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Universal Models

Given a sequence, x" = (x1,...,X,), the best fitting model in a
model class, M, is the maximum likelihood model

sup p(x"; 0) = p(x"; O(x")) .
0cO

T. Roos and J. Rissanen On Sequentially Normalized Maximum Likelihood Models



Universal Models

Given a sequence, x" = (x1,...,X,), the best fitting model in a
model class, M, is the maximum likelihood model

sup p(x"; 0) = p(x"; O(x")) .
0cO

A universal model g(-) achieves almost as short a code-length as
the ML model:

i.e., the log-likelihood ratio (‘regret’) is allowed to grow
sublinearly.
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Universal Models

Given a sequence, x" = (x1,...,X,), the best fitting model in a
model class, M, is the maximum likelihood model

sup p(x"; 0) = p(x"; O(x")) .

0c©
A universal model g(-) achieves almost as short a code-length as
the ML model:

lim —In —p(x” j é(Xn))
noo n q(x")

=0,
i.e., the log-likelihood ratio (‘regret’) is allowed to grow

sublinearly.
The minimax optimal (NML) model (Shtarkov, 1987):

pNML(Xn) — w , C, = Z p(Xn; é(X”)) )
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Approximations and Alternatives to NML

© Approximations:
k
e BIC: > Inn
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@ Monte Carlo methods
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o plug-in (predictive least squares (PLS), predictive MDL)

T. Roos and J. Rissanen On Sequentially Normalized Maximum Likelihood Models



Approximations and Alternatives to NML

© Approximations:
k
e BIC: > Inn

o Fisher information: g In 2i + In/ v/ det [(6) do
m ©

@ Monte Carlo methods
@ Other forms of universal models:

o two-part
o plug-in (predictive least squares (PLS), predictive MDL)
e mixtures (Bayes)
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Approximations and Alternatives to NML

© Approximations:
k
e BIC: > Inn

o Fisher information: g In 2i + In/ v/ det [(6) do
m ©

@ Monte Carlo methods

@ Other forms of universal models:

two-part

plug-in (predictive least squares (PLS), predictive MDL)
mixtures (Bayes)

sequential NML
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Sequential NML

Basic Idea
@ Maximize likelihood (like in NML).

© Normalize over current observation, x;.

© Combine obtained conditionals.
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© Normalize over current observation, x;.

© Combine obtained conditionals.

Always gives a stochastic process (unlike NML).
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Sequential NML

Basic Idea
@ Maximize likelihood (like in NML).

© Normalize over current observation, x;.

© Combine obtained conditionals.

Always gives a stochastic process (unlike NML).

Each conditional is “locally” minimax optimal.
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Sequential NML

The sNML (variant 1) model is defined as

(x))

n i-1. 7

n p(x; | x : 0

pova () = T 22
i=1 !
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Sequential NML

The sNML (variant 1) model is defined as

PsNMLl

PX:\X b 00:))
[l

prllx  0(x))
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Sequential NML

The sNML (variant 1) model is defined as

PsNMLl

px,\x L ()
H =y
mex 06)

Compare to the plug-in model:

potug—in(x") = [ [ pCxi | X1 8(x1))
i=1
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Sequential NML

The sNML (variant 1) model is defined as

PsNML1 (X HPX"X , )9( )
prllx  0(x))

Compare to the ‘ordinary’ NML model:

i (x7) = p(x" :Cf(X”))
Co= > p(x"; B(x")
xnexn
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Sequential NML

The sNML (variant 1) model is defined as

PsNML1 (X HPX"X , )9( )
prllx  0(x))

The second variant of SNML is defined as

p(x"; 0(x"))
PsNML2 (X H K’(x’ 1

Kl(x1) = Zp x'
Xj
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Computational Complexity

The only computational issue in applying NML/sNML in the
discrete (multinomial) case is the normalization factor.
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Computational Complexity

The only computational issue in applying NML/sNML in the
discrete (multinomial) case is the normalization factor.

@ In NML, we have a sum of products:

Co=S"p(x": 8™y = ST o | ¥ A(x™).

x" j=1
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Computational Complexity

The only computational issue in applying NML/sNML in the
discrete (multinomial) case is the normalization factor.

@ In NML, we have a sum of products:
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@ In sNML, we have a product of sums:
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Computational Complexity

The only computational issue in applying NML/sNML in the
discrete (multinomial) case is the normalization factor.

@ In NML, we have a sum of products:
Co=3px"; 6(x™) =S [ Pl | X1 O(x").
X" X" j=1
@ In sNML, we have a product of sums:

Zn(x") = [T =TT 3 pOxr [ X705 0 X)),
i=1

i=1 x!

Remarkably, we can evaluate both in O(n) time (Kontkanen &
Myllymaki, 2007).
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Computational Complexity

The only computational issue in applying NML/sNML in the
discrete (multinomial) case is the normalization factor.

