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1. INTRODUCTION

The important normalized maximum likelihood (NML)
distribution is obtained via a normalization over all se-
quences of given length. It has two short-comings: the
resulting model is usually not a random process, and in
many cases, the normalizing integral or sum is hard to
compute. In contrast, the recently proposedsequentially
normalized maximum likelihood (SNML) models always
comprise a random process and are often much easier to
compute. We present some results on SNML type models
in the Markovian and linear–Gaussian model classes.

In the linear–Gaussian case, the resultingsequentially
normalized least squares (SNLS) model is particularly in-
teresting. The associated sequentially minimized squared
deviations are smaller than both the usual least squares
and the squared prediction errors used in the so calledpre-
dictive least squares (PLS) criterion. The SNLS model is
asymptotically optimal within the given class of distribu-
tions by reaching the lower bound on the logarithmic pre-
diction errors, given by the stochastic complexity, up to
lower-order terms.

2. SOME MINMAX PROBLEMS

Consider the model classMk = {f(xn; θ)}, θ =
θ1, . . . , θk, and data sequencesxn = x1, . . . , n, for n =
1, 2, . . . . Let m be a large enough integer such that the
ML estimateθ̂t = θ̂(xt) can be computed fort > m. The
number

log 1/f(xn; θ̂n)

has been considered as the ideal target for the code length
obtainable with the model class, [1], which, however, is
not attainable, becausef(xn; θ̂n) is not a probability dis-
tribution. This leads to the minmax problem

min
q

max
xn

log
f(xn; θ̂n)

q(xn)
,

with the solution due to Shtarkov, known as thenormal-
ized maximum likelihood (NML) universal model, [2],

f̂NML(xn;Mγ) =
f(xn; θ̂(xn))

Cn
(1)

Cn =

∫

f(yn; θ̂(yn))dyn.

However, the normalizing coefficient can be evaluated
easily only for restricted model classes, and the model
does not define a random process. This means that it can-
not be used for prediction and its evaluation for data com-
pression is difficult.

Now, consider for allt > m, the problem

min
q(x|xt−1)

max
x

log
f(xt−1, x; θ̂(xt−1, x))

q(x |xt−1)
. (2)

The solution is given by theconditional NML model

f̂(xt |xt−1) =
f(xt; θ̂(xt))

Kt(xt−1)
(3)

Kt(x
t−1) =

∫

f(xt−1, x; θ̂(xt−1, x))dx.

This is proved the same way as the solution to Shtarkov’s
problem: First, replacing the numerator by the den-
sity function (3) does not change the solution, and the
maximized ratio of the two density functions (3) and
q(x |xt−1), which is not smaller than unity, is made unity
when the latter is selected equal to the former.

It is clear that the normalizing coefficientKt(x
t−1),

which in general is a function ofxt−1, is easier to calcu-
late, at least numerically, than the normalizing coefficient
in the NML universal model.

For another type of normalization, where the numer-
ator f(xt ; θ̂(xt)) is replaced by the conditional density
f(xt |xt−1 ; θ̂(xt)), see [3].

Putting together the conditional NML densities gives
thesequentially normalized maximum likelihood (sNML)
model:

fSNML(xn) = fm(xm)
n
∏

t=m+1

f̂(xt |xt−1), (4)

wherefm(xm) is a suitably chosen initial distribution.
The result is, by construction, a random process.

3. BERNOULLI MODEL

We begin with an example involving the Bernoulli class
B = {P (x; p)}, where the parameterp = P (1). The ML
estimate is given bŷp(xn) = n1/n, wheren1 =

∑

t xt is



the number of 1’s inxn. If n0 = n − n1 the maximized
likelihood is

P (xn;n1/n) =
(n1

n

)n1
(n0

n

)n0

.

The conditional NML predictive probability can be writ-
ten as

P̂ (1 |xn) =
(n1 + 1) e(n1)

(n0 + 1) e(n0) + (n1 + 1) e(n1)
, (5)

wheree(n0) = (1 + 1/n0)
n0 ande(n1) = (1 + 1/n1)

n1 ;
takee(k) = 1 for k = 0.

