. In the spirit of a number of earlier authors
(see [40, 17, 129] and references therein), we approximate Kolmogorov com-
plexity by using a compression program (gzip). We also modify the gzip

complexity by letting the complexity C(x | x) be zero for all x, and ignoring
certain features known to be uninformative2.

Formally, the total code-length given a graph G is computed by first
picking a root node and considering the directed version of G where each
edge is directed away from the root, towards the leafs. Given such a directed
graph ~G, the code-length is given by

C( ~G) =
∑

v∈V (~G)

C(v | pa(v, ~G)) =
∑

v∈V (~G)

C(pa(v, ~G), v) − C(pa(v), ~G) ,

(7.1)
where V ( ~G) is the set of nodes (vertices) of the graph, and pa(v, ~G) denotes
the parent of node v in ~G. If node v has no parent, pa(v, ~G) is defined as
the empty string.

For simplicity, and following the common practice in phylogenetics, we

2Ignoring uninformative features was achieved by removing the differences between
the variants with respect to such features. For instance, all occurrences of the ampersand
‘&’ were replaced by the word et, and all occurrences of the letter v were replaced by the
letter u.
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restrict the stemma to a bifurcating tree, i.e., a tree in which all interior
nodes have exactly three neighbors. Since in any realistic case, some of the
manuscripts are missing, it is not reasonable to build a stemma consisting
only of the surviving manuscripts. Instead, the remaining variants are all
placed in the leaf nodes of the stemma, and the interior nodes are reserved
for the missing variants. Note that even though some of the interior nodes
may actually be available among the set of remaining variants, we can
always imagine that those variants are duplicated so that the original text
is lost and the copy is placed in a leaf node. Missing leaf nodes, i.e., missing
variants with no surviving descendants have no practical significance. If the
code-length of a pair, C(x, y), is symmetric in the sense C(x, y) = C(y, x),
which is approximately true in our application, the right-hand side of (7.1)
becomes for all bifurcating trees

C(G) =
∑

(v,w)∈E(G)

C(v,w) − 2
∑

v∈VI (G)

C(v) ,

where E(G) denotes the set of edges in G, and VI(G) denotes the set of
interior nodes in G. Hence the choice of the root node is irrelevant. In
other words, the method gives no indication of the temporal order in the
stemma.

7.2 Optimization algorithms

From an algorithmic point of view, the task of finding both a tree structure
and the contents of the missing nodes is a daunting combinatorial optimiza-
tion problem. Fortunately, given a tree structure, the optimal interior node
contents minimizing the total code-length can be found in polynomial time
in the number of nodes, under certain restrictions. More specifically, we
compute the cost C(v | pa(v, ~G)) in (7.1) as a sum of the contributions of
segments of 10–20 consecutive words, and assume that the possible choices
for the contents of each segment in the interior nodes are those appearing
in the segment in question in at least one of the available variants3. To sim-
plify notation, consider a fixed (directed) graph, and a fixed segment. Let
the different versions of the segment in the available variants be denoted
by x1, . . . , xm. Under the restriction that x1, . . . , xm are the only possible
choices, the minimum achievable code-length per the segment, and given

3For instance, if the available variants are (AACB,ABCB, BBAB,BBBA), where
A, B,C are used in place of the segments, then the possible interior nodes are
AAAA,AAAB,AABA,AABB, . . . , BBCB. This requires that the variants are aligned
so that each segment corresponds to the same part of the text in all variants.
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the graph, can be evaluated using a dynamic programming solution with
the recursion at the interior nodes (see [29]):

costi(j) = min
k

[
C(xk | xj) + costa(k)

]
+ min

l

[
C(xl | xj) + costa(l)

]
,

where a and b are the children of node i. The recursion is initialized at the
leaf nodes by letting

costi(j) =

{
0, if xj matches the content of node i;

∞, otherwise.

The total cost of the tree is obtained by summing over the segments the
minimal costs

min
j

costroot(j) + C(xj) .

Assuming that computing the code-length C(xk | xj) can be done in con-
stant time for all k and j, the time-complexity of the algorithm is of order
O(knm2), where n is the number of nodes, k is the number of segments,
and m is the maximum number of different versions of a segment. In the
worst case, all the versions of all segments differ, in which case we have
m = n, and the time-complexity is of order Θ(kn3).