@ In NML, we have a sum of products:
Co=3px"; 6(x™) =S [ Pl | X1 O(x").
X" X" j=1
@ In sNML, we have a product of sums:

Zn(x") = [T =TT 3 pOxr [ X705 0 X)),
i=1

i=1 x!

Remarkably, we can evaluate both in O(n) time (Kontkanen &
Myllyméaki, 2007). In general, NML is hard but sNML is easy.
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Properties of sSNML: Bernoulli case

Both variants of sSNML are universal:
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Properties of sSNML: Bernoulli case

Both variants of sSNML are universal:

@ sNMLL1 is identical to Laplace's “add one” rule:

n+1
n+2°

Panmra (1| x™) = Prap(1 | x") =
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Properties of sSNML: Bernoulli case

Both variants of sSNML are universal:

@ sNMLL1 is identical to Laplace's “add one” rule:

n+1
Panuri (1 | x™) = Prap(1 | x") = nl+2.

o (Takimoto and Warmuth, 2000): The worst-case regret of
sNML?2 is bounded by

supln —————=~
XN psnmr2(x™)
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Properties of sSNML: Bernoulli case

Both variants of sSNML are universal:

@ sNMLL1 is identical to Laplace's “add one” rule:

n+1
Panuri (1 | x™) = Prap(1 | x") = nl+2.

o (Takimoto and Warmuth, 2000): The worst-case regret of
sNML?2 is bounded by

P OxM) 1

1
suplIn (n—i—l)—i—E.

XN psnmr2(x™)

Is the sun going to rise? x” = 111...1.

N —
W N

(P | xi0 = (
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Properties of sSNML: Bernoulli case

Both variants of sSNML are universal:

@ sNMLL1 is identical to Laplace's “add one” rule:

n+1
Panuri (1 | x™) = Prap(1 | x") = nl+2.

o (Takimoto and Warmuth, 2000): The worst-case regret of
sNML?2 is bounded by

PO 0 1

supln

1
n+1)+ —.
X7 psnmr2(x™) ( ) 2

Is the sun going to rise? x” = 111...1.

o 2
(o1 | X520 = (515,

P 1 x")2 = (2,228 222
(SNMLQ( ’X)n_o (27573172837
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Regrets Visualized

LeoG

Laplace/sNML-1 Krichevsky-Trofimov sNML-2 NML
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Regrets Visualized

sNML-2 NML
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Linear-Quadratic Models

Linear model y; = #'X; + €; with Gaussian errors ¢; ~ N(0, 2).
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Linear-Quadratic Models

Linear model y; = #'X; + €; with Gaussian errors ¢; ~ N(0, 2).

Least squares parameters b}, = arg ming ||3'X; — y*||2.
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Linear-Quadratic Models

Linear model y; = #'X; + €; with Gaussian errors ¢; ~ N(0, 2).

Least squares parameters b}, = arg ming ||3'X; — y*||2.

Consider the following three representations:

ye = bl_1X¢ + e (1) “plug-in"
vt = bl.x: + €:(n) (2) “least-squares”
ve = biXe + & (3) “sNML”
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Linear-Quadratic Models

Linear model y; = #'X; + €; with Gaussian errors ¢; ~ N(0, 2).

Least squares parameters b}, = arg ming ||3'X; — y*||2.

Consider the following three representations:

yr = by_1X: + et (1) “plug-in”
vt = bl.x: + €:(n) (2) “least-squares”
Vi = bixe + & (3) “sNML”

Representation (1) corresponds to the predictive least squares

(PLS) model selection criterion: .7 ; e?.
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Linear-Quadratic Models

Linear model y; = #'X; + €; with Gaussian errors ¢; ~ N(0, 2).

Least squares parameters b}, = arg ming ||3'X; — y*||2.

Consider the following three representations:

yr = by_1X: + et (1) “plug-in”
vt = b,%t + €:(n) (2) ‘“least-squares”
Ve = B+ & (3) “sNML"

Representation (1) corresponds to the predictive least squares

(PLS) model selection criterion: .7 ; e?.

Representation (2) leads to the AIC, BIC, and NML criteria.
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Linear-Quadratic Models

Linear model y; = #'X; + €; with Gaussian errors ¢; ~ N(0, 2).

Least squares parameters b}, = arg ming ||3'X; — y*||2.

Consider the following three representations:

Ye =bi_1% + e (1) “plug-in”
vt = bl.x: + €:(n) (2) “least-squares”
Yt = b;)_(t + ét (3) “SNML”

Representation (1) corresponds to the predictive least squares

(PLS) model selection criterion: .7 ; e?.

Representation (2) leads to the AIC, BIC, and NML criteria.