For instance, in the problem considered by Laplace,
given a sequence of ‘1’s, the successive probabilities of
yet another ‘1’ are 1

2 , 4
5 , 27

31 , 256
283 , . . .. Compare this to the

more conservative solution by Laplace,

PLap(1 |xn) =
n1 + 1

n + 2
,

which gives the same sequence as1
2 , 2

3 , 3
4 , 4

5 , . . ., i.e., the
certainty of 80 %, which is achieved by the Laplace prob-
ability on the fourth step, is achieved by conditional NML
already on the second step.

The same conditional probability function̂P (1 |xn)
was found in [2], where it was shown to behave similarly
to the Krichevski-Trofimov predictive probability

PKT(1 |xn) =
n1 + 1/2

n + 1
.

It was also found later in [4], in effect, as the solution to
the following minmax problem

min
θ

max
x

log
f(xt−1, x; θ̂(xt−1, x))

f(x |xt−1; θ)
. (6)

Neither Krichevski-Trofimov predictive probability
nor the related Laplace probability has been shown to have
any particular optimality property, except asymptotically.
Takimoto and Warmuth [4] showed that for the Bernoulli
models, the regret of the sNML model (4) satisfies for all
sequences the inequality

R(fSNML, xn) := ln 1/fSNML(xn) − ln 1/f(xn; θ̂(xn))

≤ 1

2
ln(n + 1) +

1

2
. (7)

We conclude this section by noting that in the
Bernoulli case, the alternative version of normalization
mentioned in Sec. 2, where the numerator of (3) is re-
placed byf(xt | xt−1 ; θ̂(xt)), agrees with the Laplace
probability, see [3].

4. LINEAR–QUADRATIC MODELS

In the rest of the paper, we are concerned with deriving a
model selection criterion for a class of normal models

f(yn | Xn ; σ2, b)

= (2πσ2)−n/2 exp

(

− 1

2σ2

n
∑

1

(yt − b′x̄t)
2

)

,

induced by the regression equations

yt = b′x̄t + ǫt, (8)

where the prime indicates transposition,b′ =
(b(1), . . . , b(k)), with k ∈ N. The deviations(ǫt)

n
t=1

are taken as an i.i.d. sequence generated by a normal
distribution of zero-mean and varianceσ2. The columns
x̄t = (xt,1, . . . , xt,k)′ of real valued elements, defining
the regressor matricesXt, are either non-random, or
x̄t = (yt−1, . . . , yt−k)′ as in AR models.

For each t = 1, 2, . . . n, let k(t) be the largest
integer such that the least squares estimatebt =
(bt,1, . . . , bt,k(t))

′ can be uniquely solved. Hence, typ-
ically k(t) = min{t, k} except for AR models, where
k(t) = min{t − 1, k}. We letm be the smallest integert
such thatk(t) = k.

Central to this work are the following three represen-
tations of data fort = 1, 2, . . . n, andk ≥ k(t):

yt = b′t−1x̄t + et =

k(t)
∑

i=1

bt−1,ixt,i + et, (9)

yt = b′nx̄t + ǫ̂t(n) =

k(t)
∑

i=1

bn,ixt,i + ǫ̂t(n), (10)

yt = b′tx̄t + êt =

k(t)
∑

i=1

bt,ixt,i + êt. (11)

The predictorb′t−1x̄t of yt in the first case is called the
‘plug-in’ predictor, in which the parameters are calculated
from the data available up tot − 1. The plug-in model
defines a conditional normal density function fort > m,

f(yt | yt−1,Xt ; bt−1, σ̂
2
t−1)

=
1

√

2πσ̂2
t−1

exp

(

− e2
t

2σ̂2
t−1

)