With respect to the tree structure, the situation is not as easy. The
number of different bifurcating trees is superexponential. Hence exhaus-
tive search is infeasible, and no feasible alternative guaranteed to find the
optimal tree is known. We use simulated annealing [56], accepting random
modifications to the tree with probability

p := min

{
1, exp

(
total-costold − total-costnew

T

)}
,

where T is a temperature parameter that is slowly decreased to zero. When
evaluating the total cost, the algorithm also takes advantage of the fact that
small modifications require only partial updating of the dynamic program-
ming tables. With a large enough initial choice of T , the initialization of
the tree has no practical significance. We ran several runs up to 2.5 mil-
lion iterations, each of which usually resulted in a very similar final tree
structure and total cost.

7.3 Results and future work

Figure 7.1 and Table 7.1 illustrate the method by a simple example with
five variants, each consisting of five words. The segment length is set to one
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x y C(y | x)

1. sanctus → beatus 5
2. ex → in 3
3. henricus → Henricus 3
4. Anglia → anglia 3
5. ex → in 3

Table 7.1: Conditional complexity of the modifications relevant to the example in
Figure 7.1, as obtained from the gzip compressor. The complexity C(x | x) is
forced to be zero for all x.

word. In the main experiment, we analyzed all the known 52 variants of the
Legend of St. Henry of Finland [49]. The obtained tree is largely supported
by more traditional analysis in earlier work, and points out groups of related
manuscripts not discovered before. For more details, see Paper 5.

We are currently carrying out controlled experiments with artificial
(hand-copied) data with known ‘ground-truth’ solution to which the re-
sults can be compared4. Outside historical and biological applications,
analysis of computer viruses is an interesting research topic, see [129]. As
further research topics, it would be interesting to investigate ways to over-
come some of the restrictions of the method. Most importantly it would be
more realistic not to restrict to bifurcating trees — in reality, manuscripts
were sometimes copied from multiple exemplars, manifesting as non-treelike
structures. Currently, such generalizations are mostly unexplored in both
stemmatology and phylogenetics.

4See http://www.cs.helsinki.fi/teemu.roos/casc/.
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3. & 4.

1.

5.

2.

sanctus henricus ex Anglia

beatus henricus in Anglia

beatus Henricus ex anglia

beatus Henricus in anglia

beatus henricus ex Anglia beatus henricus ex Anglia

beatus Henricus ex anglia

beatus henricus ex Anglia

Figure 7.1: An example tree obtained with the compression-based method for the
five strings at the tips of the branches. Changes are underlined and numbered.
Costs of changes are listed in Table 7.1 using the same numbering as in the graph.
Best reconstructions at interior nodes are shown at the branching points. The
solution is not unique.

Figure 7.2: An excerpt of a 15th century manuscript ‘H’ from the collections of
the Helsinki University Library, showing the beginning of the legend of St. Henry
on the right: “Incipit legenda de sancto Henrico pontifice et martyre; lectio prima;
Regnante illustrissimo rege sancto Erico, in Suecia, uenerabilis pontifex beatus
Henricus, de Anglia oriundus, ...” [49].



Chapter 8

MDL Denoising

Denoising means the process of removing noise from a signal. This may
be necessary due to an imprecise measurement device or transmission over
a noisy channel. Traditional techniques, such as mean and median filters
that operate directly on the signal, remove in effect the high-frequency
components from the signal. This often removes a large fraction of the
noise, but in some cases leads to loss of too much detail. They also require
that some parameters such as window size, etc., are tuned, usually by hand,
to find a suitable balance between noise reduction and resolution.

Time-frequency transforms, including wavelet transforms, enable better
resolution by operating both in the frequency domain and the time (spatial)
domain, see [70]. A hierarchy of denoising methods is presented in Fig. 8.1.

As explained in Chapter 6, the MDL principle is by its very purpose
designed to separate information and noise, and hence naturally applicable
to denoising. In Papers 5 & 6, we analyze an extend an MDL denoising
method of Rissanen [105]. The developed methods are freely available at
the author’s web-page1.

8.1 Wavelet regression

We focus on the regression-type case where the signal is a sequence of real-
valued measurements, y = (y1, . . . , yn)T (for convenience transposed to get
a column vector). Two-dimensional signals are represented in the same
sequential form by reading the measurements in a row-by-row or column-
by-column order. Let W be an n × m regressor matrix (the choice of
the letter W becomes clear shortly) whose columns give the basis vectors
{(w1,j , . . . , wn,j)}mj=1. The standard linear regression model (see Chapter 2)

1http://www.cs.helsinki.fi/teemu.roos/denoise/
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Non−Adaptive
Transforms

Transform DomainTime Domain

Thresholding

Non−Adaptive Adaptive

SureShrink
BayesShrink
Cross−Validation

Wavelet Transforms

Statistical Estimation

Generalized Gaussian
...

