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Universal Models

Given a sequence, xn = (x1, . . . , xn), the best fitting model in a
model class, M, is the maximum likelihood model

sup
θ∈Θ

p(xn ; θ) = p(xn ; θ̂(xn)) .

A universal model q(·) achieves almost as short a code-length as
the ML model:

lim
n→∞

1

n
ln

p(xn ; θ̂(xn))

q(xn)
= 0 ,

i.e., the log-likelihood ratio (‘regret’) is allowed to grow
sublinearly.

The minimax optimal (NML) model (Shtarkov, 1987):

pNML(xn) =
p(xn ; θ̂(xn))

Cn
, Cn =

∑
xn∈X n

p(xn ; θ̂(xn)) .
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Approximations and Alternatives to NML

1 Approximations:

BIC:
k

2
ln n

Fisher information:
k

2
ln

n

2π
+ ln

∫
Θ

√
det I (θ) dθ

2 Monte Carlo methods
3 Other forms of universal models:

two-part
plug-in (predictive least squares (PLS), predictive MDL)
mixtures (Bayes)
sequential NML
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Sequential NML

Basic Idea

1 Maximize likelihood (like in NML).

2 Normalize over current observation, xi .

3 Combine obtained conditionals.

Always gives a stochastic process (unlike NML).

Each conditional is “locally” minimax optimal.
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Sequential NML

The sNML (variant 1) model is defined as

psNML1(x
n) =

n∏
i=1

p(xi | x i−1 ; θ̂(x i ))

Ki (x i−1)

Ki (x
i−1) =

∑
xi

p(xi | x i−1 ; θ̂(x i ))
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The second variant of sNML is defined as

psNML2(x
n) =

n∏
i=1

p(x i ; θ̂(x i ))

K ′
i (x

i−1)

K ′
i (x

i−1) =
∑
xi

p(x i ; θ̂(x i ))

T. Roos and J. Rissanen On Sequentially Normalized Maximum Likelihood Models



Computational Complexity

The only computational issue in applying NML/sNML in the
discrete (multinomial) case is the normalization factor.

In NML, we have a sum of products:

Cn =
∑
xn

p(xn ; θ̂(xn)) =
∑
xn

n∏
i=1

p(xi | x i−1 ; θ̂(xn)).

In sNML, we have a product of sums:

Zn(x
n) =

n∏
i=1

Ki (x
i−1) =

n∏
i=1

∑
x ′
i

p(x ′i | x i−1 ; θ̂(x i−1, x ′i )).

Remarkably, we can evaluate both in O(n) time (Kontkanen &
Myllymäki, 2007). In general, NML is hard but sNML is easy.
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Properties of sNML: Bernoulli case

Both variants of sNML are universal:

sNML1 is identical to Laplace’s “add one” rule:

PsNML1(1 | xn) = PLap(1 | xn) =
n1 + 1

n + 2
.

(Takimoto and Warmuth, 2000): The worst-case regret of
sNML2 is bounded by

sup
xn

ln
p(xn ; θ̂(xn))

psNML2(xn)
≤ 1

2
ln(n + 1) +

1

2
.

Is the sun going to rise? xn = 111 . . . 1.

(PLap(1 | xn))∞n=0 =

(
1

2
,
2

3
,
3

4
,
4

5
, . . .

)
.

(PsNML2(1 | xn))∞n=0 =

(
1

2
,
4

5
,
27

31
,
256

283
, . . .

)
.
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Regrets Visualized
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Linear-Quadratic Models

Linear model yt = β′x̄t + εt with Gaussian errors εt ∼ N (0, σ2).

Least squares parameters b′t = arg minβ ‖β′Xt − y t‖2.

Consider the following three representations:

yt = b′t−1x̄t + et (1) “plug-in”

yt = b′nx̄t + ε̂t(n) (2) “least-squares”

yt = b′t x̄t + êt (3) “sNML”

Representation (1) corresponds to the predictive least squares
(PLS) model selection criterion:

∑n
i=m+1 e2

t .

Representation (2) leads to the AIC, BIC, and NML criteria.

Representation (3) is new. ⇒ sequentially normalized least
squares (SNLS)
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Representation (1) corresponds to the predictive least squares
(PLS) model selection criterion:

∑n
i=m+1 e2

t .

Representation (2) leads to the AIC, BIC, and NML criteria.