,

where σ̂2
t−1 = 1

t−1

∑t−1
i=1 ǫ̂2i (t − 1), and yt−1 =

y1, . . . , yt−1. The resulting joint density function ob-
tained by multiplying the conditional densities ofym+1,
. . . , yn, and ignoring constant terms, defines (by its nega-
tive logarithm) the so-calledpredictive minimum descrip-
tion length (PMDL) criterion, studied in [5], [6], [7], and
[8]. Its special case for constant varianceσ̂2

t−1 = σ2 is the
predictive least squares (PLS) criterion,

PLS(n, k) =
n
∑

t=m+1

(yt − b′t−1x̄t)
2,

studied in [9] and [8].
The second representation (10) is traditional, and it,

too, has associated model selection criteria, including AIC
[10], and BIC [11],

BIC(n, k) =
n

2
log σ̂2

n +
k + 1

2
log n,



wherek + 1 is the number of parameters (including the
variance). The BIC criterion is obtained by an approxi-
mation of a joint density function of the data where the
negative logarithm of the maximized likelihoodf(yn |
Xn ; bn, σ̂2

n) determines the first term. In the AIC cri-
terion the second term isk + 1, the number of parame-
ters. Both criteria are often multiplied by2/n, so that the
first term is simply the logarithm of the residual sum of
squares.

Also involving the second representation, thenormal-
ized maximum likelihood (NML) criterion is obtained di-
rectly as the normalized version of the maximized like-
lihood, where the normalizing term is given byCn,k =
∫

yn∈Y
f(yn | Xn ; bn, σ̂2

n) dyn [1], [2], [12]. In order to
make the integral finite, the range of integrationY has to
be restricted, which requires hyper-parameters. A solu-
tion which eliminates the effect of the hyper-parameters
to model selection by a second normalization is presented
in [13], see also [14, 15]. The corresponding parameter-
free criterion is

NML(n, k) =
n − k

2
log

σ̂2
n

n − k

+
k

2
log

R̂

k
+

1

2
log(k(n − k)),

whereR̂ = b′nXnX ′
nbn/n.

The third representation, which we are interested in,
is new. The sum of squared deviationsê2

t is smaller than
either the sum of the traditional least squaresǫ̂2t (n), or the
sum of the squared prediction errorse2

t . However, since
the parameters of the corresponding conditional density
function f(yt | yt−1,Xt ; bt, σ̂

2
t ) involve at each step

t > m the response variableyt, it too needs to be nor-
malized in order to obtain a proper density function. We
study the asymptotic behavior of the resulting sequentially
normalized least squares criterion for both fixed designs
and random ones appearing in AR models. The crite-
rion involves no approximations and is free of any hyper-
parameters which tend to affect the outcome especially for
small samples.

5. SEQUENTIALLY NORMALIZED LEAST
SQUARES

In order to obtain a meaningful model selection criterion
with a capability to find a balance between goodness of fit
and complexity, we convert the squared deviations into a
density model.

Consider first the simple case where the varianceσ2 is
fixed. The non-normalized conditionals

f(yt | yt−1,Xt;σ
2, bt) =

1√
2πσ2

exp

(

− (yt − ŷt)
2

2σ2

)

,

(12)
are obtained by replacing the parameter vectorb
in the conditional normal density functionf(yt |
yt−1,Xt;σ

2, b) by the least squares estimatebt.
For each fixedk, for t > m, wherem is the smallest

value fort for whichk(t) = k, the well known recursions

exist, see for instance [16],

bt = Vt

t
∑

j=1

x̄jyj

= bt−1 +
Vt−1

1 + ct
x̄t(yt − x̄′

tbt−1) (13)

Vt = (XtX
′
t)

−1

= Vt−1 − Vt−1x̄tx̄
′
tVt−1/(1 + ct) (14)

ct = x̄′
tVt−1x̄t

dt = x̄′
tVtx̄t

1 − dt = 1/(1 + ct). (15)

The last equality was shown in [7] and [8] with the inter-
pretation that the quantity1−dt is the ratio of the (Fisher)
information in the firstt−1 observations relative to all the
t observations, [8]. This also implies that0 ≤ dt ≤ 1.