Gaussian Mixtures

Time−Frequency Transforms

Short−Time Fourier

VisuShrink

Mean
Median

D E N O I S I N G   M E T H O D S

Adaptive Transforms

ICA

Frequency Transforms

Fourier

Figure 8.1: A partial hierarchy of denoising methods with emphasis on wavelet-
based approaches (adapted from [84]): The methods are grouped into ones that
operate directly on the signal (time domain) and ones that apply transformations
(transform domain). Wavelet-based methods are further grouped according to the
type of operations performed on the wavelet coefficients. (The groups are not
mutually exclusive: for instance, in BayesShrink the optimal threshold value is
determined using statistical estimation under the generalized Gaussian model.)

gives the observed signal y as a linear combination of the basis vector plus
noise:

y =Wβ + ǫ, ǫi
iid∼ N (0, σ2

N ) , (8.1)

where the noise sequence ǫ = (ǫ1, . . . , ǫn)T is taken to be i.i.d. Gaussian
with variance, σ2

N .
Using an orthonormal wavelet basis as the regressor matrix W (which

explains the letterW, for wavelet) implies that the basis vectors are orthog-
onal unit vectors. This restriction is satisfied by, for instance, the Haar basis
and Daubechies family of bases, see [70]. Orthonormality has several com-
putational and statistical advantages [69]. One of the main computational
advantages is that, by the identity WTW = I, the least-squares solution
(recall Eq. (2.2)) simplifies:

β̂ = (WTW)−1WTy =WTy ,

and that furthermore, there is a fast (linear-time) algorithm for the eval-
uation of WTy, known as the Fast Wavelet Transform (FWT), similar to
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the Fast Fourier Transform (FFT). The statistical advantages are related
to the fact that most natural signals have sparse wavelet representations
— the distribution of wavelet coefficients is heavy-tailed — while Gaussian
i.i.d. noise is unaffected by the transform.

The idea of wavelet thresholding is to apply a parameterized threshold-
ing function to the wavelet coefficients. In the simplest form, known as hard
thresholding, the thresholding function sets all coefficients whose absolute
value is below a threshold, T , to zero, and leaves the remaining ones intact.
In another popular choice, called soft thresholding, the procedure is other-
wise the same as in hard thresholding, except that the threshold parameter
T is also subtracted from the absolute values of the remaining coefficients.
There are various approaches to choosing the value of the thresholding pa-
rameter, each giving rise to a different denoising method, e.g., VisuShrink
and SureShrink [24]; and BayesShrink [14] (see Fig. 8.1).

8.2 Codes and models for wavelet coefficients

For complete wavelet bases with m = n basis vectors, the maximum likeli-
hood (i.e., least-squares) fit gives y =Wβ̂, leaving nothing to be modeled
as noise. Hard thresholding can be considered as choosing a subset, γ,
of the basis vectors, and projecting the signal orthogonally to the space
spanned by the chosen vectors viaWγWT

γ y, whereWγ denotes the reduced
matrix comprising only of the basis vectors γ. The critical question is then:
which one of the subsets should be chosen?

As mentioned above, hard thresholding has been studied both in the
frequentist and Bayesian frameworks. Rissanen [105] suggests to choose
the basis vectors by the MDL principle2. In order to define the length of
the description of the observed signal, he uses a special two-fold NML (or
renormalized maximum likelihood, RNML) procedure.

8.2.1 Renormalized NML

In the first phase of the RNML procedure, the free parameters to be maxi-
mized in the NML model are the coefficients β = (β1, . . . , βk), and the noise
variance σ2

N . However, the data have to be restricted by hyper-parameters,
or otherwise the normalizing coefficient giving the parametric complexity
becomes infinite. To nullify the effect of the restriction on the criterion, a

2Regarding the hierarchy of Figure 8.1, MDL denoising methods are most naturally
placed in the “Statistical Estimation” branch, since in them thresholding is more a con-
sequence than a design solution, the primary aim being model selection.
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second-level NML model is constructed by treating the hyper-parameter as
the free parameters to be maximized. For any subset of the basis vector
indices, γ ⊆ {1, . . . , n}, of cardinality k = |γ|, the RNML code-length is
well approximated by3

Lrnml(y ; γ) ≈ n− k

2
ln

S(y)− Sγ(y)

n− k
+

k

2
ln

Sγ(y)

k
+

1

2
ln k(n− k) + C ,

(8.2)

where Sγ(y) =
∑

i∈γ β̂
2
i , S(y) := S{1,...,n}(y), and the additive constant C

is independent of γ and y. The only approximation step is the Stirling ap-
proximation of the Gamma function, which is very accurate. The criterion
is always minimized choosing in γ some k smallest or largest coefficients in
absolute value [105], which allows huge computational savings compared to
trying all the 2n subsets. It seems that in most practical situations — and
in fact, we argue in Papers 5 & 6 that this holds in all situations — the
largest coefficients in absolute value should be retained.