Representation (3) is new. = sequentially normalized least
squares (SNLS)
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Sequentially Normalized Least Squares

Fixed variance 62 = o2 case:

Non-normalized conditional:

- 1 (ye — )A/t)2
f t—1 X .2 — - 77
()/t | y YA, O 7bt) 27‘(‘0’2 €Xp 20_2 )

where §; = bix;.
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Sequentially Normalized Least Squares

Fixed variance 62 = o2 case:

Non-normalized conditional:

_ 1 (Yt - )A/t)2
f t—1 X .2 — - 77
()/t | y YA, O 7bt) 27‘(‘0’2 €Xp 20_2 )

where §; = bix;.

Normalized conditional:

_ ]_ 0% _b/_ X, 2
fSNLS(yt‘yt 17Xt;0'2): exp <_(ttlt) ,

Vant or

where 7 = (1 + Ct)zaz, Ct = )_(é(XtXt{)_l)_(t = O(l/t)
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Sequentially Normalized Least Squares

Fixed variance 62 = o2 case:

Non-normalized conditional:

_ 1 (Yt - )A/t)2
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Vant or
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Sequentially Normalized Least Squares

Fixed variance 62 = o2 case:

Non-normalized conditional:

_ 1 (Yt - )A/t)2
f t—1 X .2 — - 77
()/t | y YA, O 7bt) 27‘(‘0’2 €Xp 20_2 )

where §; = bix;.

Normalized conditional:

_ ]_ 0% _b/_ X, 2
fSNLS(yt‘yt 17Xt;0'2): exp <_(ttlt) ,

Vanr 2r

where 7 = (1 + ¢;)?02, ¢ = X{(XeX{) 1% = O(1/t).
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Sequentially Normalized Least Squares

Free variance case:

Consider the maximization problem

sup [ fOve |yt Xeio? by).

o? t=m+1
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Sequentially Normalized Least Squares

Free variance case:

Consider the maximization problem

sup [ fOve |yt Xeio? by).

o? t=m+1

The maximizing variance is given by 7, = —2-3"7 (v — §)?,
and the resulting non-normalized joint density is

(2met,)~(n=m)/2,
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Sequentially Normalized Least Squares

The SNLS criterion is given by

SNLS(n, k)
e5)
n—m 1 2 u NS
- InFp— =81 —In— ol 1|
T R S TV +nt:1_m[+21—dt

n

n—m .
= In(2ref,) + Z In(1+ ct) + Rn,
t=m+1

where the remainder term R, is insignificant.
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Sequentially Normalized Least Squares

Theorem: If the data is generated by a k-parameter
linear-quadratic model (either non-random X, or AR model), then
we have

)_n—m 2k +1

SNLS(n, k In(2met,) +

Inn+ o(Inn),
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Sequentially Normalized Least Squares

Theorem: If the data is generated by a k-parameter
linear-quadratic model (either non-random X, or AR model), then

we have

SNLS(n, k) = n—m In(2met,) + 2kt 1 Inn+ o(Inn),
and

SNLS(n, k) = - m In(2wed?) + kil Inn+ o(ln n)

almost surely for almost all 3 and 2.
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Sequentially Normalized Least Squares

Theorem: If the data is generated by a k-parameter
linear-quadratic model (either non-random X, or AR model), then

we have

SNLS(n, k) = n—m In(2met,) + ck+1 Inn+ o(Inn),
and

SNLS(n, k) = - m In(2wed?) + kil Inn+ o(ln n)

almost surely for almost all 3 and 2.

Note that the effective number of parameters is doubled.
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Experiment: AR Model Order Estimation

sample size, n
50 100 200 400 800 1600 3200
k=1 AIC 705 713 720 70.0 714 70.8 70.9
BIC 935 96.9 979 98.0 994 995 994
PLS 758 863 91.1 935 967 97.8 98.1
NML 825 883 89.7 915 943 959 96.6
SNLS 785 875 922 939 970 981 983
k=14 AIC 428 525 60.1 633 654 665 67.5
BIC 457 596 678 765 82.6 883 0914
PLS 421 583 685 77.0 825 883 919
NML 450 60.2 68.0 767 825 88.0 91.6
SNLS 424 592 69.4 77.0 824 88,5 92.0
k=7 AIC 33.7 454 553 596 636 657 673
BIC 292 434 591 695 779 828 88.6
PLS 300 447 605 700 785 829 88.6
NML 288 442 598 698 783 830 884
SNLS 30.1 46.5 61.2 70.6 79.4 83.2 88.9
k=10 AIC 285 439 515 593 642 671 677
BIC 206 357 510 66.1 744 814 855
PLS 20.1 357 507 650 734 808 84.38
NML 202 371 519 66.8 746 814 85.8
SNLS 214 379 523 665 748 81.8 856
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