By (13) we obtain

ŷt = x̄′
t [Vt−1x̄t(yt − x̄′

tbt−1)/(1 + ct) + bt−1]

= ct/(1 + ct)(yt − x̄′
tbt−1) + x̄′

tbt−1

= (1 − dt)x̄
′
tbt−1 + dtyt. (16)

which is a weighted average of the plug-in prediction
x̄′

tbt−1 and the true valueyt. This gives the remaining
error as

êt = yt− ŷt = (1−dt)(yt− x̄′
tbt−1) = (1−dt)et, (17)

which is seen to be smaller than the plug-in prediction
error by a constant factor. The normalization of (12) is
straightforward, and the result is a normal density func-
tion, the mean given by the plug-in predictor and the vari-
ance byτ = (1 + ct)

2σ2.
If we in (12) replace the variance by the minimized

varianceŝt/t and try to normalize the result the normal-
izing integral will be infinite. To make it finite would re-
quire hyper-parameters. Consider instead the maximiza-
tion problem

max
σ2

n
∏

t=m+1

f(yt | yt−1,Xt;σ
2, bt). (18)

The maximizingσ2 is

τ̂n =
ŝn − ŝm

n − m
=

1

n − m

n
∑

t=m+1

ê2
t ,

which gives the maximized product(2πeτ̂n)−(n−m)/2.
By normalizing overyt, we get the normalized conditional
density function

f̂(yt | yt−1,Xt)

= K−1(yt−1)τ̂
−1/2
t−1

(

1 +
(yt − ŷt)

2

τ̂t−1

)−(t−m)/2

.

The normalizing integral is given by

K(yt−1) =

√
π

1 − dt
Γ

(

t − m − 1

2

)

/Γ

(

t − m

2

)

.



The proof is omitted. We needt > m + 1 to make the
normalizer non-zero.

For t > m + 1, the conditional density function is
given by

f̂(yt | yt−1,Xt) = K−1
t−1

τ̂
−(t−m)/2
t

τ̂
−(t−m−1)/2
t−1

.

We see that again the predictor that maximizes the condi-
tional density function is the plug-in predictorx̄′

tbt−1.
By putting the initial density function as some pre-

specified functionq(ym+1 | Xm+1), which will not play a
role in comparison of different models, we get the desired
parameter-free density function

f̂(yn | Xn) = q(ym+1 | Xm+1)

n
∏

t=m+2

f̂(yt | yt−1,Xt).

The negative logarithm of this gives thesequentially nor-
malized least squares (SNLS) criterion:

SNLS(n, k) =
n − m

2
ln(2πeτ̂n)

+

n
∑

t=m+1

ln(1 + ct) +
1

2
lnn + O(1),

(19)

where Stirling’s formula has been applied to the Gamma
function, and constant terms are implicit in theO(1) term.
The SNLS criterion can be used for subset selection and
order estimation for both small and large data sets. One
of its distinguished properties is the fact that unlike the
regular NML universal model it has no hyper-parameters.

We conclude this section by a large data set behavior
of the SNLS model.

Theorem 1 If the regressor variables x̄t satisfy

1

n
XnX ′

n =
1

n

n
∑

i=1

x̄ix̄
′
i → Σ (20)

with Σ non-singular, then

SNLS(n, k) =
n − m

2
ln(2πeτ̂n)

+

(

2k + 1

2

)

lnn + o(lnn).

The proof of this and all subsequent theorems are left
to the full version.

6. FIXED REGRESSION MATRIX

The first theorem shows the mean square deviations in the
three representations of data (9), (10), and (11), which are
of some interest, and which we will need later on. Since
we need the recursive formulas (13), (14), (15) we give
the results fort > m.

Theorem 2 If the regressor variables are non-random
satisfying (20) and the data generated by (8), then

1

n − m

n
∑

t=m+1

Ee2
t = σ2

(

1 +
1

n − m

n
∑

t=m+1

ct

)

(21)

1

n − m

n
∑

t=m+1

Eê2
t = σ2

(

1 − 1

n − m

n
∑

t=m+1

dt

)

(22)

1

n − m

(

n
∑

t=1

Eǫ̂2t (n) −
m
∑

t=1

Eǫ̂2t (m)

)

= σ2, (23)

where the expectation is with the parameters b and σ.