8.2.2 An equivalent NML model

Since the renormalization procedure is not as well understood as the stan-
dard NML model, it is useful to know that the code-length function (8.2)
can be obtained using the standard NML under a slightly different model.
The new model includes a density for the β coefficients, for which reason
we call it the ‘extended’ model. The extended model is given by

y =Wβ + ǫ, ǫi
iid∼ N (0, σ2

N ),

{
βi

iid∼ N (0, τ2), if i ∈ γ,

βi = 0, otherwise.
(8.3)

A similar model is often used in Bayesian variable selection, where it is
dubbed the spike-and-slab model [82]. The spike-and-slab model corre-
sponds to the sparseness property: the spike produces a lot of coefficients
near zero (but in practice not exactly zero due to noise), while the slab
gives the heavy tails.

In Paper 5 it was hinted that the NML code constructed from such
an extended model by integrating over the β coefficients and maximizing
with respect to τ and σ, agrees with the RNML code (8.2) constructed
from the standard regression model (8.1). This claim is proved in Paper 6.
The advantage of such an alternative derivation of the same criterion is in
the insight it gives to the procedure. For instance, the overfitting problem
occurring in the high-noise regime identified in Paper 5 can be traced to

3In [105] the third term (1/2) ln k(n−k) was incorrectly in the form (1/2) ln k/(n−k).
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the fact that fitting two Gaussian densities to data from a single Gaussian
density gives nonsensical results. Even more importantly, once the under-
lying model is well understood, it can be easily modified and generalized in
a meaningful way.

8.3 Three refinements

It is customary to ignore the encoding of the index of the model class
in MDL model selection (see Eq. (6.1)). One simply picks the class that
enables the shortest description of the data without considering how many
bits are needed to indicate which class was used. However, when the number
of different model classes is large, like in denoising where it is 2n, the code-
length for the model index can not be omitted.

Encoding a subset of k indices from the set {1, . . . , n} can be done very
simply by using a uniform code over the

(
n
k

)
subsets of size k. This requires

that the number k is encoded first, but this part can be ignored if a uniform
code is used, which is possible since the maximum n is fixed. Adding the
code-length of the model index to the code-length of y given γ, Eq. (8.2),
gives the total code-length

L(γ) + L(y ; γ) ≈ n− k

2
ln

S(y)− Sγ(y)

(n− k)3
+

k

2
ln

Sγ(y)

k3
+ C ′, (8.4)

where C ′ is a constant independent of γ, and the only approximative step
is again the Stirling approximation, which is very accurate. This gives
refinement A to Rissanen’s [105] MDL denoising method.

It is well-known that in natural signals, especially images, the distribu-
tion of the wavelet coefficients is not constant across the so called subbands
of the transformation. Different subbands correspond to different orien-
tations (horizontal, vertical, diagonal), and different scales. Letting the
coefficient variance, τ2, depend on the subband produces a variant of the
extended model (8.3). The NML code for this variant can be constructed
using the same technique as for the extended model with only one ad-
justable variance. The resulting code-length function becomes after the
Stirling approximation as follows:

B∑

b=0

(
kb

2
ln

Sγb(y)

kb
+

1

2
ln kb

)
+

B∑

b=1

ln

(
nb

kb

)
+ C ′′ , (8.5)

where B is the number of subbands, γb denotes the set of retained coeffi-
cients in subband b, kb := |γb| denotes their number, nb denotes the total
number of coefficients in subband b, and C ′′ is constant with respect to γ.
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Algorithm 1 Subband adaptive MDL denoising

Input: Signal yn.
Output: Denoised signal.

1: cn ←WT yn

2: for all b ∈ {1, . . . , B} do
3: kb ← nb

4: end for
5: repeat
6: for all b ∈ {B0 + 1, . . . , B} do
7: optimize kb wrt. criterion (8.5)
8: end for
9: until convergence

10: for all i ∈ {1, . . . , n} do
11: if i /∈ γ then
12: cn ← 0
13: end if
14: end for
15: return Wcn

Finding the coefficients that minimize criterion (8.5) simultaneously for
all subbands can no longer be done as easily as previously. In practice, a
good enough solution is found by an iterative optimization of each subband
while letting the other subbands be kept in their current state, see Algo-
rithm 1. In order to make sure that the coarse structure of the signal is
preserved, the coarsest B0 subbands are not processed in the loop of Steps
5–9. In the condition of Step 11, the final model γ is defined by the largest
kb coefficients on each subband b. This gives refinement B.