Representation (3) is new. ⇒ sequentially normalized least
squares (SNLS)

T. Roos and J. Rissanen On Sequentially Normalized Maximum Likelihood Models



Linear-Quadratic Models

Linear model yt = β′x̄t + εt with Gaussian errors εt ∼ N (0, σ2).

Least squares parameters b′t = arg minβ ‖β′Xt − y t‖2.

Consider the following three representations:

yt = b′t−1x̄t + et (1) “plug-in”

yt = b′nx̄t + ε̂t(n) (2) “least-squares”

yt = b′t x̄t + êt (3) “sNML”
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Sequentially Normalized Least Squares

Fixed variance σ̂2
t = σ2 case:

Non-normalized conditional:

f (yt | y t−1,Xt ;σ
2, bt) =

1√
2πσ2

exp

(
−(yt − ŷt)

2

2σ2

)
,

where ŷt = b′t x̄t .

Normalized conditional:

fSNLS(yt | y t−1,Xt ;σ
2) =

1√
2πτ

exp

(
−

(yt − b′t−1x̄t)
2

2τ

)
,

where τ = (1 + ct)
2σ2, ct = x̄ ′t(XtX

′
t)
−1x̄t = O(1/t).
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′
t)
−1x̄t = O(1/t).
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Sequentially Normalized Least Squares

Fixed variance σ̂2
t = σ2 case:

Non-normalized conditional:
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Sequentially Normalized Least Squares

Free variance case:

Consider the maximization problem

sup
σ2

n∏
t=m+1

f (yt | y t−1,Xt ;σ
2, bt).

The maximizing variance is given by τ̂n = 1
n−m

∑n
t=m+1(yt − ŷt)

2,
and the resulting non-normalized joint density is

(2πe τ̂n)
−(n−m)/2.
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Sequentially Normalized Least Squares

The SNLS criterion is given by

SNLS(n, k)

=
n −m

2
ln τ̂n −

1

2
ln êm+1 − ln

Γ

(
n −m

2

)
Γ(1/2)

+ ln
n∏

t=m+2

√
π

1− dt

=
n −m

2
ln(2πe τ̂n) +

n∑
t=m+1

ln(1 + ct) + Rn,

where the remainder term Rn is insignificant.
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Sequentially Normalized Least Squares

Theorem: If the data is generated by a k-parameter
linear-quadratic model (either non-random Xn, or AR model), then
we have

SNLS(n, k) =
n −m

2
ln(2πe τ̂n) +

2k + 1

2
ln n + o(ln n),

and

SNLS(n, k) =
n −m

2
ln(2πeσ̂2

n) +
k + 1

2
ln n + o(ln n)

almost surely for almost all β and σ2.

Note that the effective number of parameters is doubled.
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Experiment: AR Model Order Estimation

sample size, n
50 100 200 400 800 1600 3200

k = 1 AIC 70.5 71.3 72.0 70.0 71.4 70.8 70.9
BIC 93.5 96.9 97.9 98.0 99.4 99.5 99.4
PLS 75.8 86.3 91.1 93.5 96.7 97.8 98.1

NML 82.5 88.3 89.7 91.5 94.3 95.9 96.6
SNLS 78.5 87.5 92.2 93.9 97.0 98.1 98.3

k = 4 AIC 42.8 52.5 60.1 63.3 65.4 66.5 67.5
BIC 45.7 59.6 67.8 76.5 82.6 88.3 91.4
PLS 42.1 58.3 68.5 77.0 82.5 88.3 91.9

NML 45.0 60.2 68.0 76.7 82.5 88.0 91.6
SNLS 42.4 59.2 69.4 77.0 82.4 88.5 92.0

k = 7 AIC 33.7 45.4 55.3 59.6 63.6 65.7 67.3
BIC 29.2 43.4 59.1 69.5 77.9 82.8 88.6
PLS 30.0 44.7 60.5 70.0 78.5 82.9 88.6

NML 28.8 44.2 59.8 69.8 78.3 83.0 88.4
SNLS 30.1 46.5 61.2 70.6 79.4 83.2 88.9

k = 10 AIC 28.5 43.9 51.5 59.3 64.2 67.1 67.7
BIC 20.6 35.7 51.0 66.1 74.4 81.4 85.5
PLS 20.1 35.7 50.7 65.0 73.4 80.8 84.8

NML 20.2 37.1 51.9 66.8 74.6 81.4 85.8
SNLS 21.4 37.9 52.3 66.5 74.8 81.8 85.6
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