The next theorem shows the asymptotic optimality of
the SNLS model in terms of logarithmic prediction errors,
see [9], both in the mean and almost surely, in the case
where the regressor matrix is fixed.

Theorem 3 Let the assumption (20) hold, and let the data
be generated by (8). Then

E SNLS(n, k) =
n − m

2
ln(2πeσ2)+

k + 1

2
lnn+o(ln n),

(24)
for almost all parameters b and σ. Also,

SNLS(n, k) =
n − m

2
ln(2πeσ2) +

k + 1

2
lnn + o(lnn)

(25)
almost surely.

7. AR MODELS

We then consider the case where the data are generated by
an AR model,

yt =
k
∑

i=1

aiyt−i + ǫt, t ≥ 1, (26)

in which the regressor matrix is random, determined by
the the datayn, and where we write the coefficients asai

to avoid confusing them withbi, where the subindex refers
to timei.

The following theorem shows the almost sure asymp-
totic optimality of the SNLS model also in this case.

Theorem 4 Let the data be generated by an AR model
(26), where the roots of the polynomial 1 −

∑k
i=1 aiz

i

are outside the unit circle, and ǫt is an i.i.d. zero-mean
Gaussian process with variance σ2. The process is also
assumed to be ergodic and stationary with Ex̄tx̄

′
t = Σ

nonsingular. Then for σ̂2
n = (1/n)

∑n
i=1 ǫ̂2i (n), we have

ln τ̂n = ln σ̂2
n −

(

k

n − m
lnn

)

(1 + o(1)), (27)

almost surely, and

SNLS(k, n) =
n − m

2
ln(2πeσ̂2

n) +
k + 1

2
lnn + o(lnn)

almost surely.



8. SIMULATION STUDY

We study the behavior of the proposed SNLS model se-
lection criterion in a simulation study where the AIC,
BIC, PLS, and SNLS (Eq. (19)) methods are used to es-
timate the order of an AR model. The scripts, inR lan-
guage, needed to reproduce the experiments are available
for download1.

The true order was varied betweenk∗ = 1, . . . , 10,
and the sample sizes weren = 100, 200, 400, 800, 1600,
3200. The parameters of the AR models are generated
by sampling parameter vectors uniformly at random from
the range[−1, 1]k

∗

and rejecting combinations that result
in unstable processes, until 3000 accepted (stable) mod-
els were produced per each(n, k∗) pair. The criteria were
evaluated for orders up tok = 15, and the order minimiz-
ing each criterion was chosen as the estimate.

Tables 1 and 2 report the percentage of correctly esti-
mated orders for each true orderk∗ and sample sizen. For
the lowest orders,k = 1, 2, the BIC criterion is clearly the
most accurate one and wins for almost all sample sizes;
this was expected since BIC is known to have a tendency
to underestimate rather than overestimate the order. Like-
wise, it is not too surprising that AIC, which a priori fa-
vors more complex models than the other criteria, wins
for the smallest sample size wheneverk ≥ 5. For the or-
dersk = 3, 4, 5, BIC, PLS, NML, and SNLS share the
first place, the last one somewhat more often than the oth-
ers. For ordersk = 5, . . . , 10, Table 2, SNLS is clearly
the best method, with the exception of the smallest sample
sizes.
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Table 1. Percentages of correctly estimated orders,k∗ = 1, . . . , 5 (to be continued in Table 2) The score of the best
method in each case is typeset in boldface.