Refinement C is inspired by predictive universal coding with weighted
mixtures of the Bayes type, used earlier in combination of mixtures of
trees [130]. The idea is to use a mixture of the form

pmix(y) :=
∑

γ

pnml(y ; γ)π(γ) ,

where the sum is over all the subsets γ, and π(γ) is the prior distribution
corresponding to the ln

(n
k

)
code defined above. This is similar to Bayesian

model averaging (4.5) except that the model for y given γ is obtained using
NML. This induces an ‘NML posterior’, a normalized product of the prior
and the NML density. The normalization presents a technical difficulty
since in principle it requires summing over all the 2n subsets. In Paper
6, we present a computationally feasible approximation which turns out to
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lead to a general form of soft thresholding. The soft thresholding variation
can be implemented by replacing Step 12 of Algorithm 1 by the instruction

ci ← ci
r̃i

1 + r̃i
,

where r̃i is a ratio of two NML posteriors which can be evaluated without
having to find the normalization constant.

All three refinements improve the performance, measured in terms of
peak-signal-to-noise ratio or, equivalently, mean squared error, in the ar-
tificial setting where a ‘noiseless’ signal is contaminated with Gaussian
noise, and the denoised signal is compared to the original. Figures 8.2
and 8.3 illustrate the denoising performance of the MDL methods and three
other methods (VisuShrink, SureShrink [24], and BayesShrink [14]) for the
Doppler signal [24] and the Barbara image4. The used wavelet transform
was Daubechies D6 in both cases. In terms of PSNR, the refinements
improve performance in all cases except for one: refinement A decreases
PSNR for the Barbara image, Fig. 8.3. For more results, see Paper 6, and
the supplementary material5.

The best method in the Doppler case is the MDL method with all three
refinements, labeled “MDL (A-B-C)” in the figures. For the Barbara image,
the best method is BayesShrink. The difference in the preferred method
between the 1D signal and the image is most likely due to the fact that
the generalized Gaussian model used in BayesShrink is especially apt for
natural images. However, actually none of the compared methods are cur-
rently state-of-the-art for image denoising, where the best special-purpose
methods are based on overcomplete (non-orthogonal) wavelet decomposi-
tions, and take advantage of inter-coefficient dependencies, see e.g. [93].
Applying the MDL approach to special-purpose image models is a future
research goal. In 1D signals such as Doppler, where the new method has
an advantage, it is likely to be directly useful.

4From http://decsai.ugr.es/∼javier/denoise/.
5All the results in Paper 6 (and some more), together with all source code, are available

at http://www.cs.helsinki.fi/teemu.roos/denoise/.
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Original Noisy PSNR=19.8 MDL PSNR=25.2

MDL (A) PSNR=31.3 MDL (A-B) PSNR=32.9 MDL (A-B-C) PSNR=33.5

VisuShrink PSNR=31.3 SureShrink PSNR=32.1 BayesShrink PSNR=32.6

Figure 8.2: Doppler signal [24]. First row: original signal, sample size n = 4096;
noisy signal, noise standard deviation σ = 0.1; original MDL method [105]. Second
row: MDL with refinement A; MDL with refinements A and B; MDL with refine-
ments A, B, and C. Third row: VisuShrink; SureShrink; BayesShrink. Peak-signal-
to-noise ratio (PSNR) in decibels is given in each panel. (Higher PSNR is better).
The denoised signals of MDL (A) and VisuShrink are identical (PSNR=31.3 dB).
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Original Noisy PSNR=22.1 MDL PSNR=24.3

MDL (A) PSNR=23.9 MDL (A-B) PSNR=24.9 MDL (A-B-C) PSNR=25.7

VisuShrink PSNR=23.3 SureShrink PSNR=26.7 BayesShrink PSNR=26.8

Figure 8.3: Barbara image (detail). First row: original image; noisy image, noise
standard deviation σ = 20.0; original MDL method [105]. Second row: MDL with
refinement A; MDL with refinements A and B; MDL with refinements A, B, and
C. Third row: VisuShrink; SureShrink; BayesShrink. Peak-signal-to-noise ratio
(PSNR) in decibels is given in each panel. (Higher PSNR is better).
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[33] Péter Gács, John T. Tromp, and Paul M. B. Vitányi. Algorithmic
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