sample size,n

50 100 200 400 800 1600 3200

k = 1 AIC 70.5 71.3 72.0 70.0 71.4 70.8 70.9

BIC 93.5 96.9 97.9 98.0 99.4 99.5 99.4
PLS 75.8 86.3 91.1 93.5 96.7 97.8 98.1

NML 82.5 88.3 89.7 91.5 94.3 95.9 96.6

SNLS 78.5 87.5 92.2 93.9 97.0 98.1 98.3

k = 2 AIC 52.1 58.0 64.1 64.6 66.4 69.0 68.4

BIC 61.3 69.3 78.2 83.0 88.0 90.0 93.8
PLS 52.7 65.5 76.4 81.7 86.6 89.7 93.5

NML 59.7 68.3 76.9 82.4 86.4 89.8 93.6

SNLS 53.8 66.1 77.5 82.1 86.3 90.1 93.6

k = 3 AIC 47.1 55.5 59.2 63.6 66.5 68.6 69.2

BIC 49.5 63.5 72.3 79.2 84.6 88.3 92.2

PLS 45.3 61.8 71.7 79.1 84.8 88.7 92.6
NML 49.7 63.1 72.1 79.5 84.5 88.3 92.4

SNLS 46.5 63.0 71.1 79.3 84.9 88.6 92.6

k = 4 AIC 42.8 52.5 60.1 63.3 65.4 66.5 67.5

BIC 45.7 59.6 67.8 76.5 82.6 88.3 91.4

PLS 42.1 58.3 68.5 77.0 82.5 88.3 91.9

NML 45.0 60.2 68.0 76.7 82.5 88.0 91.6

SNLS 42.4 59.2 69.4 77.0 82.4 88.5 92.0

k = 5 AIC 39.7 49.6 56.9 60.5 65.7 67.1 66.8

BIC 39.0 52.1 65.4 74.8 80.5 85.8 90.4

PLS 39.1 53.4 65.8 75.0 81.0 86.1 90.4

NML 39.2 52.1 66.2 74.8 81.0 85.8 90.4

SNLS 39.4 54.2 66.1 76.0 81.0 86.0 90.7



Table 2. Percentages of correctly estimated orders,k∗ = 6, . . . , 10 (continued from Table 1). The score of the best method
in each case is typeset in boldface.

sample size,n

50 100 200 400 800 1600 3200

k = 6 AIC 37.9 51.0 56.5 59.5 64.1 68.7 68.2

BIC 35.4 51.8 62.9 71.3 79.8 86.6 90.4

PLS 34.7 52.3 62.9 72.0 80.1 86.7 90.7
NML 35.6 52.8 63.2 71.7 79.9 86.5 90.6

SNLS 36.3 53.3 64.0 72.4 80.3 86.8 90.5

k = 7 AIC 33.7 45.4 55.3 59.6 63.6 65.7 67.3

BIC 29.2 43.4 59.1 69.5 77.9 82.8 88.6

PLS 30.0 44.7 60.5 70.0 78.5 82.9 88.6

NML 28.8 44.2 59.8 69.8 78.3 83.0 88.4

SNLS 30.1 46.5 61.2 70.6 79.4 83.2 88.9

k = 8 AIC 34.4 45.9 55.7 59.6 64.5 66.3 67.6

BIC 26.9 43.0 57.6 69.1 78.2 81.4 86.5

PLS 28.8 44.6 58.8 69.1 77.9 82.0 86.4

NML 26.9 43.6 58.2 69.7 78.8 81.8 86.8
SNLS 28.8 45.9 59.2 69.8 79.0 82.4 86.8

k = 9 AIC 30.0 44.1 52.8 59.0 64.3 64.9 69.1

BIC 23.1 39.1 52.8 66.1 75.7 82.2 86.3

PLS 23.8 40.2 53.3 67.1 75.9 81.5 86.3

NML 22.4 39.6 53.7 66.8 76.6 82.3 86.7

SNLS 24.6 42.0 55.0 67.8 76.7 82.2 86.9

k = 10 AIC 28.5 43.9 51.5 59.3 64.2 67.1 67.7

BIC 20.6 35.7 51.0 66.1 74.4 81.4 85.5

PLS 20.1 35.7 50.7 65.0 73.4 80.8 84.8

NML 20.2 37.1 51.9 66.8 74.6 81.4 85.8
SNLS 21.4 37.9 52.3 66.5 74.8 81.8 85.6


